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Abstract. Efficient, automated elimination of cuts is a prerequisite for proof
analysis. The method CERES, based on Skolemization and resolution has been
successfully developed for classical logic for this purpose. We generalize this
method to Godel logic, an important intermediate logic, which is also one of the
main formalizations of fuzzy logic.

1 Introduction

In recent years an efficient method for the automated elimination of cuts from classical
first order sequent proofs has been developed [7,9]. This method, called CERES! is
based on the resolution calculus and has been successfully employed for the in depth
analysis of proofs in number theory (e.g., [5]). It is moreover also of theoretical interest
due to its global nature and other essential differences, compared to the traditional, local
Gentzen- and Schiitte-Tait-style cut elimination methods [18, 20]. Of course, effective
cut elimination is not only useful for classical logic. It is a precondition for non-trivial
proof analysis in any logic. In [8] Baaz and Leitsch have extended CERES to a wide
class of finite-valued logics. Considering the intended applications, intuitionistic logic
and intermediate logics, i.e., logics over the standard language that are stronger than
intuitionistic logic, but weaker than classical logic, are even more important targets for
similar extensions. However, there are a number formidable obstacles to a straightfor-
ward generalization of CERES to this realm of logics:

— It is unclear whether and how classical resolution can be generalized, for the in-
tended purpose, to intermediate logics.

— Gentzen’s sequent format is too restrictive to obtain appropriate analytic calculi for
many important intermediate logics.

— Skolemization, or rather the inverse de-Skolemization of proofs — an essential
prerequisite for CERES — is not possible in general.

Here we single out a prominent intermediate logic, namely Godel logic G (also called
Dummett’s LC or Gédel-Dummett logic), which is also one of the main formaliza-
tions of fuzzy logic (see, e.g., [13]) and therefore sometimes called intuitionistic fuzzy
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logic [22]. We show that essential features of CERES can be adapted to the calculus
HG [1, 11] for G that uses hypersequents, a generalization of Gentzen’s sequents to
multisets of sequents. This adaption is far from trivial and, among other novel features,
entails a new concept of ‘resolution’: hyperclause resolution, which combines most
general unification and cuts on atomic hypersequents. It also provides clues to a better
understanding of resolution based cut elimination for sequent and hypersequent calculi,
in general.

Due to the incorrectness of general de-Skolemization we will deal with HG-proofs
with (arbitrary cut-formulas, but) end-hypersequents that contain either only weak
quantifier occurrences or only prenex formulas. For the latter case we show that the
corresponding class of proofs admits de-Skolemization.

Our results can also be seen as a first step towards automatizing cut elimination and
proof analysis for intuitionistic and other intermediate logics.

2 First order Godel logic and hypersequents

First-order Godel logic G is one of the most important intermediate logics. It can be
characterized semantically by the class of all rooted linearly ordered Kripke models
with constant domains, see e.g. [12]. Syntactically, G arises from intuitionistic logic
by adding the axiom of linearity (A D B) V (B D A) and the quantifier shifting axiom
Vx(A(x) VC) D [(VxA(x)) V C], where the x does not occur free in C.

The importance of the logic is also indicated by the fact that it can alternatively be
seen as a fuzzy logic, i.e., as an infinite-valued logic with the real unit interval [0, 1] as
set of truth values [22, 13]; but also as a temporal logic [10].

Hypersequent calculi [2] are simple and natural generalizations of Gentzen’s se-
quent calculi. In our context, a hypersequent is a multiset of single-conclusioned (‘in-
tuitionistic’) sequents, called components, written as

I=A |- | L= A4,

where, for i € {1,...,n}, I is a multiset of formulas, and 4; is either empty or a single
formula. The intended interpretation of the symbol ‘|” is disjunction at the meta-level.

A hypersequent calculus for propositional Godel logic has been introduced by
Avron [1, 2] and extended to first-order in [11]. The logical rules and internal structural
rules of this calculus are essentially the same as those in Gentzen’s sequent calculus
LJ for intuitionistic logic; the only difference being the presence of contexts .7Z repre-
senting (possibly empty) side hypersequents. In addition we have external contraction
and weakening, and the so-called communication rule. We present an equivalent ver-
sion HG of the calculi in [1, 11] with multiplicative logical rules (see, e.g., [21] for this
terminology).

Axioms: | =, A = A, for atomic? formulas A.
In the following rules, A is either empty or a single formula.
Internal structural rules:
| =A
w-1)

ST = H|AAT = A
AT =4 "

ATET A larsa el

2 The restriction to atomic axioms is useful, but does not imply any loss of generality.



External structural rules:

H (ew) %|F:>A\F:>A( )
#|T=a " H|T = A “
Logical rules:
H\A L =A A A=A AT = A
7 (v-1) — e (ViT)ie(12)
AN A |AVALLL = A A\ T =A VA,
AT = A I = A H' | I} =B
(Ni-l)ief1,2) ; (A-r)
%lAl/\AQ,F?A %l% |H,B:>A/\B
K| LH=A A | B, I3 = A H|A, T =B

-] R T (o
(>D) H|I'=ADB >7)

In the following quantifier rules # denotes an arbitrary term, and y denotes an eigenvari-
able, i.e., y does not occur in the lower hypersequent:

H| A |ADB I, = A

HNA@), T = A A\ T =Ay)
7 wAm T sa Y T = (wap)
HNAY), I = A AT =A(t)
@A I =a O ZT = @oa@ ="

Like in [21] we call the exhibited formula in the lower hypersequent of each of
these rules the main formula, and the corresponding subformulas exhibited in the upper
hypersequents the active formulas of the inference.

