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Abstract. The first algorithm to transform a proof in Nishimura’s se-
quent calculus GKt for tense logic Kt into an analytic proof of the same
sequent is presented. In an analytic proof, every rule instance is analytic
i.e., each formula in every premise is a subformula of some formula in
its conclusion. We call this algorithm analytic restriction to convey that
it extends analytic cut-restriction where just the cut-rule instances are
made analytic. This distinction is essential in tense logic since cut and
modal rules can both cause non-analyticity. Analytic cut-restriction is it-
self an extension of cut-elimination so our work contributes to a broader
program of transforming arbitrary sequent proofs into ones constructed
from a designated set of formulas—not necessarily subformulas. As with
cut-elimination, the aim is to limit the proof search space and support
proof-theoretic and meta-logical investigations.

Keywords: tense logic- analytic proofs- sequent calculus- analytic re-
striction - cut-elimination

1 Introduction

Following Gentzen’s [12] seminal work on cut-elimination for the sequent calcu-
lus in the 1930s, the primary goal of structural proof theory has been to obtain
this result for the numerous non-classical logics of interest. Cut-elimination is an
algorithm to remove instances of the cut-rule by transforming the given proof.
In many cases it implies the subformula property (every formula in the proof is a
subformula of the formula to be proved), and the latter in turn implies a signifi-
cant constraint on the proof search space, aiding the establishment of metalogical
results like decidability, complexity and interpolation. Of course, cut-elimination
is important in its own right e.g., for the analysis of mathematical proofs [13] and
as computation via the Curry-Howard (proofs-as-programs) correspondence [25].

Unfortunately, the cut-elimination result does not hold in the framework of
the sequent calculus for most logics of interest. While the traditional response in
structural proof theory has been the use of elaborate extensions of the sequent
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calculus such as hypersequent calculi [1], labeled sequent calculi [28,19, 11], dis-
play calculi [3], this has the drawback of introducing a syntax-heavy framework
that complicates or even impedes further investigation.

Ciabattoni et al. [5] propose an alternative to cut-elimination called cut-
restriction that stays with the sequent calculus: this is a proof transformation
algorithm that takes an arbitrary sequent calculus proof as input and outputs a
proof where cuts are restricted to a specified and restricted set of formulas. In the
case that cut is the only rule in the sequent calculus that can violate analyticity,
the cut-restriction result often retains the benefits of cut-elimination, namely a
significant constraint on proof search leading to applications, see e.g., [23, 5, 17].
However, a significant drawback of the argument in [5] is its reliance on cut-
elimination in the richer hypersequent calculus as an intermediate step. In par-
ticular, as the hypersequent cut-elimination cannot be simulated in the sequent
calculus, this approach can be said to substantially distort the original sequent
proof in the process of deriving the cut-restricted version. Additionally, due to
this reliance, the argument applies only to logics having a cut-free hypersequent
calculus. In hindsight, Takano’s [22] proof for the modal logic S5 appears to be
the first example of a cut-restriction result. Unfortunately, Takano’s argument
is technically intricate and not widely understood.

A general and direct—i.e., one that stays within the sequent calculus—
algorithm that transforms a sequent proof into a cut-restricted sequent proof
still remains beyond reach. This has motivated attempts to investigate specific
cases, the idea being that techniques applicable in such cases will reveal what
a general argument must incorporate. Analytic® cut-restriction [21], where the
cut-formulas are restricted to subformulas of their conclusion, is a special case.
Recently, [6] identified abstract sufficient conditions for analytic cut-restriction
with transformations that stay within the sequent calculus.

In this paper, we consider Nishimura’s sequent calculus GKt [20] for the
normal basic tense logic Kt. As already observed in [20], cut-elimination fails in
GKt, and hence cuts cannot be avoided. Our main result here is an algorithm
for transforming any proof in GKt into an analytic proof. This work extends
the results in [5] in a crucial way: the algorithm here is direct in the sense that
the transformations stay within the sequent calculus (indeed, there is no cut-
free hypersequent calculus for Kt). Moreover, the form of restriction that we
obtain is a strong form, namely analytic. Note that the analytic cut-restriction
algorithm in [6] only applied to a limited class of sequent calculi, those whose
rules (i) introduce only one formula at a time (on either the left or right side of
the sequent), and (ii) satisfy the subformula property, with the exception of the
cut-rule. GKt satisfies neither condition, so our algorithm needs to go beyond
the one given in [6]. In particular, the cut-rule and the modal rules in GKt can
both cause non-analyticity, so our proof transformation shows how to restrict
the rule instances of all these rules. To convey that this result constitutes an
extension of analytic cut-restriction, we call it analytic restriction.

