MUltlog 1.17 & iLC 1.2 User Manual

Contents
1 Requirements 2
2 Installation 3
2.1 Obtaining MUltlog 3
2.2 Running the installation script 3
2.3 Deinstallation Lo 3
3 Using MUltlog 4
3.1 GQGuide for the impatient 4
3.2 Creating the specification of a logic 4
3.3 Creating the paper (PDF) 5
3.4 Creating the paper (LaTeX) 5
3.5 Creating the paper (DVI) 5
4 Specification of a logic 5
4.1 The name of the logic (mandatory) 6
4.2 Truth values (mandatory) 6
4.3 Designated truth values (mandatory) 6
4.4 Orderings of truth values (optional) 7
4.5 Definitions of operators oL 8
4.6 Definitions of (distribution) quantifiers 9
4.7 interactive Logic Creator 11
5 TeX configuration files 11
6 Interactive use 13
6.1 Loading and saving logics 13
6.2 Displayingalogic.o L. 13
6.3 Operating with formulas and truth tables 14
6.4 Operatingonlogics L oL 16
6.5 Congruences and homomorphisms 16
7 Creating sequent rule files for MUItseq 17

8 Troubleshooting 17

8.1 Imstallation errors. 17
8.2 Runtime errors e 19
9 About MUltlog 20

This manual is available in PDF from the MUltlog website at logic.at/multlog.

MUltlog is a system which takes as input the specification of a finitely-valued
first-order logic and produces a sequent calculus, a tableau system, a natural
deduction system, and clause formation rules for this logic. All generated rules
are optimized regarding their branching degree. The output is in the form of a
scientific paper written in LaTeX.

iLC is an editor for Tecl/Tk, which allows to specify many-valued logics for
MUltlog in a convenient form.

Further information is available on the project webpage, where you can also find
an up-to-date copy of this manual, and example outputs.

1 Requirements

You need the following to run MUltlog:

o MUItlog itself. The source code is available in the Multlog GitHub reposi-
tory.

¢ Some standard Prolog system, e.g. SWI-Prolog. Other Prologs might work
as well but have not been tested with recent versions of MUltlog.

The output of MUltlog is in the form of a LaTeX paper. To view it properly,
you need the typesetting system

e TeX, available from CTAN. For Linux, the TeXLive distribution is partic-
ularly convenient to install and is most likely available via your package
manager.

MUTltlog includes a special editor, iLLC, which allows to specify many-valued
logics in a convenient, windows-oriented way, instead of typing an ASCII text in
a strict syntax. To use this editor you need the script language

o Tcl/Tk (version 7.4/4.0 or later). Many Linux systems include Tcl/Tk by
default (check for a program named wish).

On Debian/Ubuntu Linux, for instance, you can install the requirements using
the command

sudo apt install swi-prolog tk texlive-latex-extra

https://logic.at/multlog/multlog.pdf
https://logic.at/multlog
http://www.logic.at/multlog/
https://github.com/rzach/multlog
https://github.com/rzach/multlog
https://www.swi-prolog.org/
https://ctan.org/
https://www.tug.org/texlive/
https://www.tcl.tk/

2 Installation

2.1

Obtaining MUIltlog

Get the newest release of MUltlog by cloning or downloading the Git repository
from github.com/rzach/multlog.

2.2

Running the installation script

As of version 1.05, MUltlog comes with an installation script for Linux. Before
running the script:

decide which Prolog to use. The script will look for SWI-Prolog, SICStus,
and BinProlog in some standard locations, and suggest the result as a
default to the user.

decide where to put MUltlog. If run as root, the default locations are
/usr/local/bin for executables, /usr/local/1ib for library files, and
/usr/share/doc for documentation. If not run as root, the script will
install into ~/.local/bin, ~/.local/lib, and ~/.local/doc. Note that
these directories must exist; the script will not try to create them.

To run the installation script, change to the installation directory multlog and

type

./ml_install

The script will

determine the location of some Unix commands
ask the user for the Prolog to use

ask the user for the place where to put MUltlog
generate the deinstallation script m1_deinstall
insert the correct paths in some of MUltlog’s files

copy the MUltlog files in the right places.

In case of problems see the section on troubleshooting below.

Note that the installation procedure puts path information directly into some of
MUltlog’s files. This means that to install MUIltlog somewhere else, you need
the original distribution as well as the installation script.

2.3

Deinstallation

Run the script

ml_deinstall

https://github.com/rzach/multlog

to remove files installed by m1_install. The deinstallation script is located in
the same directory as the other MUltlog commands like 1gc2tex, 1gc2pdf, ...
(/usr/local/bin or ~/.local/bin by default).

3 Using MUltlog

The examples below assume that MUltlog was installed into the standard place
/usr/local/*, and assumes that the locations of the MUltlog scripts 1gc2tex
and lgc2pdf are your command path. If you use different settings, change the
examples accordingly.

3.1 Guide for the impatient

e Move to a temporary directory, e.g.,

mkdir tmp; cd tmp

o Get the sample logic from the doc directory, e.g.,

cp /usr/share/doc/multlog/sample.lgc

¢ Generate the paper in PDF format
lgc2pdf sample
You should now be able to open sample.pdf using the PDF reader of your
choice.

o To edit the specification of the logic before generating the paper, type
ilc &
Select “Open” from the menu “File” and type sample as the name of the
file to be loaded.

The examples/ directory of the distribution contains other example specification
and configuration files.

3.2 Creating the specification of a logic

You can either use your favourite text editor, or the “interactive Logic Creator”
ilc.

In the first case specify your many-valued logic in the syntax described in the
sample specification /usr/share/doc/multlog/sample.lgc and save the result
as <name>.lgc.