The following communication rule of HG is specific to logic G:

A\ LG = A %/\H,FZ:>A2< )
com
AN A=A D= A

This version of the communication is equivalent to the one introduced in [1] (see [2]).
Finally we have cut, where A is called cut-formula of the inference:

H|L=A AH|AL=A
HNH L= A

If A is atomic we speak of an atomic cut.
Remark. Note the absence of negation from our calculus: —A is just an abbreviation
of AD L. (See, e.g., [21] for similar sytems for intuitionistic logic.)
Communication allows us to derive the following additional ‘distribution rule’
which we will use in Section 6:
| I'=AVB
H|I'=A|' =B

A derivation p using the rules of HG is viewed as an upward rooted tree. The root of p
is called its end-hypersequent, which we will denote by %,. The leaf nodes are called
initial hypersequents. A proof o of a hypersequent .77 is a derivation with 75 = J7,
where all initial hypersequents are axioms.

The ancestors of a formula occurrence in a derivation are traced upwards to the
initial hypersequents in the obvious way. L.e., active formulas are immediate ances-
tors of the main formula of an inference. The other formula occurrences in the premises

(cut)

(distr)



(i.e., upper hypersequents) are immediate ancestors of the corresponding formula occur-
rences in the lower hypersequent. (This includes also internal and external contraction:
here, a formula in the lower hypersequent may have two corresponding occurrences, i.e.
immediate ancestors, in the premises.) The ancestor relation is the transitive closure of
immediate ancestorship.

The sub-hypersequent consisting of all ancestors of cut-formulas of an hyperse-
quent ¢ in a derivation is called the cut-relevant part of 5. The complementary
sub-hypersequent of .77’ consisting of all formula occurrences that are not ancestors of
cut-formulas is the cut-irrelevant part of 7. An inference is called cut-relevant if its
main formula is an ancestor of a cut-formula, and is called cut-irrelevant otherwise.

The hypersequent IT = Ay | ... | I, = A, is called valid if its translation
Vi<ica(AaerA D [Ai]) is valid in G, where [A;] is L if A; is empty, and the indicated
implications collapse to A; whenever I; is empty. A set of hypersequents is called un-
satisfiable if their translations entail L in G. (Different but equivalent ways of defining
validity and entailment in G have been indicated at the beginning of this section.)

Theorem 1 ([11,3]). A hypersequent 7 is provable in HG without cuts iff 7€ is valid.

Remark. It might surprise the reader that we rely on the cut-free completeness of HG
in a paper dealing with cut elimination. However, this just emphasizes the fact that we
are interested in a particular transformation of proofs with cuts (i.e., ‘lemmas’) into
cut-free proofs, that is adequate for automatization and proof analysis (compare [9, 5]).

3 Overview of hyperCERES

Before presenting the details of our transformation of appropriate HG-proofs into cut-
free proofs, which we call hyperCERES, we will assist the orientation of the reader
and describe the overall procedure on a more abstract level using keywords that will be
explained in the following sections.?

The end-hypersequent .75 of the HG-proof ¢ that forms the input of hyperCERES
can be of two forms: either it contains only weak quantifier occurrences or it consists
of prenex formulas only.* In the latter case we have to Skolemize the proof first (step 1)
and de-Skolemize it after cut elimination (step 7):

1. if necessary, construct a Skolemized form & of o, otherwise 6 = o (Section 4)

2. compute a characteristic set of pairs {(R1(6),D1),...(R,(6),D,)}, where
24(6) ={D,...,Dy} is the characteristic set of d-hyperclauses — coding the cut
formulas of 6 — and each reduced proof R;(6) is a cut-free proof of a cut-irrelevant
sub-hypersequent of %% augmented by D; (Section 5)

3. translate X;(6) into an equivalent set of hyperclauses X (&) and construct a (hyper-
clause) resolution refutation y of X (&) (Section 6)

4. compute a ground instantiation Y’ of ¥ using a ground substitution 8 (Section 6)

3 Due to space constraints we have to refer the reader to [9] for a presentation of CERES.
4 While in classical logic all formulas can be translated into equivalent prenex formulas, this
does not hold for G.



5. apply 0 to the reduced proofs R|(6), ..., R,(6), and assemble them into a single
proof ¥'[6] using the atomic cuts and contractions that come from y (Section 7)
eliminate the atomic cuts in ¥/[6] in the usual way’

if necessary, de-Skolemize the proof ¥'|6] and apply final contractions and weaken-
ings to obtain a cut-free proof of .75 (Section 4)

o

It is well known (see, e.g., [19,17]) that there is no elementary bound on the size
of shortest cut-free proofs relative to the size of proofs with cuts of the same end-
(hyper)sequent. While the non-elementary upper bound on the complexity of cut elim-
ination obviously also applies to hyperCERES it should be pointed out that the global
(hyperclause) resolution based method presented here is considerably faster in gen-
eral, and never essentially slower, than traditional Gentzen- or Schiitte-Tait-style cut
elimination procedures [1, 3]. Moreover, the reliance on most general unification and
atomic cuts, i.e., on resolution for the computational kernel of the procedure implies
that hyperCERES is a potentially essential ingredient of (semi-)automated analysis of
appropriately formalized proofs.