5 The term ‘analytic’ follows the tradition, dating back to Leibniz, of referring to proofs
which only employs notions that are contained in the statement being proved.
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To encourage adaptation to other logics, we present our transformation so as
to make the algorithm—rather than just the proof of its correctness—explicit.

Related literature. In Takano’s paper establishing analytic cut-restriction
for S5, it is observed [22, Digression 1.2] that every provable sequent in GKt and
GKt4 has an analytic proof. Note that this is based on semantic considerations,
as opposed to the proof transformation algorithm given here. Nishimura [20]
presents an alternative proof calculus for Kt that witnesses completeness of its
analytic proofs but it is not a sequent calculus. Indeed, cut-free calculi for Kt
have been presented in several complex proof frameworks such as the display
calculus [18,29, 14] and labeled sequent systems [28,19]; for the axiomatic ex-
tension Kt4.3, a cut-free hypersequent calculus has been provided in [16] but it
does not contain GKt as subcalculus.

More generally, there is a body of work demonstrating the existence of cut-
restricted proofs using semantic methods, without providing an explicit proof
transformation algorithm, e.g., [10,17,8,2]. We observe that this situation con-
trasts with that of cut-elimination, where it is the syntactic arguments that are
standard, and semantic approaches (see e.g., [9,24]) are relatively rare.

2 Preliminaries

The tense logic Kt extends the normal basic modal logic K (which has a single
modal operator 0J) by a second modal operator B and a necessitation rule for it,
and the following axiom schemes [4]. The latter two are called converse axioms.

H(A— B)— (A — EB) A—DO-E-A A— EB-0-4

Kt aims to provide a minimal® setup for temporal reasoning, where (A is read
as ‘A holds at every point in the future’ and BA is read as ‘A holds at every
point in the past’. The corresponding diamond operators can be defined from
the box operators using negation.

A sequent is a pair of formula multisets, written as I" = A. Nishimura’s
sequent calculus GKt [20] for Kt appears in Figure 1. The reader may observe
that what is labeled here as the cut-rule is in fact Gentzen’s mix (i.e., multicut)
rule. This is a standard generalization of cut that is convenient for simplifying
the cut-elimination argument in the presence of the contraction rule. To simplify
terminology, we use cut as a shorthand for multicut throughout.

The reader may find the modal rules of GKt (below) somewhat unfamiliar.

I'= A RA I'= A0A
Or=0A4,A © B =HAA ()

The above rules can be conveniently remembered as the usual K rule which adds
a modality going from premise to conclusion, plus an additional succedent con-
text A which adds the other modality but this time from conclusion to premise.

S Properties like transitivity /antisymmetry are not imposed on the temporal relation.



4 Ciabattoni et al.

init I'= A XM= A AT
p=p ( ) E,F:>A7H (w) E,F:>A,H (C)
I'=AA (=z) A= A (=r)
I-A=A *F I'=-AA *

I''A,B= A (AL) I'=AA I'= B, A (A)
IAANB=A F I'=AAB,A "
I'= A N0A 0) I'= A 0A (m)

Or =04, A B = EA A
I'= A% A A =10
ST oAl (cut) k,1>0

Fig. 1. Nishimura’s sequent calculus GKt for Kt.

In the familiar Kripke semantics for Kt, the rule (O) asserts that if the
premise I = A,MA is valid so is the conclusion (OI" = A, A. This can be
easily verified by reasoning contrapositively: suppose that that the conclusion is
not true at some world w. That means that I" holds at any single future step
from w, A fails at some single future step (call that world w’), and every formula
in A fails at w. From the perspective of w’, we have that I" holds and A fails and
every formula in A fails at some single past step (this is witnessed by w). Hence
the premise is not true at w’. The (M) rule can be interpreted in the semantics
in a similar way.

Definition 1. A rule instance is analytic if every formula in every premise is
a subformula of some formula in the conclusion, otherwise it is non-analytic.

If a rule instance is non-analytic, any formula in the premise that is not a
subformula of any formula in the conclusion is said to be non-analytic for that
instance.

