MUltseq: Sequents, Equations and Beyond

Angel Gil
Universitat Pompeu Fabra

Gernot Salzer
Technische Universität Wien
Contents

• MVLs: proof theory vs. algebra

• MUltseq
 – sequents
 – formulas
 – equations
 – quasi-equations

• Current state & future work
Proof theory of MVLs

- Generic properties of finitely valued logics

 \[\text{FVL (operators + distribution quant.)} \Downarrow \]
 \[\text{optimized CNF in signed classical logic} \Downarrow \Downarrow \]
 \[\text{sequent calculus} \Downarrow \]
 \[\text{labeled sequent calculus} \Downarrow \]
 \[\text{admissible cuts} \Downarrow \]
 \[\text{FVL} \]

- MUltlog

 \[\text{FVL} \Rightarrow \text{“scientific” paper in LATEX with optimal calculi} \]

- Projective logics
Algebraic Logic and MVL

- Algebraizable Logics (W. Blok, D. Pigozzi)

Logics and algebras
Formulas and equations

- Finite algebras \rightarrow Many-valued Sequent calculus

1. Matrix semantics of the calculus: *Strong Completeness Theorem*.

2. Translations

 Sequents \leftrightarrow Formulas
 Sequents \leftrightarrow Equations
 Sequents \leftrightarrow Quasi-equations

3. Decision procedures for
 - Finitely valued logics
 - Equations and quasi-equations in a finite algebra.

• Abstract properties of sequent calculus (Algebraic logic & Proof theory):

 – Algebraizability ($\approx \Rightarrow$ cut).

 – Protoalgebraizability ($\approx \Leftarrow \Rightarrow$ cut)
MUltseq

Developed within the Acción Integrada “Generic Decision Procedures for MVLs”.

- Interactive generic sequent prover

 Input: m.v. sequent calculus formula, sequent

 Output: proof derivation from hypotheses

- Companion for MUltlog

- Basis for generic decision procedures

- Tool for getting better intuition on specific logics

- Test bed for optimization algorithms implemented in MUltlog
Many-valued sequents

\(\mathcal{L} \ldots \) propositional language

\(\mathbf{L} \ldots \) finite \(\mathcal{L} \)-algebra

\(L = \{ v_0, \ldots, v_{m-1} \} \ldots \) domain of \(\mathbf{L} \)

(finite set of truth values)

signed formula: \(F^v \)

\((F \ldots \) formula over \(\mathcal{L} \), \(v \in \mathbf{L} \))

sequent: set of signed formulas

A sequent is true in an interpretation iff it contains \(F^v \) such that \(F \) evaluates to \(v \).

A sequent is valid iff it is true in every interpretation.

For every \(\mathbf{L} \) there exists a complete and correct sequent calculus with the cut elimination property.

I.e.: A sequent is valid iff it is provable in the calculus.
MUltseq as generic sequent prover

Problem:
Given a sequent calculus and a sequent, determine whether the sequent is provable.

Input: Rules of calculus (from MUltlog)
 Sequent

Output: Proof (in \LaTeX)

Options:
- Strategy: left-right, top-down, rule ordering, interactive
- Sequent notation: signed, multi-dimensional
- Proof style: compact, verbose, ...
- ...

Logic Spec. (Ascii)

MUItlog (Prolog)

Scientific Paper (\LaTeX)

MUItseq (Prolog)

Proof in seq. calc. (\LaTeX)

optimized CNFs (Ascii)

mv-sequent (Ascii)

Sequent Editor (Java)
% Seq. calculus for 3-valued Lukasiewicz logic

truth_values([f,p,t]).

% Implication
rule((A=>B)^f, [[A^t],[B^f]]).
rule((A=>B)^p, [[A^p,B^p],[A^t,B^f]]).
rule((A=>B)^t, [[A^f,A^p,B^t],[A^f,B^p,B^t]]).

% Conjunction
rule((A&B)^f, [[A^f,B^f]]).
rule((A&B)^p, [[A^p,B^p],[A^p,A^t],[B^p,B^t]]).
rule((A&B)^t, [[A^t],[B^t]]).

% Disjunction
rule((A v B)^f, [[A^f],[B^f]]).
rule((A v B)^p, [[A^p,B^p],[A^p,A^f],[B^p,B^f]]).
rule((A v B)^t, [[A^t,B^t]]).

% Negation
rule((¬A)^f, [[A^t]]).
rule((¬A)^p, [[A^p]]).
rule((¬A)^t, [[A^f]]).
Sequent to prove:

\[\neg ((\neg a \Rightarrow b) \Rightarrow b) \] ^ t \]

Output:

Derivation of \(((A \supset B) \supset B) \) ^ t:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Hypothesis</th>
<th>Axiom for B</th>
<th>Hypothesis</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, p, B, t)</td>
<td>(A, B, f, B)</td>
</tr>
<tr>
<td>(\neg A)</td>
<td>(A)</td>
<td>(\neg B)</td>
<td>(\neg B)</td>
<td>(\neg B)</td>
</tr>
<tr>
<td>(\neg B)</td>
</tr>
</tbody>
</table>

List of hypotheses:

\(A^t, B^f, B^t \)
\(A^t, B^p, B^t \)

Derivation of \(((A \supset B) \supset B) \) ^ t:

<table>
<thead>
<tr>
<th>Hyp</th>
<th>Hyp</th>
<th>Axi</th>
<th>Hyp</th>
<th>Ax B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td></td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Table of sequents:

1: \((A \supset B) \supset B)\)
2: \(B^t, (A \supset B)^f, (A \supset B)^p\)
3: \(A^t, B^t, (A \supset B)^p\)
4: \(A^p, A^t, B^p, B^t\)
5: \(A^t, B^f, B^t\)
6: \(B^f, B^t, (A \supset B)^p\)
7: \(A^p, B^f, B^p, B^t\)
8: \(B^p, B^t, (A \supset B)^f\)
9: \(A^t, B^p, B^t\)
10: \(B^f, B^p, B^t\)
Consequence rel. on sequents

Theorem: The consequence relation

\[\text{Set-of-Sequents} \vdash \text{Single-Sequent} \]

is decidable. The problem can be reduced to checking the validity of certain sequents.

Proof: \(\vdash \) satisfies the Structural Deduction Detachment Theorem.

Example: In any 3-valued logic the relation

\[\{ \{ A_{0}^{f}, A_{1}^{p}, A_{2}^{t} \} \} \vdash \{ B_{0}^{f}, B_{1}^{p}, B_{2}^{t} \} \]

holds iff the following sequents are provable in the calculus:

\[\{ A_{0}^{p}, A_{0}^{t}, B_{0}^{f}, B_{1}^{p}, B_{2}^{t} \} \]

\[\{ A_{1}^{f}, A_{1}^{t}, B_{0}^{f}, B_{1}^{p}, B_{2}^{t} \} \]

\[\{ A_{2}^{f}, A_{2}^{p}, B_{0}^{f}, B_{1}^{p}, B_{2}^{t} \} \]
Consequence rel. on formulas

$L_t \subseteq L \ldots$ designated truth values

A formula is true in an interpretation if it evaluates to a truth values in L_t.

A formula F follows from a set of formulas Γ, iff F is true for all interpretations satisfying all formulas in Γ.

Theorem: F follows from Γ iff the sequent

$$\{ \gamma^v \mid \gamma \in \Gamma, v \in \overline{L_t} \} \cup \{ F^v \mid v \in L_t \}$$

is provable.

Example: Let $L = \{ f, p, t \}$ and $L_t = \{ t \}$. F follows from $\Gamma = \{ A, B \}$ iff the sequent

$$\{ A^f, A^p, B^f, B^p, F^t \}$$

is provable.

For $L_t = \{ p, t \}$ we have to prove

$$\{ A^f, B^f, F^p, F^t \}$$
Equations

An equation $A = B$ holds in \mathbb{L} iff for all interpretations, A and B evaluate to the same value.

Theorem: The equation $A = B$ holds in \mathbb{L} iff the sequent

$$\{ A^v \} \cup \{ B^{v'} \mid v' \in L, v' \neq v \}$$

is provable for all $v \in L$.

Example: $A = B$ holds in a 3-valued logic iff the sequents

$$\{ A^f, B^p, B^t \}$$
$$\{ A^p, B^f, B^t \}$$
$$\{ A^t, B^f, B^p \}$$

are provable.
Quasi-equations

A quasi-equation \(\{ e_1, \ldots, e_n \} \vdash A = B \) holds in \(L \) iff for all interpretations satisfying the equations \(e_1, \ldots, e_n \), \(A \) and \(B \) evaluate to the same value.

Theorem: The problem of deciding whether a quasi-equation holds in \(L \) is decidable. It can be reduced to checking the validity of certain sequents.

Example: The quasi-equation

\[
\{ F = G \} \vdash A = B
\]

holds iff the 9 sequents

\[
\{ F^p, F^t, G^p, G^t \} \cup \{ A^f, B^p, B^t \} \\
\{ F^f, F^t, G^f, G^t \} \cup \{ A^p, B^f, B^t \} \\
\{ F^f, F^p, G^f, G^p \} \cup \{ A^t, B^f, B^p \}
\]

are provable.
MUItseq in action: Logics

Choose an option

Sequents = 1.
Logic = 2.
Equations = 3.
Quit = 4.

Option: 2.

Designated truth values: [t].

Hypotheses: [a,a=>b].
Conclusion: b.

True in this logic

Choose an option

Sequents = 1.
Logic = 2.
Equations = 3.
Quit = 4.

Option: 2.

Designated truth values: [p,t].

Hypotheses: [a,a=>b].
Conclusion: b.

False in this logic
MUltseq in action: Equations

Choose an option
Sequents = 1.
Formulas = 2.
Equations= 3.
Quit = 4.

Option: 3.

Hypotheses: [].
Conclusion: a=(-(-a)).

The equation is true.

Choose an option
Sequents = 1.
Formulas = 2.
Equations= 3.
Quit = 4.

Option: 3.

Hypotheses: [a=(b=>b)].
Conclusion: a=(a&b).

The equation is false.

Falsifiable sequent:
[a^f, a^p, (a&b)^p, (a&b)^t, (b=>b)^f, (b=>b)^p]
Current state

The existing prototype is able to deal with

- sequents + consequence relation
- formulas + consequence relation
- equations and quasi-equations

See http://www.logic.at/multseq.

To be done

- graphical user interface
- proof structuring tool
- construction of counter-examples
- more user interaction
- reuse of proofs
- improved \TeX\ formatting