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Abstract. Real-world datasets often contain inconsistencies that chal-
lenge traditional case-based reasoning models. Building upon the result
model, a well-established formal representation of case base reasoning
in law, we propose a Bayesian reinterpretation that effectively addresses
such inconsistencies. Our Bayesian enhancement quantifies the reliability
of precedents and encapsulates principled, explainable predictions even
in the presence of conflict, representing a meaningful step forward in
using these models to design Al agents.
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1 Introduction

A central challenge in machine ethics, the area of Artificial Intelligence (AI)
focused on building systems capable of normative reasoning, lies in acquiring
and representing normative information in a form that is both implementable
and transparent. Symbolic methods, such as rule-based systems, provide trans-
parency, but lack flexibility. Conversely, approaches based on black-box ma-
chine learning lack reliability and explainability. A hybrid approach inspired
by common law reasoning has been introduced in [6] and is based on the rea-
son model [11]; the approach aims to bridge this divide: norms are learned from
particular cases (bottom-up) but represented symbolically (top-down). Indeed,
in common law, norms arise not from statute but from precedents—that is,
actions or decisions that serve as justification or support for future actions or
decisions. As decisions accumulate, a body of normative expectations emerges,
and constrain future decisions. The reason model formalizes this idea by requir-
ing new decisions to be consistent with precedents and by integrating additional
information provided by the judge in the form of explicit reasons justifying each
decision. However, in many contexts, such as the DIAS (Drug-Interdiction Auto-
Stop) dataset [9], such reasons are often unavailable. In these cases, the result
model, a minimal symbolic framework introduced in [1] (see also [10]), enables
normative inference directly from case outcomes and fact patterns. To connect
these frameworks for formalizing common law to machine ethics, consider a hy-
pothetical robot whose decision-making relies on questionnaires administered to
users, each capturing a specific situation. The responses to these questionnaires
serve as precedents, and the robot’s future decisions in new situations should be
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constrained by them. Last but not least, the robot must provide explanations
for its decisions.

Yet, when applying such frameworks to systems like our hypothetical robot,
a key limitation becomes evident: most approaches rely on the assumption that
the set of precedents is consistent. In other words, they assume that the dataset
does not impose contradictory decisions for the same or stronger fact situations.
However, this assumption is unrealistic.

Inconsistencies can indeed arise for several reasons. First, different users may
hold divergent normative intuitions and provide conflicting judgments. Second,
borderline cases may genuinely be ambiguous, leading even a single user to choose
different sides in similar contexts. Third, the factors used to describe cases may
fail to capture critical distinctions, resulting in substantively different situations
being treated as equivalent in the dataset. These inconsistencies are not rare
exceptions. They are, in fact, common features of real-world legal and ethical
corpora, as illustrated by the DIAS dataset [8,9].

Two distinct approaches to accommodating inconsistencies have recently
been proposed in [5] and [15,14]. The first, developed in the context of the
reason model, provides a logically sound framework for reasoning under conflict-
ing precedents. However, it does not leverage the statistical information that the
case database reveals about the reliability of the constraints we aim to derive
from precedent decisions. Our first contribution is to adapt this framework to
the result model, yielding two predictive variants that we refer to as the Strict
Binary and Binary Majority models. The second approach [15,14], designed
for models based on dimensions and a different notion of precedent, introduces
the concept of authoritativeness to resolve conflicts. Our main contribution, the
Bayesian model, extends this idea by learning a distribution over authoritative-
ness directly from data, thereby capturing both the strength of a precedent and
the uncertainty surrounding its application.

Unlike previous approaches, the Bayesian model reinterprets the result model
probabilistically, allowing it to handle inconsistencies in real case datasets while
providing epistemic confidence in each prediction. It thus represents a promising
hybrid between symbolic legal reasoning and data-driven inference: it retains the
transparency and traceability of rule-based methods while making principled use
of data to assess the reliability of conclusions.