An analytic proof has the property that every rule instance in it is analytic.
By inspection, a non-analytic proof in GKt must contain either an

(i) instance of (OJ) (resp. (M)) where some context formula BB € BA (resp.
OB € 0A) is not a subformula of the conclusion, or an
(ii) instance of (cut) where the cut-formula is not a subformula of the conclusion

The reason is that none of the other rules has non-analytic rule instances.
Nishimura already observed that cut-elimination fails for GKt, since the
axiom instance p — [J—M—p is provable in Kt, but unprovable without cut.
Indeed, here is a proof using cut.
p=p
p=p
H-p=0E-p
> -Bp By o,y
= UO-M—-p, —p —p,p =
p = O-M-p

(cut)
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This sequent cannot be proved without cut since the only rule instance with
conclusion p = [O0-M-p is weakening (and that would certainly not lead to a
proof). Observe, however, that the above proof is analytic. In particular, the
cut-formula —p is a subformula of the formula (J—M-p in the conclusion of cut.

3 A high-level overview of the transformation

Gentzen’s cut-elimination argument for LK and LJ can be summarized at a
high-level as follows:

Given a proof where only the last rule instance is cut: permute the cut
upwards in each premise until it is principal in both premises of cut. Now,
making use of the form of the rules which—viewed upwards—decompose
the principal formula into formulas that are strictly smaller in the sense of
being strictly smaller in grade (i.e., formula size), or the same grade but
occurring closer to the leaves of the proof. Hence, we can transform the
original proof to a proof that has strictly smaller cuts. Cut-elimination
follows through an induction on the underlying measure.

In this section, in the spirit of the latter text, we give a high-level overview
of the algorithm for GKt that transforms a proof into an analytic one. This
is illustrated with a running example. Another example of a transformed proof
appears at the end of Section 4. The formal argument is given in the next section.
For a start, consider a proof where only the last rule instance is non-analytic.
The latter must be an instance of (i) one of the modal rules, or (ii) the cut-rule.
Case (i): Suppose that the last rule instance is modal and non-analytic.
The formal version of the sketch here appears in Proposition 1. If it is ((O)—the
case of (W) is analogous—then the formulas that witness the non-analyticity
constitute some A in the conclusion that becomes WA in the premise.

Let us consider the following non-analytic proof as a running example.
p,p=p
PAp=Dp
»,PAp=
—p= ~(pAp)
H-p=E-(pAp) (
= —l-p, B-(p A p) (
= O-W-p,~(pAp)

(M) critical rule instance

—|R)
0)

Only the (O) rule instance is non-analytic. The witness is the B—(p A p) in
its premise; it is not a subformula of any formula in its conclusion.

The idea is to trace—using the familiar parametric ancestor relation from
structural proof theory, see e.g., [3]—the formulas in A upwards until a modal
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rule instance that decomposes them is reached (this is called a critical instance).
A formula in the premise context of a critical instance that is not a parametric
ancestor (of some formula in A) is called a critical formula. Starting from the
desired endsequent we apply cut-rules upwards using every critical formula.

In our example, there is one rule instance that is critical (i.e., a rule
instance that, viewed upwards, decomposes the B—(p A p) into —(p A p)).
The premise of that rule instance is =p = —(p A p). Of the two formulas in
this sequent, =(p A p) is a parametric ancestor of the M—=(p A p), but —p is
not. Hence there is one critical formula: —p. Here is the cut introducing —p.

= [-B-p,~(p Ap), p —p = O-M-p,~(p A p)
= O-M-p,~(p Ap)

(cut)

To prove the premises of the cuts on critical formulas that we introduced, we
use portions of the original proof, either by weakening, or by adapting a subproof
of the original proof. Specifically, the adaptation is to replace the ancestors of
the formulas witnessing non-analyticity with critical formulas.

We utilize the original proof to obtain analytic proofs of = O—M-p, =(pA
p), ~p and —p = O—M-p, =(pAp). The latter sequent is obtained by applying
weakening on [J-M—p to a subproof of the original proof, as shown below.

p,p=p
PAp=Dp
P, pAp =
—-p = ~(p A p)
—p = O-M-p,=(p A p)

(w)

To obtain = O-M—p, —(p A p), —p, the idea is to reason backwards, first by
removing the undesirable formula —(pAp) that witnessed the non-analyticity
using (w) upwards, and then following the original proof upwards—use the
introduced critical formula —p in place of —(p A p)—until the conclusion of
the critical instance is reached:

W =W
= O—-Ml—p,—p w)

= O-W-p,~(pAp),—p

The uppermost sequent in the above is a quasi-initial sequent i.e., a sequent
of the form I'; A = A, A, easily seen to be provable (in this paper, an initial
sequent is taken to have the form p = p). As we shall see, this is not a
coincidence.
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Case (ii): Suppose that the last rule instance is the cut-rule and non-
analytic. Permute the cut upwards in the usual way by decomposing propo-
sitional connectives. The interesting case is when the cut-rule is non-analytic
and principal in both premises by a modal rule. Non-analyticity implies that the
cut-formula is not a subformula of the conclusion, from which we can deduce
that the cut-formula must be principal in the left premise of the cut (Claim 7).
Apply a standard K-style cut-reduction step to identify a cut on a formula of
strictly smaller grade (yielding an analytic proof by IH), followed by an applica-
tion of the modal rule. By inspection, the latter must have strictly smaller grade
so the result follows from Case (i).