4 Skolemization and de-Skolemization

Like in the original CERES-method [7, 9], step 5 of hyperCERES is sound only if end-
(hyper)sequents do not contain strong quantifier occurrences. The reason for this is that,
in general, the eigenvariable condition might be violated when the reduced proofs (con-
structed in step 2) are combined with the resolution refutation (constructed in step 3)
to replace the original cuts with atomic cuts. Consequently, like in CERES, we first
Skolemize the proof; i.e., we replace all strong quantifier occurrences with appropriate
Skolem terms. (Obviously this is necessary only if there are strong quantifier occur-
rences at all.) While this transformation is always sound (in fact also for LJ-proofs),
the inverse de-Skolemization, i.e., the re-introduction of strong quantifier occurrences
according to the information coded in the Skolem terms, is unsound in general.® How-
ever, as we will show below, de-Skolemization is possible for HG-proofs of prenex
hypersequents (step 7).

By a prenex hypersequent we mean a hypersequent in which all formulas are in
prenex form, i.e., all formulas begin with a (possibly empty) prefix of quantifier occur-
rences, followed by a quantifier-free formula. If I' = A is a component of a prenex
hypersequent, then all existential quantifiers occurring in I" and all universal quantifiers
occurring in A are called strong. The other quantifier occurrences are called weak.

The Skolemization 7S of a prenex hypersequent .7 is obtained as follows. In every
component I" = A of JZ, delete each strong quantifier occurrence Qx and replace all
corresponding occurrences of x by the Skolem term f(y), where f is a new function
symbol and y are the variables of the weak quantifier occurrences in the scope of which
Qx occurs. (If Qx is not the scope of any weak quantifier then f is a constant symbol.)

Given an HG-proof ¢ of . its Skolemization G is constructed in stages:

3 As is known, atomic cuts in HG-proofs can be moved upwards to the axioms, where they
become redundant (see, e.g., [3, 1]).

6 E.g. Vx(A(x) VB) = A(c) V Bis provable in LJ while its de-Skolemized version Vx(A(x) VB) =
VxA(x) V B is not.



1. Replace the end-hypersequent 77 of ¢ by .#5. Recall that this means that every
occurrence of a strongly quantified variable x in JZ is replaced by a corresponding
Skolem term f ().

2. Trace the indicated occurrences of x and of the eigenvariable y corresponding to its
introduction throughout ¢ and replace all these occurrences by f(¥), too.

3. Delete the (now) spurious strong quantifiers and remove the corresponding infer-
ences that introduce these quantifiers in ©.

4. For any inference in ¢ introducing a weakly quantified variable y by replacing A(z)
with QyA(y), replace all corresponding occurrences of y in Skolem terms f(¥) by .

It is straightforward to check that & is an HG-proof of .7#5. (Note that strong quantifier
occurrences in ancestors of cut formulas remain untouched by our Skolemization.)

It is shown in [4] that prenex formulas of G allow for de-Skolemization. We gener-
alize this result to proofs of prenex hypersequents. Our main tool is the following result
from [11].

Theorem 2 (Mid-hypersequents). Any cut-free HG-proof ¢ of a prenex hypersequent
FC can be stepwise transformed into one in which no propositional rule is applied
below any application of a quantifier rule.

We call a hypersequent .7 a linked Skolem instance of ¢ if each formula A in
is an instance of a Skolemized formula AS that occurs in .75 on the same side (left or
right) of a component as A. Moreover we link A to AS. As we will see in Section 7, we
obtain (cut-free proofs of) linked Skolem instances from step 5 (and 6) of hyperCERES.

Theorem 3 (De-Skolemization). Given a cut-free HG-proof p of a linked Skolem in-
stance Fs of a prenex hypersequent 7€, we can find a HG-proof p of 7.

Proof. We construct p in stages as follows:
1. By applying Theorem 2 to p we obtain a proof p’ of the following form:

oy ol ok
9 Y Y
- pQ -
Hs
where the mid-hypersequents ¥, ..., ¥, separate p’ into a part p@ containing
only (weak) quantifier introductions and applications of structural rules and parts
pf ,..., P} containing only propositional and structural inferences.

2. Applications of the weakening rules, (iw-1) and (ew), can be shifted upwards to the
axioms in the usual manner, while applications of (iw-r) can be safely deleted by
replacing each axiom _L = in the proof by L = A for suitable A.

Consequently, p@ does not contain weakenings after this transformation step.