The three predictive models presented in this paper: the Strict Binary, Binary
Majority, and Bayesian models lay the groundwork for subsequent experimental
evaluation.

2 Preliminaries
We provide essential contextual information for understanding the paper.

2.1 The Result Model in a Nutshell

The result model [1] is a highly conservative approach to precedential reasoning:
it formalizes which types of inferences from prior cases are admissible — namely,
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that only weaker precedents can constrain new decisions. The result model is
governed by the principle that:

“To follow precedent, a constrained court must decide its case for the
party analogous to the winner in the precedent case if the constrained
case is as strong or stronger a case for that result than the precedent
case was for its result”.

To formalize this idea: according to [16] a factor is a consideration a decision
maker must or may take into account to determine an outcome. Let F' be the
set of factors, partitioned into F™ (favoring the plaintiff) and F? (favoring the
defendant), so that F' = F™ U F9.

Definition 1. A case is a tuple (X,s), where X C F is the set of present
factors' and s € {m,d} is the side that won. We define X* = X N F* as the
factors in X that favor side s. We write s to denote the side opposite to s, so
that @ =6 and 0 = .

Definition 2 (Strength Ordering). Given two fact situations X and Y, we
say that X is stronger for side s than Y, written X =3 Y, if

X*2Y* and X°CYP.

Ezample 1. Let {fT, f7} the set F'™ favoring the plaintiff and F° = {f{}, the
set favoring the defendant. Consider two cases with the following sets of factors:

- X ={fT, i}
- Y ={/T. 7}

The relevant sets are:
XO={f}, Y'°=0 = X°DV°

XT={fy, Y"=A{M. 7} = X"CY"

Therefore, X =5 Y, that is case X is stronger for the defendant than Y,
because it contains more factors supporting the defendant and fewer factors
supporting the plaintiff.

Definition 3 (Case base). A case base is a finite set of cases.

Definition 4 (Consistency). A case base is consistent if there do not exist
c=(X,6) and ¢ = (Y, 7) such that X =, Y.

This condition can be equivalently stated in terms of the a fortior: constraint,
which governs the admissibility of new decisions based on prior ones.

! Following Horty’s factor-based account of precedent [11], we treat a factor as a
legally salient pattern of facts that invariably favors one litigant. For illustration,
the DIAS dataset contains pro-government factors such as LEGAL INDICATIONS OF
Druc USE and VEHICLE CONTENTS SUGGEST DRUGS.
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Definition 5 (A Fortiori Constraint). Let ¢ = (X, s) be a new case and let
¢ =(Y,s) be a past case in the case base. The a fortiori constraint requires that
if X =5Y, then the decision in ¢ must also be in favor of s.

That is, no weaker case should be decided for a side if a stronger one was not.
Under this principle, consistency means that the case base contains no pair
of cases violating the a fortiori constraint.

Ezample 2 (Violation of the a fortiori constraint). Consider the two cases:
01:<X1,7T> and C2:<X2,5>,
where the factor sets are:

Xi={ff. i} and Xo={ff f5}.

We observe that:
XT={ffy X3 ={f1.f5}, XP={fy2x3=0.

Hence, by definition, X5 >, X7, meaning cs is stronger than ¢; for the plaintiff.
However, c; is decided for the plaintiff, while c5 is decided for the defendant. This
contradicts the a fortiori principle: if a weaker case is decided for the plaintiff,
a stronger one should be as well.

We can identify several potential sources of such inconsistencies in the data,
including:

1. Suboptimal factor design. In some cases, the factors used to describe
legal situations may conflate distinct evidentiary strengths. For instance, in
the DIAS dataset [8, 9], one can find cases? judged for the plaintiff with only
the factor f{ =“Vehicle contents suggest drugs”, while other cases contain-
ing this same factor along with several additional plaintiff-favoring factors
are judged for the defendant. Upon examining the textual descriptions, it
becomes evident that in the cases judged for the plaintiff, f{ refers to strong
indicators (e.g., a strong smell of marijuana, or visible white powder on the
driver), whereas in cases judged for the defendant, it refers to weaker signs
(e.g., faint odor, presence of syringes). Splitting this factor into two levels
of evidentiary strength, or modeling it using a dimensional approach, would
likely eliminate the observed inconsistency.