In general, the transformation we described might not immediately yield an
analytic proof, as it may introduce new rule instances that are non-analytic al-
though with strictly smaller grade. To account for these, we consider the multiset
of grades of all the non-analytic rule instances in the proof and note that the
transformation applied to topmost non-analytic rule instances leads to a strictly
smaller multiset under the Dershowitz-Manna multiset ordering. Termination—
and hence an analytic proof—follows.

4 Analytic restriction for tense logic

In this section we establish the main theorem. See Section 3 for the definitions
of analytic rule, analytic proof, and non-analytic formula in a non-analytic rule
instance. The grade of a formula defined as the number of symbols in it.

Definition 2. The grade of a non-analytic rule instance is the mazimal grade
of a non-analytic formula in it.

For technical reasons, it is convenient to allow only atomic initial sequents
p = pin GKt. Let us call quasi-initial every sequent of the form I'; A = A, A.
The following can be proved by a simple induction:

Lemma 1 (Axiom expansion). Every quasi-initial sequent has an analytic
GKt-proof.

The ancestor relation between formula occurrences in GKt-proofs is defined
in the usual way: every occurrence in the context of the conclusion of a rule
instance is related to corresponding occurrences in the context of the premise(s),
and an occurrence of a principal formula is related to the occurrences of its
auxiliary formulas in the premise(s).

An ancestor of a formula is either a subformula or, due to the rules (O)
and (M), a subformula prefixed by a string of modalities. Due to contraction a
formula can have multiple ancestors in the same sequent. Moreover, as we allow
the cut-rule, not every formula in a proof is necessarily an ancestor of some
formula in the endsequent.

The high-level intuition of Case (i) in Section 3 is formalized in the following.
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Proposition 1. Let a be a GKt-proof that is analytic apart from its last rule,
which is a modal rule instance of grade k > 0. Then there is a GKt-proof a* of
the same endsequent all of whose non-analytic rule instances are of grade < k.

Proof. We first construct a* and then prove the desired reduction in grade.
1. Construction of o*.

The construction consists of three steps: (I) Preprocessing, (II) Tracing non-
analytic ancestors, and (III) Restructuring the proof.

(I) Preprocessing (remove trivial cuts). Every cut in « where the cut
formula appears in the lower sequent is trivially eliminable. Such a cut must
have the following form with s+« > 0 or t + v > 0.
A3 T = Ak A, A A 3 AL = T, AY
AsTe 3 = AT, AP
If s+u > 0 and t4+v > 0 then either premise can be used to obtain the conclusion
via (w) and (c). Else, suppose that s+u = 0 (the case of t+v = 0 is analogous).
Then, noting that t + v > 0, proceed as
= A A A
Y= A I AT

(cut)

(w), (¢)

Henceforth, without loss of generality we will assume that « is preprocessed.

(ITI) Tracing non-analytic ancestors. The purpose of this step is to identify
the rule instances and formulas that will be crucial in the next step. In particular,
this step does not modify the proof.

Suppose that the last rule is (O) (the case (M) is analogous). Then write
a as follows, where BA is the multiset of non-analytic formulas in the rule
instance. This means that every formula in BITI is analytic i.e., a subformula of
Or = 0OA, A IT.

I'= A BA R
O = 0A, A, 1T

Of course, every formula in I" = A is analytic as well. By hypothesis, only the
last rule in « is non-analytic, so the subproof «q is analytic.

Since the initial sequents are on propositional variables, tracing the ancestors
of any element from non-empty BA upwards must lead to a weakening or a modal
rule instance. More specifically, we have the following:

)

Claim 1. FEvery lowermost modal Tule instance in aq either

1. contains no ancestor of A, or
2. contains exactly one ancestor of BA, which is principal in the rule instance.
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Rule instances of type 2. will be called critical instances.