3. Note that — in contrast to LK — Theorem 2 induces many and not just one mid-
hypersequents, in general. The reason for this is the possible presence of the binary
structural rule (com) in p@. To obtain a proof p” with a single mid-hypersequent,
we have to move ‘communications’ upwards in p@; i.e., we have to permute appli-
cations of (com) with applications of (ic), (ec), (V-I), and (3-r), respectively. The



only non-trivial case is (V-/). Disregarding side-hypersequents, the corresponding
transformation consists in replacing

[ P(x),Z=A
eee— )
[,¥xP(x),Z = A VxP(x),Z = A’
(com)
L VxP(x) = A | L= A
by
CP(x),Z=A I VxP(x),Z = A’
(iw)* (iw)*
I',P(x),Z,I",VxP(x) = A [,P(x),Z,I" \VxP(x) = A’
(com)
IP(x),Z= A" |T,VxP(x) = A CP(x),Z=A

(com)

L Px)=A|Z=A"|T'VxP(x)= A

(
[VxP(x) = A|Z = A" | T,VxP(x) = A
(ec)

L VxP(x)=A|Z= A

4. For the final step we proceed like in [4], where the soundness of re-introducing
strong quantifier occurrences for corresponding Skolem terms is shown: we ig-
nore p” and, given 5# and the links to its formulas, apply appropriate inferences to
the mid-hypersequent as follows.

(a) Infer all weak quantifier occurrences, which can be introduced at this stage
according to the quantifier prefixes in 2.

(b) Apply all possible internal and external contractions.

(c) Among the strong quantifiers that immediately precede the already introduced
quantifiers we pick one linked to an instance of a Skolem term, that is maximal
with respect to the subterm ordering. This term is replaced everywhere by the
eigenvariable of the corresponding strong quantifier inference.

These three steps are iterated until the original hypersequent 57 is restored. a

5 Characteristic hyperclauses and reduced proofs

All information of the original HG-proof & that goes into the cut-formulas is collected
in a set X;(6), consisting of hypersequents whose components only contain atomic
formulas on the left hand sides and a (possibly empty) disjunction of atomic formulas,
on the right hand side. We will call hypersequents of this latter form d-hyperclauses.
In the proof of Theorem 4 we will construct characteristic d-hyperclauses D; together
with corresponding reduced proofs R;(6) which combine the cut-irrelevant part of the
Skolemized proof & with D;. The pairs (R;(6),D;) provide the information needed to
construct corresponding proofs containing only atomic cuts.

To assist concise argumentation we assume that the components of all hyperse-
quents in a proof are labelled with unique sets of identifiers. More precisely, a deriva-
tion o is labelled if there is a function from all components of hypersequents occurring
in ¢ into the powerset of a set of identifiers, satisfying the following conditions: (We
will put the label above the corresponding sequent arrow.)



— All components occurring in initial hypersequents of ¢ are assigned pairwise dif-
ferent singleton sets of identifiers.

— In all unary inferences the labels are transferred from the upper hypersequent to
the lower hypersequent in the obvious way. In external weakening (ew) a fresh
singleton set is assigned to the new component in the lower hypersequent. In ex-
ternal contraction (ec), if F2A and I’'2A are the two contracted components of
the upper hypersequent, then I"2"A is the corresponding component in the lower
hypersequent.

— In all binary logical inferences the labels in the side-hypersequents are transferred
in the obvious way, and the label of the component containing the main formula is
the union of the labels of the components containing the active formulas.

— In (cut) the labels of the components containing the cut formulas are merged, like
above, to obtain the label of the exhibited component of the lower hypersequent.

— In (com) the labels of all components are transferred from the premises to the lower
hypersequent simply in the same sequence as exhibited in the statement of the rule.

Let 27 and ¢ denote the labelled hypersequents
LEA B A2 and TTEA R A 9

respectively, where the labels in %’ and ¢’ are pairwise different and also different
from the labels K7, ..., K. Then 57 © % denotes the merged hypersequent

LI S Ava) |- |G S aval | 2|9

where A; V A] is A; if A! is empty and is A] if A; is empty (and thus A; V A/ is empty if
both are empty).

Theorem 4. Given a Skolemized and labelled HG-proof 6 of 75 one can construct a
characteristic set of pairs {(R1(6),D1),...(Ry(6),Dy)}, where, for all i € {1,...,n},
D; is a labelled d-hyperclause and R;(6) is a labelled ‘(reduced)’ cut-free HG-proof
with the following properties:

(1) the end-hypersequent of R(G) is S © D;, for some sub-hypersequent 5 of 7,
(2) the characteristic d-hyperclause set £;(6) = {D1,...,Dy,} is unsatisfiable.

Proof. To show (1) and (2) we use the following induction hypotheses:

(1’) A characteristic set of pairs (R;(6”),D}) exists for every sub-proof 6’ of &, where
Ri(6") proves 7, ® D} for some sub-hypersequent 77, of #z which is cut-
irrelevant with respect to the original cuts in 6. Moreover, the right hand sides
in ¢, © D) are formulas in either /7%, or in D;.

(2’) There is a derivation of the cut-relevant part of .74 from the set {D},...,D,,} of
d-hyperclauses constructed for &’

Note that (2) follows from (2’) as the cut-relevant part of 7% is an empty hypersequent
by definition. The proof proceeds by induction on the length of 6”.