2. Value pluralism across judges. Different judges may apply the same legal
principles in different ways due to divergent normative priorities.

3. Indeterminacy in borderline cases. When a case is near the boundary
of legal ambiguity, even the same judge may decide in different directions on
different occasions, essentially choosing between two well-balanced alterna-
tives.

2 Most of these inconsistencies might be attributable to divergent practices across
different jurisdictions in categorizing cases.
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Remark 1. Introduced by Horty [11], the reason model refines the result model
by associating each decision with an explicit reason, that is, a subset of factors
identified by the judge as justifying the outcome. The same principle of a fortiori
reasoning can be recovered if we replace each real case by a counterfactual one,
where the full set of winning-side factors is replaced by the stated reason. Under
this transformation, analogical constraints can be applied as in the result model.
The reason model improves on the result model by resolving certain inconsisten-
cies and enabling a broader range of predictions. However, it is only applicable
when judges explicitly provide reasons for their decisions.

2.2 Bayesian Framework

We briefly recall the core concepts of Bayesian statistics necessary to evaluate
how reliably the a fortiori principle is supported by empirical data. Bayesian
statistics models uncertainty about unknown quantities—such as the reliability
of a legal constraint—by treating them as random variables described by prob-
ability distributions. As new data is observed, beliefs about these quantities are
updated using Bayes’ theorem. For a more comprehensive introduction, see [7].
Bayes’ theorem relates our prior beliefs about a parameter 0 (the prior distribu-
tion) to our updated beliefs after observing data (the posterior distribution):

p(0,data) = p(0 | data) p(data) = p(data | §) p(6).
Rewriting it in proportional form:
p(6 | data) o p(data | 6) p(0)
where

— p(60) is the prior distribution, encoding our belief about 6 before observing
any data;

— p(data | ) is the likelihood, measuring how likely the observed data is under
parameter value 0, and

— p(@ | data) is the posterior distribution, our updated belief incorporating the
data.

The proportionality symbol () indicates that p(data) acts as a normalization
constant independent of 6.

In the context of our work, we consider how often the a fortiori constraint
holds between pairs of cases. Each such observation is a binary outcome: ei-
ther the constraint is satisfied or violated. This suggests modeling constraint
application as a Bernoulli trial.

Definition 6 (Bernoulli Distribution). The Bernoulli distribution models
binary outcomes and is parameterized by a probability 6 € [0,1], which in our
setting corresponds to the unknown reliability of the a fortiori constraint. For a
given observation x € {0,1}, the probability mass function is:

0 ifx=1,

Bern(z;0) = {1 9 =0
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In our context, x = 1 indicates that the a fortiori constraint is satisfied between
a pair of cases, while © = 0 indicates a violation.

Definition 7 (Uniform Distribution). The uniform distribution on the in-
terval [0,1] is defined by the constant probability density:

Uniform(f) =1 for 6 € [0, 1].

It represents a non-informative prior, expressing total ignorance: all values of 6
are considered equally plausible before observing any data.

Remark. The uniform distribution over [0, 1] is a special case of the Beta distri-
bution, specifically Beta(1,1). This provides a smooth transition into using the
Beta family as a prior in our Bayesian analysis.

Bayesian inference yields not a single point estimate of § but a full posterior
distribution, reflecting the degree of certainty or uncertainty in our beliefs after
observing data.

To perform Bayesian inference for a Bernoulli parameter 8, we choose a prior
distribution over [0, 1]. An expressive family of priors is the Beta distribution:

Definition 8 (Beta Distribution). The Beta distribution with parameters
a >0 and B > 0 has density:

g1 (1— )1
Bla,p)

where the Beta function B(«, 8) is defined as:

Beta(6; o, 8) =

B(a,B) = /01 t* (1 —t)P~Ldt.