Proof of Claim 1. Assume towards a contradiction that an ancestor of BA is a
context formula in the conclusion of a lowermost modal rule instance. Due to the
modal rule instance being lowermost, this ancestor is unchanged from the original
formula i.e., it is some BB € BA. Due to the form of the rule instances () and
(W), the premise of this lowermost modal rule instance contains a formula OBB,
where © € {{J, B}. By analyticity of ayg, it follows that QBB is a subformula of
I' = A,BA BI] and so in particular BB is a subformula of OI" = A, A, II.
However, BA was chosen such that every formula in it is non-analytic, so we
have reached a contradiction. <

In light of Claim 1, we write a as follows where i € I enumerates the critical
instances and BB® is the unique ancestor of BA in the i-th critical instance.

Y= B Oy ,
. ——— (W) el
= up.,v
core(ag)
I'= A BRA R[] )
Or=0A4A1
Following the usual terminology, a derivation of sg from the sequents {s1,..., s,}
is a proof-like structure except that every leaf is either initial sequents of GKt
or an element from {s1,...,s,}. Then core(agp) is the subderivation (of a) of

I = A BA,RI from the sequents MY = BB’ ¥ for i € I, that is, from the
conclusions of the critical instances. Note that core(ag) also contains all lower-
most modal rule instances that are non-critical together with their subderivations
but these are not shown in the picture above.

A critical formula is a formula that appears in some X%’s or @', i.e., some
premise context of a critical instance. Let = be the set of all critical formulas.

(III) Restructuring the proof. Let = = {C4, (5, ...}. Starting from the de-
sired endsequent (I" = A, A, IT (this is the endsequent of «), introduce cuts
bottom-up on all critical formulas, as follows:

OF =04 AILCLC GOl = OAALC (0 CLOP=OAAMLC,  CCyOr = 04,A 1
O = OA, A, 11, G, ' CLOr=D0AAT o
O = 0A, A, 1T cut

(cut)

First observe that every introduced cut is analytic.

Claim 2. FEvery critical formula is a subformula of the endsequent OI" =
OA, A IT of a.
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axiom expansion

el DUENAN ok

=-Um=s:
Xt = B, O0! m) ’core(ao) 1 2
.E’:}.B”,WI ~ E;D,F:>A7.H,.5;
core(ao) X' = B, O¢* W), (© £,,0r = 0A,II, 53
: 2,00 = 0A A ILE, ¢ Z,00r = 04, A 1T, =
I'= A BA RIT (Z1; 52) aligned (Z1; 5») unaligned

O = OA, A, IT ©

[cuts on critical formulas]

O = 0A, A, IT

Fig. 2. From «a to a*.

Proof. Let C be a critical formula. As «q is analytic, C' is a subformula of
its endsequent I = A, A BII. Moreover, only the formulas in BA are non-
analytic in the last rule instance. So it suffices to show that C' ¢ BA. Towards a
contradiction, suppose that C' € BA. As C is a critical formula we have C' € X*
for some i (the case that C' € 0¥ is impossible because C' € BA begins with H).
As WX is in the conclusion of the i-th critical instance, we see that MC appears
in ap and hence, by analyticity of ag, it is a subformula of I" = A, BRA RII.
It follows that C is a subformula of O0I" = A, A, I, which, together with the
assumption C' € BA, contradicts the non-analyticity of BA. <

Next, observe that the above derivation is a binary tree with 2/=|-many leaves,

each of which is of the following form for some partition =7 U 55 = =
=,0r=0A4,A)1I, 5,

See Figure 2 for a pictorial representation of the transformation o — a*.

Call a partition and its associated sequent aligned if there is some i € I such
that =, contains all formulas in X% and =, contains all formulas in O¥?, and
unaligned otherwise. Informally, (£7; Z5) aligned means that there exists ¢ € T
such that =; contains X%, and =5 contains O@*.

(a) Proof of a sequent with an aligned partition (=7; Z5)
Suppose that ¢ € I witnesses that (=7;53) is aligned. Then, noting that
B' € A, we can obtain a proof of the aligned sequent from the conclusion of
B;—this is the proof of the premise of the i-th critical instance, see Figure 2—
using weakening and contraction.

©)

w
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5= Bi 0w ), (©)
2,00 = 0A, AT, 5, ¢

Contraction is required because (X;, (J¥?) is a pair of multisets, and (Z7; =»)
a pair of sets that we read inside a sequent as multisets in the obvious way
(an element is in the set iff the element has multiplicity 1 in the multiset).
Proof of a sequent with an unaligned partition (=7; 55)

Working bottom-up from a unaligned sequent, consider the following deriva-
tion, where 575 := {C | OC € =7} and 53 == 5, N (Y, 29).