If 6" consists just of an axiom A=A then there is only one pair (R(6”),D) in the
corresponding characteristic set. R(6’) is the axiom itself and D is the cut-relevant part



of AZL A (which might be the empty hypersequent). (1°) and (2°) trivially hold. Axioms
of the form | = are handled in the same way.

If 6’ is not an axiom we distinguish cases according to the last inference in 6”.
(V-1): 6’ ends with the inference

A

1P it
A LEA A ABEA
A\ A | AV ALY A
By induction hypothesis (1”) there are characteristic sets of pairs S; = {(R{(p),E1), ...,
(Rm(P),Em)} and S» = {(R1(%2),F1), ..., (Ra(%),F,) }, where the reduced proofs R;(p)
and R;(%) end in 5,5y =% O E; and in 3, (3) = 9] O F}, respectively, where %; and &}
are sub-hypersequents of the cut-irrelevant parts of 7 | A1, [} XA and 7' | Ay EA,
respectively. Moreover, by (2°), there are derivations p¢ and 7¢ of the cut-relevant parts

of the just mentioned hypersequents from {E},...,E,} and {F},...,F,}, respectively.
Two cases can occur:

(V-1)

(a) If the inference is cut-relevant, then the characteristic set S of pairs correspond-
ing to &’ is just Sy US,. Condition (1”) trivially remains satisfied. Also (2’) is
maintained because we obtain a derivation of the cut-relevant part of ¢ | 5" |
A1V Ay, T, [;'2YA by joining pc and 7 with the indicated application of (\/ D).

(b) If the inference is cut-irrelevant, then we obtain the set S corresponding to 6’ by

S={(Rij(p ™My 2),E; X Fj) : 1 <i<m,1<j<n},

where R;;(p M- T) and E; ;; Fj are defined as follows.

1. If Ay does not occur at the indicated position in 7%, 5y then R;;(p My ©) is
Ri(p) and E; ;; F; is E;.

2. If A, does not occur at the indicated position in 7%, 5 i(¢) then Ri; (p My 1) is
R;(%) and E; ;; Fj is Fj.

3. If neither A nor A, occur as indicated in the reduced proofs, then R;;(p My_; T)
can be non-deterministically chosen to be either R;(p) or R;(%) and E; I;; F;
is either E; or Fj, accordingly.

4. If both Ay and A3 occur at the indicated positions, then E; X;; Fj is E’ ® F !

where E/ (F ) is like E; (F}), except for changing the label M (N) to M UN
Note that our labelling mechanism guarantees that the appropriate components
are identified in merging hypersequents.
The corresponding reduced proof R;;(p Xy-; ©) is constructed as follows. Since
A and A; occur as exhibited in the end-hypersequents ¥; ® E; and % ©F;j of
Ri(p) and R;(7), respectlvely, we want to join them by introducing A \/Az us-
ing (V-I) like in 6’. However, (V-{) is only applicable if the right hand sides of
the two relevant components in the premises are identical. To achieve this, we
might first have to apply (V-r) or (iw-r) to the mentioned end-hypersequents.
The resulting new end-hypersequent might still contain different components
transferred from E; and F;, respectively, that need to be merged with other com-
ponents. This can be achieved by first applying internal weakenings to make
the relevant components identical, and then applying external contraction (ec)
to remove redundant copies of identical components.



Note that in all four cases (1”) remains satisfied by definition of R;;(p M-; £) and of
E; ™;; F;. For cases 1, 2, and 3 also (2’) trivially still holds. To obtain (2’) for case 4,
we proceed in two steps. First we merge the occurrences of clauses Ej,...,E,, in
the derivation pc of the cut-relevant part 57 of Hp with clauses in {Fy,...,F,}

to obtain a derivation pc(F;) of #7 © F; for each i € {1,...,n}. In a second step,
each initial hypersequent F; in the derivation 7¢ of the cut-relevant part of I 1s
replaced by pc(F;). By merging also the inner nodes of 7¢ with AP we arrive
at a derivation of the cut-relevant part of 3. (Actually, as the rules of HG are
multiplicative, redundant copies of identical formulas might arise, that are to be
removed by finally applying corresponding contractions.)

(AL, (D-r), (V-r), (V-1), (V-r), (3-1), (F-r), (ic-1): If the indicated last (unary) in-
ference is cut-relevant, then the characteristic set of pairs remains the same as for the
sub-proof ending with the premise of this inference.

If the inference is cut-irrelevant, then the hyperclauses Ey,...,E, of the pairs in
characteristic set {(R{(p),E1), ... (Rmu(p),Em)} for p remain unchanged. Each reduced
proof R;(p) is augmented by the corresponding inference if its active formula occurs in
the end-hypersequent %, 5). If this is not the case then also R;(p) remains unchanged.

In any of these cases, (1’) and (2’) clearly remain satisfied.

(ew), (iw-1), (iw-r): The characteristic set of pairs remains unchanged and consequently
(1) still holds. Also (2’) trivially remains valid if the inference is cut-irrelevant. If a
cut-relevant formula is introduced by weakening, then the derivation required for (2’)
is obtained from the induction hypothesis by adding a corresponding application of a
weakening rule.

(A-r), (1), (cut), (com): These cases are analogous to the one for (V-/). ad

Example 1. Consider the labelled proof ¢ in Figure 1.