Conjugacy. The Beta distribution is the conjugate prior to the Bernoulli distri-
bution. This means that if we use a Beta prior and observe data from a Bernoulli
process, the posterior distribution is also a Beta distribution, but with updated
parameters. Conjugate priors are useful as they allow posterior distributions to
be computed analytically, avoiding the need for numerical approximation.
More concretely, if 6 ~ Beta(a, 8) and we observe n binary outcomes with &
successes (x; = 1) and n — k failures (z; = 0), the posterior distribution is:

0 | data ~ Beta(a + k, 8 +n — k).

Interpretation. The parameters « and 3 of the Beta distribution are often called
pseudo-counts because they act like prior observations, even though no real data
has been seen yet.

— For instance, a prior Beta(1,1) is uniform over [0, 1], but it behaves as if we
had seen one success and one failure before collecting any real data.
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— When we later observe r actual successes and s actual failures, the posterior
becomes Beta(a + r, 5 + s). So the prior contributes as if it had already
added a successes and f failures to the total.

— This allows Bayesian inference to start with a prior belief and then update
it smoothly as data is observed.

This property makes the Beta distribution especially suitable for our setting,
where we wish to quantify how often the a fortiori constraint is upheld versus
violated. A precedent that is frequently followed with few violations yields a
Beta distribution sharply concentrated near 1. In contrast, if its constraint is
often violated or rarely tested, the resulting posterior remains broad, reflecting
greater uncertainty. Thus, each precedent can be associated with a specific Beta
distribution that captures our empirical confidence in its normative force.

3 Predictive Models

Several works have attempted to model prediction using precedents; a compre-
hensive survey is given in [3]. Most of these approaches rely on analogical sim-
ilarity measures between cases rather than enforcing normative reasoning rules
such as those encoded in the result model. An application of a fortiori reasoning
can be found in [19], though it applies to numerical (or many-valued) rather than
binary data. It is worth noting that a fortiori reasoning is just another name for
the result model, while its adaptation to continuous or multi-level attributes is
typically called the result model with dimensions.

By contrast, our focus is on the binary setting, in which attributes/factors
are either present or absent. We explicitly target inconsistency, and we describe
below three predictive models. The first two models adapt established literature
rules (strict abstention or majority tie-breaking), while our Bayesian model adds
a principled, reliability-based treatment to make predictions under conflict; the
latter employs Bayesian statistics to quantify the degree of confidence the data
warrants in each prediction made via the result model.

The section is organized as follows: Sec. 3.1 recalls a strict binary model that
only allows prediction in the absence of conflicting precedents; Sec. 3.2 presents
the model minimizing inconsistency proposed by [5], which we reformulate as
a voting mechanism inspired by social choice theory; Sec. 3.3 introduces our
Bayesian model, which quantifies uncertainty and weights precedents by relia-
bility.

3.1 Strict Binary Result Model.

This model predicts an outcome only if all applicable precedents agree. If any
conflict is found among applicable constraints, the model abstains. This reflects
the definition of constraints under inconsistencies defined by [5] for the reason
model. To make this precise, we adapt below Canavotto’s definitions (from the
reason model) to the setting of the result model.
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Definition 9 (Supporting and Conflicting Precedents). Let ¢ = (X, s) be
a new case. Define

supporting,(c) = {¢ € C | outcome(c) =s A ¢ = '},
conflicting,(c) = {c € C | outcome(c') =35 A ¢ =5 '}

Proposition 1 (Strict Decision Criterion). Under the result-model adapta-
tion, the strict binary result model decides ¢ as follows:

If supporting, (c) = 0 and supporting(c) # 0, then decide c for s.
Otherwise, the model abstains.
Proof (Sketch). By definition, supporting-(c) = conflicting(c). Thus
supporting,(¢) =0 A  conflicting,(c) #

means there is no precedent enforcing s but at least one enforcing s, forcing the
decision s, with abstention in all other cases. a