Sl DUSSAN

’core(ao)EfD’.5§

E8 = AR ms; o)
2,00 = 0A, 11, 53 <(
5.0 =04, A L=

-0 =
Here core(ag)®1 M= is obtained from core(ag) by the following operation:
In every sequent containing an ancestor of BA, remove all such an-
cestors and add = Yin the antecedent and M=} in the succedent.

Leave sequents without ancestors of BA unchanged.
The following shows that it is well-defined.

. ’:'7D =% . - - —— —
Claim 3. core(ag)=r ®=is q derivation of 275, = A, BII, =3 from the
premises 570 MY = i B3, for allie 1.

Proof. By Claim 1 and the definition of critical instance, the part of core(ag)
below the critical instances contains only propositional rule instances. Since
propositional rule instances do not have side conditions, core(ag)=t LI
indeed a derivation. <

Hence we have a derivation of the unaligned sequent =y, 01" = A, A, I, =5

from {EfD,IZ’ = U' B=5},cr. The following shows that every leaf of
-0 =

core(ap)®r ‘®Z: is a quasi-initial sequent (and hence has an analytic proof,

by Lemma 1). Hence we obtain a proof of the unaligned sequent.

Claim 4. If (571;Z9) is unaligned, then some formula appears both in the
antecedent and the succedent of EfD, ' =v =],

Proof of Claim 4. As (Z1;55) is unaligned, either = does not contain some
formula in X% or =5 does not contain some formula in OW?. Since multiset
union 57 U5, = =, in the first case that there exists C' € 27N =5, and hence
EC € BY' N BZ;. In the second case, there exists C € OW' N =}, which
means that C is necessarily of the form 00D owing to membership in @7,
and therefore D € win 577, <
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This concludes the description of the construction of a*.

2. Proof of grade reduction.

The sole non-analytic rule instance of a of grade k has been eliminated in o*.
Since non-analyticity in GKt may occur in any modal or cut-rule instance,
and since an analytic instance may become non-analytic when formulas in it
are replaced, we show that every new and modified rule instance in a* is either
analytic, or non-analytic of grade < k. This is shown in the following two claims.

Claim 5. The grade of the following rule instance that appears in the proof of
an unaligned sequent—see 1. Construction of a* /step (III)/case (b)—is < k.

=B = Amims;
(=)
2,00 = 0A, 11, 53

Proof of Claim 5. Let (O)* denote the instance of (0J) in the statement.

By inspection, if a formula D in the premise = -, " = A, BII,B=; of (O)*
is not a subformula of some formula in =y, 01" = OA, IT, =5—i.e., (O)* is non-
analytic—then D must occur in either BII or BZ3.

Suppose D € BII. We know that D is a subformula of some formula in the
conclusion OI" = A, A, IT of the last rule instance in a—see Figure 2—since
the non-analytic formulas in that instance are exclusively in BA. It follows that
D is either a subformula of a formula in OI" = OA, Il and hence analytic in
(0)*, or a subformula of a formula in A, and hence of grade < k (else BA would
contain a formula with grade > k + 1 which would contradict the hypothesis).

Finally, suppose D € B=; = B(Z3 N (U, X*)). Hence D € BX' for some
1 € I. Let Dy be an occurrence of D in the conclusion of the i-th critical instance.
Starting from Dy in the conclusion of the i-th critical instance, we now identify a
sequence Dy, D1, ..., D.,q of occurrences—one in each successive sequent below
it in core(ag)—until we reach a formula Denq in I' = A, A, BII (this is the
root of core(ay), and the premise of the last rule instance in «; see Figure 2).

1. If Dy is the ancestor of some formula D’ in the sequent below it, D,y := D'.

2. If Dy is not the ancestor of any formula in the sequent below it, then D;
must be the cut-formula of an analytic cut. Due to analyticity, D; must be
a subformula of some formula D’ in the sequent below it. Set D;4q := D’.

The rule instances along the sequents from which the sequence Dg, D1, ..., Deng
are constructed were analytic, so D is a subformula of D¢, g4. If D.,q appears in
I' = A then D is analytic in (O)*. Else, if D.,q appears in BII, then D must
appear in IT or A (by consideration of the last rule instance in ), and hence it is
analytic in (0)* or of grade < k. Else, it must be the case that De,q appears in
B A. Since Dy was not an ancestor of BA in agp—indeed, D is a critical formula so
it appears in the context of the critical instance, and by Claim 1, if the conclusion
of the critical instance contains an ancestor, it is unique and principal—at some
index [+1 in the construction of Dg, D1, ..., Deng, condition 2 in the construction
must have been applied to obtain D41 from D;. This implies that D;1q # Dy,
since otherwise the cut would be trivial, and trivial cuts were removed in the
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preprocessing. Thus Dg is a proper subformula of D.,q € BA. It follows that
the grade of D in (O)* is < k. <

Claim 6. The grade of every non-analytic rule instance in core(ag)=1
(the derivation that appears in the proof of an unaligned sequent) is < k.