{2}

P(c) = P(c)

2 = @
P(c) = IyP(y) - 0=0 -
0.P(c) & 3yp(y) o.rc) o ) W p) .
0% P o P & 3p(y) »
oWo - Pvo 2 3up() | Po) 2 o oy »
V-r -
0 pve Ve = 5p0) | Pove B o

(cut)

0 "2 35p() | Pe)vo B 0 o

Fig. 1. Labelled proof ¢ with underlined cut-relevant part.

The cut-relevant parts of ¢ and the names of all corresponding cut-relevant infer-
ences are underlined. The initial pair for the {1}-labelled axiom is (p;,2Q), where



p1 is Q2 Q. Since the succeeding inference (V/-r) is unary and cut-relevant, the pair
remains unchanged in that step.

For the middle part of the proof let us look at the subproof ¢’ ending with an ap-
plication of (com) yielding Q2 3yP(y) | P(c)2Q. Since there are no cut-ancestors in
the {2}-labelled axiom, the corresponding d-hyperclause is the empty & This is re-
tained for the right premise of (com). The corresponding reduced derivation consists
only of the first inference (3-r) as the succeeding application of (iw-1) is cut-relevant.
For the left premise of the communication we obtain the d-hyperclause Q, which is
then merged and ‘communicated” with 2 to obtain for ¢’ the d-hyperclause Q2 | g,
This forms a pair with the reduced derivation R(c’), which, in this case, is identical
with ¢”.7

From the cut-relevant (and therefore underlined) (V-I)-inference one obtains an
additional pair <P2,P(x){_—4ﬁ> from its right premise, where p, is the derivation of
P(x)&3yP(y) from the axiom.

For the succeeding cut-irrelevant application of (\-I), the pair (p, P(x)2) re-
mains unchanged, as the left disjunct P(x) does not occur at the left side in the end-
hypersequent gﬂyP(y) of py.3 The reduced proof p; of the final pair is formed by
applying (V-I) as indicated to the end-hypersequent of R(c’) and to Q20 as right
and left premises, respectively. The corresponding d-hyperclause arises from merging
02 | & and & into 02 | &

For the final application of cut we have to take the union of the sets of pairs con-
structed for its two premises. Therefore the characteristic set of pairs for ¢ is

Up140). (p2.PWY), (2,02 %)}

It is easy to check that conditions (1) and (2) of Theorem 4 are satisfied.

6 Hyperclause resolution

By a hyperclause we mean a hypersequent in which only atomic formulas occur. Re-
member that, from the proof of Theorem 4, we obtain d-hyperclauses, which are like
hyperclauses, except for allowing disjunctions of atomic formulas at the right hand sides
of their components. However, using the derivable rule (distr) (see Section 2) it is easy
to see that an HG-derivation of, e.g., the d-hyperclause

A=BVC|=DVEVF
can be replaced by an HG-derivation of the hyperclause

A=B|A=C|=D|=E|=F.

7 Note that neither the cut-relevant application of (iw-1) nor Q appears in the reduced proof
corresponding to @, P(c)23yP(y). Still, the missing Q is added by (iw-1) in R(c") to make
the application of (com) possible.

8 This is case (\V-1)/(b)/2 in the proof of Theorem 4.



Also the converse holds: using the rules (V;-r), and (ec) we can derive the mentioned d-
hyperclause from the latter hyperclause. Therefore we can refer to hyperclauses instead
of d-hyperclauses in the following.

We also want to get rid of occurrences of L in hyperclauses. Since 1 = is an
axiom, any hyperclause which contains an occurrence of L at the left hand side of some
component is valid. But such hyperclauses are redundant, as our aim is to construct
refutations for unsatisfiable sets of hyperclauses. On the other hand, any occurrence of
L at the right hand side of a component is also redundant and can be deleted. In other
words: we can assume without loss of generality that | does not occur in hyperclauses.
(Note that this does not imply that occurrences of | are removed from HG-proofs.)

In direct analogy to classical resolution, the combination of a cut-inference and most
general unification is called a resolution step. The lower hyperclause in

A=A A A=A
0 | A |, =A)

(res)

where 6 is the most general unifier of the atoms A and A’, is called resolvent of the
premises, that have to be variable disjoint. If no variables occur, and thus 6 is empty,
(res) turns into (cut) and we speak of ground resolution. The soundness of this infer-
ence step is obvious. We show that hyperclause resolution is also refutationally com-
plete. It is convenient to view hyperclauses as sets of atomic sequents. This is equivalent
to requiring that external contraction is applied whenever possible. Consequently, there
is a unique unsatisfiable hyperclause, namely the empty hyperclause. A derivation of
the empty hyperclause by resolution from initial hypersequents contained in a set X of
hyperclauses is called a resolution refutation of X.

As usual for resolution, we focus on inferences on ground hyperclauses and later
transfer completeness to the general level using a corresponding lifting lemma.

Theorem 5. For every unsatisfiable set of ground hyperclauses ¥ there is a ground
resolution refutation of V.

Proof. We proceed by induction on e(¥) = ||| — |¥|, where ||¥|| is the total number
of occurrences of atoms in ¥, and |¥| is the cardinality of .