This principle of enforcing a decision only when precedents are one-sided was
connected in [4] to standard deontic logic SDL, whose deontic operators of per-
mission and obligation are interpreted, respectively, as existential and universal
quantifiers over a set of possible worlds [20]. The name Strict Binary reflects
the model’s rigid enforcement criteria: it permits a binary prediction only in
the absence of conflicting precedents, thereby adhering strictly to the norma-
tive force of the a fortiori constraint. The model abstains as soon as ambiguity
arises, which contrasts with more permissive approaches that tolerate conflict
by aggregating information from competing precedents.

Ezxample 3. Consider the following three cases with factors drawn from F™ =

{f'}, and F° = {f{}:

— 1= {fF, f2, 13}, 7) (a precedent for the plaintiff),
— o= {fF, 5, [7},6) (a precedent for the defendant),
— 3= {fF, f2},7) (a new case to be decided).

We observe:

{ff7ff} Fr {ff?ff’fgh and {ff?ff} 5 {ff?fé‘-?ff}

Thus, ¢; and ¢y both act as applicable precedents for ¢z, but they enforce opposite
outcomes. Since the strict binary model abstains whenever there are conflicting
applicable precedents, it will refrain from making a prediction for cs.
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3.2 The Binary Majority Vote Model.

The Binary Strict model makes predictions only when there are precedents sup-
porting a decision and none supporting the opposite. It abstains both when no
applicable precedent exists and when precedents for both outcomes are found.
As the number of inconsistencies in the case database increases, the number of
such conflicts typically grows, leading the model to abstain on more and more
test cases.

To address this issue,[5] proposed a refined framework (for the reason model):
when faced with conflicting precedents, select the decision that conflicts with the
smallest number of precedents in the database.

Inspired by social choice theory [12], we reformulate the minimal number of
conflicts principle as a voting rule:

Proposition 2. Minimizing the number of conflicts is equivalent to assigning
each m-precedent of the new case a vote of +1, and each §-precedent a vote of
—1. The case is predicted as  if the total sum is strictly positive, as § if strictly
negative, and left unclassified in case of a tie.

Proof. Choosing a decision s for a new case introduces #(precedents for 3) con-
flicts, as each such precedent supports the opposite side. Comparing the number
of conflicts introduced by choosing s versus § amounts to checking the sign of:

#precedents for m — #precedents for 4.
(]

Ezample 4 (Majority Vote Resolution). The case ¢ from the example 3 would
also not be predicted by the Binary Majority model, as there is an equal number
of applicable precedents supporting each side: one for 7 (namely ¢;) and one for
0 (namely c2). Now consider adding a new case:

Cq4 = <{ff7ff7f§}77r>a

which is identical to ¢;. Then both ¢; and ¢4 support the plaintiff and are
applicable to c3, while only ¢y supports the defendant.

In this case, the Binary Majority model identifies a majority of applicable
precedents supporting 7, and therefore predicts cg for the plaintiff.

While this model improves coverage, it still assumes all precedents have equal
authority in enforcing the a fortiori constraint. Yet not all precedents are equally
reliable. Some cases may frequently violate their expected influence over stronger
or weaker cases, suggesting they should be trusted less.

This observation invites us to revisit the foundational motivation for the
constraint itself. The a fortior: principle expresses a form of normative reasoning
from precedent: if a weaker case is decided for the plaintiff, then a stronger one
should be as well—and symmetrically for the defendant. Inconsistencies in the
dataset can then be interpreted as uncertainty about the applicability of this
principle in particular contexts.
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3.3 The Bayesian Result Model

The considerations at the end of the previous section leads to a more refined
question: can we use the data to quantify our confidence in the a fortiori con-
straint? A natural starting point is to measure the proportion of case pairs that
satisfy the constraint versus those that violate it. Intuitively, the more often
the constraint is upheld, the stronger our belief in its normative force. This
proportion-based idea was explicitly adopted by [14], who defines a precedent’s
authoritativeness as the fraction of times the expected constraint that one asso-
ciates to it is respected in the dataset.