Proof. Recall that core(ap) is analytic, and core(ag)=1 B3 arises from core(ag)
by considering every sequent containing an ancestor of the A in the endse-
quent, removing every such ancestor from the sequent and adding =, 5in the
antecedent and =7 in the succedent. Every rule instance in core(ay) is analytic.

Suppose that core(ao)El_D‘E; contains some non-analytic instance r’ that was
an analytic instance r in core(ap). As r contains ancestors of MA it is not a
modal non-critical instance (Claim 1), and it cannot be a critical instance since
core(ap) does not contain those. It must therefore be a cut, since all the other
rules of the calculus are analytic. A cut-rule instance is non-analytic only if the
cut-formula C' is not a subformula of any formula in the conclusion. Comparing
the conclusion sequents of 7 and 7/, the only formulas that are in the former
and not the latter are the formulas of MA (since we removed these). Since r
is analytic and 7’ is not, C' must be a subformula of some BD € BA. Now C
cannot be WD since r would then be a trivial cut instance since C' appears in
its conclusion, and trivial cut instances were removed in the preprocessing step
on a. So, C' must be a proper subformula of BD. Hence 7’ has grade < k. <

This concludes the proof of Proposition 1. QED

We are ready to prove the main theorem.

Theorem 1. FEvery provable sequent in GKt has an analytic proof.

Proof. We show that a proof where only the last rule instance is non-analytic
can be transformed into an analytic proof of the same sequent. The desired result
follows from this: if 7y is a proof of sequent s in GKt, replacing a subproof in
7o whose only non-analytic rule instance is the last rule with the analytic proof
obtained through the latter, we obtain a proof m; of s that contains one less
non-analytic rule; iterating this step, we ultimately reach an analytic proof of s.

Suppose that « is a proof of s where only the last rule instance r is non-
analytic. We proceed by primary induction on the grade of r, and secondary
induction on the sum of the heights of the premises of r.

First suppose that r is a modal rule. Applying Proposition 1, we obtain a
proof a* of s in which all non-analytic rule instances have strictly lower grade.
At each subsequent step, we use the induction hypothesis to replace the sub-
proof ending in a topmost non-analytic rule instances with analytic proofs with
strictly lower grade. This process terminates by well-foundedness of the Der-
showitz—Manna multiset ordering—i.e., replacing an element in the multiset by
strictly smaller ones yields a strictly smaller multiset—as each application of
Proposition 1 strictly decreases the multiset of grades of non-analytic rule in-
stances. At termination we obtain an analytic proof of s.

The remaining case is that r is a non-analytic cut with analytic premises.
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a1 (6]
I = Ak A YA =11
Y= Al

Suppose that the last rule in a1 or s is an analytic cut r1. Permuting r above ry
turns it into a non-analytic cut r’ with smaller sum of premise heights, and hence
an analytic proof is obtained by IH. The analytic cut 1 (with cut formula Aq,
say) that was permuted downwards (call it r]) may have now become a non-
analytic. Since r; was analytic and 7} is not, it must be that A; is a subformula
of A. If Ay = A then r; would have been a trivial cut (since A occurs in the
premises of r), but these were removed in preprocessing. So A; is a proper
subformula of A, hence we obtain an analytic proof by IH. If the last rule is a
structural rule of weakening or contraction, the standard reductions apply. It
remains to consider when the last rule in oy and as is a logical rule.

If the main connective in A is not modal, then neither the last rule instance in
a1 nor as is modal. Apply the usual propositional cut reduction steps leading to
new cuts of smaller grade, or the same grade and smaller sum of premise height.
The subproof concluding the new cuts can be made analytic by the IH, and any
subsequent propositional rules that follow will, of course, preserve analyticity.

Finally, suppose that the main connective in A is modal. The last rule in «;
(a2) may be a propositional rule instance making some formula in Iy A (resp.
X, IT) principal. Apply the usual steps to reduce a propositional cut. We are left
with the case when the last rule instance in «; and «s are modal rules.

(cut)

Claim 7. If the last rule instance in oy is a modal rule, then A is its principal
formula and k = 1.