If e(¥) < 0 then either ¥ already contains the empty hyperclause, or else ¥ contains
exactly one atom per hyperclause. In the latter case, as ¥ is unsatisfiable, there must
be hyperclauses C; = (= A) and C; = (A =) in . Obviously the empty clause is a
ground resolvent of C; and ;.

e(¥) > 1: ¥ must contain a hyperclause C that has more than one atom occur-
rence. Without loss of generality let C = (¢ | I’ = A), where I' may be empty.
(The case where all atoms in C occur only on the left hand side of sequents is anal-
ogous.) Since ¥ is unsatisfiable also the sets ¥' = (¥ — {CH U {7 | I =} and
P’ = (¥ —{C})U{= A} must be unsatisfiable. Since e(¥’) < e(¥) and e(¥") < e(¥)
we obtain ground resolution refutations p’ of ¥’ and p” of ¥, respectively. By adding
in p’ an occurrence of A to the right side of the derived empty hyperclause and likewise
to all other hyperclauses in p’ that are on a branch ending in the initial hyperclause
| T’ =, we obtain a resolution derivation pj of = A from ¥. By replacing each
occurrence of = A as initial hyperclauses in p” by a copy of p) we obtain the required
ground resolution refutation of ¥'. O



Remark. Note that our completeness proof does not use any special properties of G.
Only the polarity between left and right hand side of sequent and the disjunctive inter-
pretation of ‘|” at the meta-level are used. For any logic .Z: whenever we can reduce
Z-validity (or Z-unsatisfiability) of a formula F to .Z-unsatisfiability of a correspond-
ing set of atomic hyperclauses, we may use hyperclause resolution to solve the problem.

To lift Theorem 5 to general hyperclauses, one needs to add (the hypersequent ver-
sion of) factorization:
H| T =A
0(#|I'"=A)

where 6 is the most general unifier (see, e.g., [15]) of some atoms in I" and where
0I’(6) is 6(I") after removal of copies of unified atoms. The lower hyperclause is
called a factor of the upper one.

(factor)

Lemma 1. Let C| and C} be ground instances of the variable disjoint hyperclauses C|

and Cy, respectively. For every ground resolvent C' of C| and C), there is a resolvent C
of factors of Cy and C,.

The proof of Lemma 1 is exactly as for classical resolution (see, e.g., [15]) and
thus is omitted here. Combining Theorem 5 and Lemma 1 we obtain the refutational
completeness of general resolution.

Corollary 1. For every unsatisfiable set of hyperclauses X there is a resolution refuta-
tion of X.

We will make use of the observation that any general resolution refutation of X can
be instantiated into (essentially) a ground resolution refutation of a set X’ of instances
of hyperclauses in X, whereby resolution steps turn into cuts and factorization turns
into additional contraction steps. (Note that additional contractions do not essentially
change the structure of a ground resolution refutation.)

7 Projection of hyperclauses into HG-proofs

Remember that from Theorem 4 (in Section 5) we obtain a characteristic set of pairs
{{R(6),D1),...(Ry(6),D,)} for the proof & of 7#5. As described in Section 6, we
can construct a resolution refutation 7 of the hyperclause set {C},...,C,} corresponding
to the d-hyperclauses {D;,...,D,}. (This is step 3 of hyperCERES.) Forming a ground
instantiation ¥’ of ¥ yields a derivation of the empty hypersequent that consists only of
atomic cuts and contractions. (Step 4 of hyperCERES.) Each leaf node of ¥ is a ground
instance 6(C;) of a hyperclause in {C},...,C,}. From Theorem 4 we also obtain, for
each i € {1,...,n} a cut-free proof R;(6) of ¥ ® D;, where ¥ is a sub-hypersequent
of the cut-irrelevant part of ¢ and D; is the d-hyperclause corresponding to C;. We
instantiate R;(6) using 6 and finally apply (distr), as indicated in Section 6, to obtain
a cut-free proof 67 of 6(%) © 6(C;).

To get a proof ¥'[6] of a linked Skolem instance of the original hypersequent 7%
(cf. Section 4) we replace each leaf node 0(C;) of ¥ with the proof 62 of 8(%;) ® 8(C;),



described above, and transfer the instances 6(%;) of cut-irrelevant formulas in J# also
to the inner nodes of ¥ in the obvious way, i.e., to regain correct applications of atomic
cuts. As mentioned in Section 3, the remaining atomic cuts can easily be removed from
Y [6]. The resulting proof is subjected to de-Skolemization as described in Theorem 3.
This final step 7 of hyperCERES yields the desired cut-free proof of 7.

Example 2. We continue Example 1, where we have obtained the characteristic set
of pairs {(p1,2£0), (p2,P(x)), (p3,02 | &)} for the proof ¢ of the (trivially)
Skolemized prenex hypersequent Q'=%"3yP(y) | P(c)vQ%Q.