While our approach, like [14], aims to quantify the normative strength of
precedents, it differs in two essential respects. First, we identify applicable prece-
dents directly through the a fortiori constraint defined by the result model—that
is, by comparing fact patterns via subset inclusion—whereas [14, 15] rely on a
distance-based similarity metric over dimensional case representations. Their ap-
proach is more closely aligned with the HYPO framework [2], a pioneering and
influential model of legal case-based reasoning that uses analogical arguments
built from precedents estimated to be similar to the case at hand.

Second, whereas they assign each precedent a scalar authoritativeness score
(which, under certain assumptions, corresponds to the mean of our Beta poste-
rior), our Bayesian framework yields a full probability distribution. This richer
representation encapsulates not only the expected strength of a precedent but
also the uncertainty around that estimate, enabling principled reasoning under
epistemic uncertainty in downstream decisions.

These considerations motivate the probabilistic framework we introduce be-
low. We begin by observing that the a fortiori principle is not a single global
rule, but rather a scheme of local constraints—one associated with each case
c in the training set. Each ¢ acts as a potential precedent and defines its own
individual constraint:

Definition 10 (Individual a fortiori Constraint for a Case c¢). Let ¢ be
a case in the training set.

— If decision(c) = , then ¢ enforces that any case ¢ with ¢’ = ¢ must also be
decided for .
— If decision(c) = 6, then ¢ enforces that any case ¢ with ¢ = ¢’ must also be

decided for 6.

This formulation provides the basis for our Bayesian treatment of precedent
reliability. Rather than treating all precedents equally, we learn a distributional
confidence for each case’s individual constraint—allowing us to model varying
degrees of normative strength among precedents.

Inconsistencies in the dataset imply that the a fortiori constraint for a case
is only stochastically applied. Since the application of such a constraint is a
binary (0/1) observation, it is natural to model this uncertainty using a Bernoulli
distribution with an unknown success parameter 6.. To estimate this parameter,
we place a Beta prior over each 6., resulting in a posterior distribution:

0. ~ Beta(r. + 1,s. + 1),
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where 7, is the number of successful applications of the constraint in the training
data (i.e., pairs where the constraint applies and is satisfied), and s. is the
number of observed violations. We use a uniform prior Beta(1,1) to model lack
of prior knowledge, as discussed in Section 2.2. From the definition of the Beta
distribution, this yields the posterior in closed form due to conjugacy. While we
suggest here the uniform prior Beta(1, 1), we note that alternative prior choices
are possible and will return to this discussion in Section 3.3.

This use of Bayesian statistics differs significantly from prior work in rule
learning. For instance, [13] and [18] apply Bayesian methods to discover symbolic
rules or logical clauses from labeled data. Their goal is to induce rule structure.
By contrast, we do not attempt to learn the constraint itself—it is fixed and
justified on normative grounds. Instead, we use Bayesian inference to assess
how confidently each instance of the constraint (i.e., each precedent) should be
applied, based on empirical evidence from the case base.

This framework also aligns with the theoretical ideal of normative consis-
tency: as the empirical evidence supporting a constraint grows, so too does our
confidence in its validity. In particular, a high number of supporting instances
r. relative to violations s., combined with a large overall sample size, yields a
posterior increasingly concentrated near 1. In the limiting case of a perfectly con-
sistent and infinite dataset—where the constraint has never been violated—we
recover full certainty: With 6. ~ Beta(r. + 1,1), we have §. — 1 in probabil-
ity as r. — oo; thus the limiting law is the degenerate distribution at 1 (i.e.,
all probability mass is concentrated at a single point), representing an idealized
belief that the variable equals 1 with certainty.