Proof. Otherwise, one occurrence of A would be non-principal in the modal rule
instance and therefore—due to the form of the modal rules—appear as JA or
BMA in the premise of «ay’s last rule instance. As a7 is analytic by assumption
this implies that [(JA or BA is a subformula of I" = A* A and hence of I' = A,
implying that the multicut on A is analytic, contrary to the assumption. <

We have reached the following situation (an analogous argument applies when
it is an instance of (M)). Recall that only the last rule instance is non-analytic.

r=AmA 2, A= BRIl
DFz?DAMA( ) TOr.oAS0B.II
O 0Y = 0B, A, IT

©)

(cut)

Applying a multicut to I" = A, BMA and X, A' = B,BII we get a proof of
I, Y = B,BA BI]. By IH, we have an analytic proof of this sequent. Now we
apply (O) to get the desired endsequent:

I[,Y = B,EARI
O 0% = 0B, A, IT

If the last rule instance is non-analytic, then there is a formula @D € BAUBRIT
that is not a subformula of any formula in the conclusion. Since the two rule

©)
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instances of () before the reduction were analytic, this can only be the case if
B D is a subformula of (JA. But clearly BD # A, so in fact BD is a proper
subformula of (JA. Hence the grade of this instance is strictly less than the grade
of the original cut formula (JA. By IH we obtain the desired sequent. QED

Ezample 1. Consider the proof

p=7p

p=pVyq (m)
W= WV
= BpVvy),-Ep
©)
=pVq U-Hp

The rule instance of () is non-analytic as B(p V ¢) is not a subformula of
the endsequent. The corresponding critical instance is (H) above, with a single

critical formula p. The transformed proof thus starts with a cut on p:

&( )

Hp = Hp

= Hp, ~Hp (0) p=rp

= p,-Hp p=pVq (cut)
=pVq U-Hp

Let us use this example to illustrate the semantic intuition behind the proof
transformation. As in other proof systems for modal logic, derivations in GKt
can be understood as structured searches for countermodels. The process begins
with a partially constructed countermodel for the endsequent, where formulas
in the antecedent are treated as true, and those in the succedent as false. As
the proof unfolds upward, this model is incrementally extended with additional
information until a contradiction is reached, which means that no countermodel
is possible, and hence, the endsequent must be valid. In this dynamic view, an
instance of (O) (resp. (M)) corresponds to transitioning from one world in the
countermodel to a future (resp. past) world.

Looking through this lens at the proof before the transformation (we are
reading upwards from the endsequent), we observe a step into the future via (O)
followed two rules later by a step back into the present via (W), with one true
formula Mp that was ‘learned’ in the future pulled back to the present as p. This
additional formula is then used to derive contradiction, witnessed by p = p.

Consider now the transformed proof. Rather than moving into the future, we
remain in the present and perform a case distinction (a cut) on p. In right branch,
where the learned formula p is assumed true, we derive a contradiction as before.
Only in the case where the learned formula is assumed false we take it into the
future, where it becomes Hp fails. But we already know that in the future we
can learn that Mp is in fact true, and this gives the desired contradiction.

5 Conclusions and Future work

Although our analytic restriction proof is carried out within GKt, the core
idea is adaptable to related logics, by slightly modifiying the methodology. The
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situation is analogous to a cut-elimination strategy which, though originally
developed for a specific calculus, is then extended to other calculi with similar
structural characteristics—we recall Valentini’s cut-elimination for provability
logic [26,15], which was subsequently adapted to various structurally similar
systems [27,7]. The proof presented in this paper can also be adapted to the
logic KB, obtained by adding the following to the classical calculus.

I'= A0A
—— (B
OI'=04,A (B)
We expect these methods to apply to some further extensions of the classical se-
quent calculus with non-analytic modal rules that meet the following conditions:

1. If the cut-formula is principal in both premises by the modal rule, it can be
transformed to cuts on proper subformulas (reduction of principal cuts)

2. The rules are non-analytic with respect to a single type of modality, which
may prefix formulas in the premise that are unmodalized in the conclusion.

3. Formulas prefixed by a modality in the conclusion (premise) are unmodal-
ized (modalized with the same operator) in the premises (conclusion), and
formulas. All formulas remain on the same side of the sequent as they appear
in the conclusion, and no additional formula is introduced in the premises.

As future work, we intend to formalize these intuitive conditions and develop a
general cut restriction proof applicable to a broad class of logics, and consider
the algorithmic complexity and potential computational interpretations.
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