The obtained d-hyperclauses are in fact already hyperclauses. Moreover, one can
immediately see that the hyperclauses Y0 and Q¥ | 2 can be refuted by a one-step
resolution derivation 7:

do o
ENEED (res)

Note that P(x)gi and the corresponding reduced proof p, are redundant. In our case, y

is already ground. Therefore no substitution has to be applied to the reduced proofs p;
and p3. By replacing the two upper (d-)hyperclauses in y with p; and ps, respectively
we obtain the desired proof y[c] that only contains an atomic cut:

0.P0) & i) | 02 %o
@) ——— (W)l
0r0 B Hre) W oBirgFo
2 3.5 5
0¥ 3p0) Pe) 2o 0o
{1} 24} 35} v
oo 0= 3yp(y) | Pe)ve B 0

0"V 3yp0) PV X 0

8 Final remarks

The results of this paper are easily extendable to larger fragments G: (de-)Skolemization
is sound already for intuitionistic logic I without positive occurrences of universal quan-
tifiers, if an additional existence predicate is added [6]. Therefore hyperCERES applies
after incooperation of the mentioned existence predicate. Other classes where Skolem-
ization is sound for I are described by Mints [16].

The most interesting question however is whether hyperCERES can be extended
to intuitionistic logic itself. Note that we obtain a calculus for I by dropping the com-
munication rule from HG. It turns out that hyperCERES is applicable to the class of
(intuitionistic) hypersequents not containing negative occurrences of V or positive oc-
currences of V, as the distribution rule (distr) is still sound for this fragment of L. This
fragment actually is an extension of the Harrop class [14] with weak quantifiers.

The extendability of hyperCERES to full intuitionistic logic depends on the devel-
opment of an adequate (de-)Skolemization technique, together with a concept of par-
allelized resolution refutations, that takes into account the disjunctions of atoms at the
right hand side of clauses without using (distr).



From a more methodological viewpoint, it should be mentioned that hyperCERES
uses the fact that ‘negative information’ can be treated classically in intermediate logics
like G, and that cuts amount to entirely negative information in our approach. In this
sense, global cut elimination, as presented in this paper, is more adequate for interme-
diate logics than stepwise reductions, which treat cuts as positive information.

References

1. A. Avron: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency.
Annals of Mathematics and Artificial Intelligence 4, 225-248 (1991)
2. A. Avron: The Method of Hypersequents in Proof Theory of Propositional Non-Classical
Logics. In Logic: From Foundations to Applications. Clarendon Press, 1-32 (1996)
3. M. Baaz and A. Ciabattoni: A Schiitte-Tait style cut-elimination proof for first-order Godel
logic. Proceedings of Tubleaux 2002, LNAI 2381, 24-38 (2002)
4. M. Baaz, A. Ciabattoni, C.G. Fermiiller: Herbrand’s Theorem for Prenex Godel Logic and
its Consequences for Theorem Proving. Proc. of LPAR’2001. LNAI 2250, 201-216 (2001)
5. M. Baaz, S. Hetzl, A. Leitsch, C. Richter, and H. Spohr: CERES: An Analysis of Fiirsten-
berg’s Proof of the Infinity of Primes, to appear in Theoretical Computer Science
6. M. Baaz, R. Iemhoff: The Skolemization of existential quantifiers in intuitionistic logic. Ann.
of Pure and Applied Logics 142 269-295 (2006)
7. M. Baaz, A. Leitsch: Cut-elimination and Redundancy-elimination by Resolution. J. Symb.
Comput. 29(2), 149-177 (2000)
8. M. Baaz, A. Leitsch: CERES in Many-Valued Logics. Proceedings of LPAR’2005, LNAI
3452, 1-20 (2005)
9. M. Baaz, A. Leitsch: Towards a clausal analysis of cut-elimination. J. Symb. Comput. 41(3-
4), 381-410 (2006)
10. M. Baaz, A. Leitsch, R. Zach: Incompleteness of an infinite-valued first-order Godel Logic
and of some temporal logic of programs. Proc. of CSL’95, LNCS 1092, 1-15 (1996)
11. M. Baaz, R. Zach: Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic. Proc.
CSL2000, 187-201 (2000)
12. A. Chagrov, M. Zakharyaschev: Modal Logic. Oxford University Press (1997)
13. P. Hajek: Metamathematics of Fuzzy Logic. Kluwer (1998)
14. R. Harrop: Concerning formulas of the types A D BV C, A D (3x)B(x) in intuitionistic formal
systems J. Symbolic Logic 25, 27-32 (1960)
15. A. Leitsch: The Resolution Calculus. Springer (1997)
16. G. Mints: The Skolem method in intuitionistic calculi. Proc. Inst. Steklov 121, 73—-109 (1974)
17. V. P. Orevkov: Lower Bounds for Increasing Complexity of Derivations after Cut Elimina-
tion. J. Soviet Mathematics, 2337-2350 (1982)
18. K. Schiitte: Beweistheorie. Springer, (1960)
19. R. Statman: Lower bounds on Herbrand’s theorem. Proc. of the Amer. Math. Soc. 75, 104—
107 (1979)
20. W.W. Tait: Normal derivability in classical logic. In The Syntax and Semantics of infinitary
Languages, LNM 72, 204-236 (1968)
21. A.S. Troelstra, H. Schwichtenberg: Basic Proof Theory. Second edition, Cambridge (2000)
22. G. Takeuti, T. Titani: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symbolic
Logic, 49, 851-866 (1984)