At prediction time, each precedent ¢ casts a probabilistic vote for the side
it supports via the a fortiori relation. This vote is drawn from a Bernoulli dis-
tribution with success parameter 6. ~ Beta(r. + 1,s. + 1). Precedents with
strong empirical support will more reliably contribute to the vote, while noisy
or ambiguous ones may abstain.

Because the voting is stochastic, we simulate the prediction process using
Monte Carlo sampling [17]. For each simulation run:

1. Sample 6. from the learned Beta distribution for each precedent.

2. Sample a Bernoulli variable with parameter 6, to decide whether the prece-
dent casts a vote (1) or abstains (0).

3. Sum all votes to determine a predicted side.

Repeating this procedure many times yields an empirical probability mass
function over vote sums. As the vote sum is integer-valued, we work with a
probability mass function (pmf) rather than a density. We approximate this
pmf by Monte Carlo sampling. We can then quantify prediction confidence by
computing the proportion of simulations where the total vote aligns with the
predicted decision. Let f(v) denote the empirical probability mass function over
total vote sums v. If the predicted decision corresponds to the sign of the sum
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(positive for m, negative for §), these are:

Z f(w), if the predicted side is m,
Conf = ¢ >0

Z f(v), if the predicted side is ¢ .

v<0

This confidence score refines binary predictions with epistemic insight and
allows selective decision-making under uncertainty.

What an Explanation Looks Like in the Bayesian Model. Consider
a synthetic case where two precedents support the plaintiff (7) and one sup-
ports the defendant (§), yet judgment favors the defendant. We simulate this
by assigning Beta posteriors Beta(r.+1, s.+1) to each precedent—treating 7.
as confirmations and s. as violations of its a fortiori constraint—and sampling
votes via Monte Carlo.

Fig. 1 displays two visualizations: the left shows the Beta distributions rep-
resenting the authority (i.e., reliability of the a fortiori constraint) for each
precedent; the right shows the results of a Monte Carlo simulation combining
these votes. The figure explains a ¢ prediction despite a majority of m precedents;
as panel (a) makes clear, the § precedent is more reliable than the 7 precedents
(peak farther right and narrower), which explains the outcome; (b) shows the
four possible outcomes when combining the three opposing precedents: the left
rectangle (—1) means the defendant (§) wins, the middle rectangle (0) means
tie/abstention, and the right rectangles (+1, +2) means the plaintiff (7) wins.
The height of each rectangle is the relative frequency of that outcome across
Monte Carlo runs. There are four rectangles because the § precedent can con-
tribute either 0 or —1, the 7 precedents can each contribute either 0 or +1, so
their sum can only be —1, 0,+1 or +2.

We observe that even when more precedents support one side, their influ-
ence is modulated by empirical reliability; by contrast, the Binary Majority
model ignores reliability and counts all precedents equally. In this example, the
o-precedent, being more authoritative (with a Beta distribution sharply peaked
near 1), overrides both m-precedents, which exhibit low mean and high variance.
As a result, the model predicts a decision in favor of the defendant. However, the
confidence in this prediction is relatively low, as shown by the relatively small
area in the hatched region in Figure 1b.

Note that the Binary Majority Vote Model, which weights all precedents
equally, would have favored the plaintiff, based solely on the count of precedents.
This contrast shows how the Bayesian model considers not just the number but
also the reliability of precedents.

Furthermore, the model’s confidence score derived from the proportion of
simulations favoring the predicted side can support downstream tasks such as
aggregating predictions across models or deferring low-confidence cases, thereby
enhancing reliability.
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Beta Distributions for Different Precedents

MC predicts delta with confidence = 0.390

8000

6000

Frequency

4000

2000

-1 [ 1 2
Combined Outcome

(a) Beta distributions: 7-precedents have

low expected authority and high vari- (b) Monte Carlo estimate of the vote
ance (mass spread leftward), while the §- pmf: The shaded bar marks the predicted
precedent has a high mean and low vari- side. Its height indicates the model’s con-
ance (narrow peak near 1). fidence in the predicted outcome.

Fig. 1: Illustrative output of the Bayesian Result Model for a synthetic case with
two m-precedents and one d-precedent.

Discussion on Prior choice. We have so far adopted the uniform prior (Beta(1, 1))
to model complete ignorance about precedent reliability. As in any Bayesian
framework, this choice is somewhat arbitrary. Several alternatives are possible;
here we outline two simple options; one is to compute aggregate parameters for
the a fortiori constraint across the case base. Specifically, by considering all pairs
of cases (¢, ') with ¢ >, ¢/, we may count

Ttot = F£{pairs where both decisions agree},

Stot = F#{pairs where the weaker favors m and the stronger §}.

A prior of the form Beta(riot, Stot) then encodes a global tendency for the
constraint to hold, leading to posteriors of the form

0. | data ~ Beta(rior + e, Stot + Se)-

An alternative is to maintain two separate priors, one for m-precedents and one
for §-precedents, computed in the same way.

Both approaches combine individual evidence about each case with pooled
information from the entire case base, which may be advantageous when many
cases are precedents for only a few others. However, they also dilute case-specific
information. In a large case base where sufficient evidence is typically available
for each precedent, the uninformative prior Beta(1,1) may then be preferable.

Caveat: many weak precedents. A limitation of all our models, only partly miti-
gated in the Bayesian one, is that many weak precedents can outweigh a single
strong precedent. While the Bayesian model accounts for reliability (downweight-
ing weak precedents), a substantial imbalance in their number can still dominate
the outcome.

Future work should address this.
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4 Conclusions and Future Work

We introduced a probabilistic extension of the result model that handles in-
consistency while preserving the transparency of rule-based approaches. Our
framework models the strength of precedents based on their observed reliability
in the data. This approach offers several advantages:

1. Uncertainty Quantification. While classical models like the strict binary
or majority variants appear to provide deterministic outputs, they in fact
ignore uncertainty from data inconsistencies. The Bayesian model makes this
uncertainty explicit, allowing predictions to be accompanied by meaningful
confidence estimates derived from observed precedent behavior.

2. Extension to Other Normative Modes. Although we have focused on
the a fortiori constraint, our approach can accommodate any admissible
mode of reasoning over precedents. For example, one could assign learned
weights to hypothetical analogies, rhetorical moves such as downplaying op-
posing factors, or domain-specific argument patterns. Each such normative
mode could contribute a probabilistic “vote” toward a decision, encapsulating
its strength and reliability as calibrated from data.

3. Flexibility and Modularity. The Bayesian framework is flexible and can
incorporate application-specific beliefs about how precedents should be trusted.
These priors can encode normative stances or policy constraints, enabling
the system to adapt its reasoning to different institutional or legal settings.

4. Extensibility to Richer Models. Our framework can be naturally ex-
tended to the more expressive reason model, as well as to variants involving
dimensional fact representations or explicit factor hierarchies. The proba-
bilistic structure can incorporate rule-based justifications and reason-strength
comparisons in a unified framework.

In summary, our Bayesian approach represents a promising hybrid between
symbolic legal reasoning and data-driven inference. It offers a transparent and
traceable decision procedure while making principled use of data to assess the
reliability of conclusions. This positions it as a compelling foundation for building
interpretable Al systems that reason under normative uncertainty.

We also plan to evaluate our model using the DIAS dataset ( [9]), which con-
tains court opinions addressing whether police officers in the U.S. possess the
requisite constitutional suspicion to make a prolonged detention of a motorist
suspected of trafficking or possessing drugs. The dataset includes 264 annotated
vehicle inspection decisions. For benchmarking, we will implement the Strict Bi-
nary Result Model and Binary Majority Vote Model, and compare them against
our approach and a finely tuned random forest classifier. Given the class imbal-
ance, macro-averaged F1 will serve as our primary evaluation metric. Finally,
we will conduct a qualitative analysis of conflict cases to assess how different
models resolve inconsistencies in practice.
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