To start ilc, type
ilc &

A window pops up, and you are able to edit a new logic or re-edit an already
exisiting one, and to save the result in a textual format suitable for MUltlog.
Note that you have to store the logic as <name>, the extension .1lgc being added
automatically.

3.3 Creating the paper (PDF)

To obtain the paper corresponding to your logic, type
lgc2pdf <name>
where <name> is the name under which you saved your logic. This invokes

MUltlog as well as PDFLaTeX and BibTeX (or alternatively, if pdflatex was
not found upon installation, LaTeX, BibTeX, dvips and ps2pdf).

If <name>.bib exists, it should contain a bibliography entry with key m1, which
will be cited as the source for the definition of the logic.

Additionally, all files are deleted except the specification of the logic and the
PDF file.

3.4 Creating the paper (LaTeX)

If you are interested in the LaTeX source of the paper, use 1lgc2tex instead of
lgc2pdf:

lgc2tex <name>

This will invoke MUltlog, but does neither LaTeXing nor cleaning up. It will
produce two files: <name>.tex and <name>.sty. <name>.tex is a template

LaTeX file which loads <name>.sty. The latter contains the difinitions specific
to your logic.

The source will be <name>.tex and will require <name>.sty and to be compiled.
<name>.sty contains the definitions produced by MUltlog.

3.5 Creating the paper (DVI)

The command

lgc2dvi <name>

where <name> is the name under which you saved your logic, will produce a DVI
file of the paper.

4 Specification of a logic

The directory /usr/share/doc/multlog (or whatever you chose) contains a
documented example of the configuration file format (as does the doc subdirectory
of the source distribution itself), sample.lgc.

To specify a logic, your specification (.1gc) file has to contain the following:

4.1 The name of the logic (mandatory)
Here you specify the name of the logic to be used in the PDF.
Syntax:

logic "<logname>".

where <logname> is a string described by the regular expression RE1
(['#$%&" O*+,./0-9:;<=>70A-Z[\]1"_~a-z{|}~-] | "")*

of up to 40 characters. In other words, the string may consist of any printable
ASCII character, where quotes (“) have to be doubled. <logname> may contain
LaTeX code (e.g., for accented characters), where \ does not need to be escaped.

Example:

logic "G\""odel".

4.2 Truth values (mandatory)

You have to list the truth values of the logic you are defining. The order in
which they are listed will be the order used for the presentation of truth tables.
Every truth value may appear only once.

Syntax:

truth_values { <v 1>, ..., <v n> }.

Example:

truth_values {f,*,t}.

where each of the truth values <v 1>, ..., <v n> (n > 2) is described by the
regular expression RE2

([a-z][A-Za-z0-9_|* | [-+*~<>=~70#$&]+ | O | [1-9][0-9]*)

The truth values may consist of up to 10 characters. Unless you specify how
they should be typeset in the corresponding .cfg file, the paper will use the
names <vn> in italics in the generated PDF.

4.3 Designated truth values (mandatory)

The designated truth values are usually those representing “true”. The particular
order of the values is of no significance as indicated by the braces. Every truth
value may appear at most once.

Syntax:

designated_truth_values { <v 1>, ..., <v n> }.

Example:

designated_truth_values {t}.

where each of the truth values <v 1>, ..., (n>0) is described by the regular
expression RE2 above and may consist of up to 10 characters.

The choice of designated truth values has no effect on the generated rules.
However, they make a difference to what sequent, initial tableau, or initial clause
set has to be used to give a proof of an entailment.

4.4 Orderings of truth values (optional)

By specifying an ordering on truth values, you can declare an operator or
quantifier as being the “inf” (greatest lower bound) or “sup” (least upper bound)
operator with respect to the ordering.

Syntax:

ordering (<ordname>, "<ordspec>").

where <ordname> is defined according to RE2 above and may consist of up to 10
characters. <ordspec> is a string of up to 200 characters satisfying RE1 above.
This string is either a single chain, or a set of chains in {...2}. A chain, in turn,
is a seqence of either elements separated by <, where each element is either a
truth value (as defined by truth_values) or itself a set of chains.

In order to avoid ambiguities, spaces may be used to separate the < sign from
truth values (which may also contain the character <).

The semantics of order specifications is as follows:

e Chains like “a < b < ¢ < d < e” are interpreted as an abbreviation for
“a<b,b<c,c<d, dc<e

e Independent chains are collected in sets: “{a < b, ¢ < d <e, ...}”;

e Sets and chains can be nested. E.g., “a < {b, ¢ < d} < e” is the same
as “fa < b, a<c,c<d, b<e, d<e}

Let R be the relation defined by this specification. The ordering induced by R is
the smallest reflexive, anti-symmetric and transitive relation containing R. Note
that truth values with different names are treated as being different from each
other. Hence a specification containing a<b and b<a induces no ordering, since
anti-symmetry would imply a=b.

Example:

ordering (linear, "f < * < t").

4.5 Definitions of operators

Optional; but what’s a logic without operators?

4.5.1 Mappings

In its simplest and most general form, each operator is specified by its name
and the mapping of input to output values. The braces indicate that the order
in which the input tuples are assigned output values is of no significance. The
definitions should be complete: every k-tuple has to be assigned exactly one
value, where k£ > 0 is the arity of the operator. There may be several operators
with the same <opname> but with different <arity>.

Syntax:

operator (<opname >/<arity>, mapping { <ass 1>, ..., <
ass m> }).

<opname> is defined according to RE2 above and may consist of up to 10
characters. <arity> is a non-negative integer. <ass 1>, ..., <ass m> are
assignments of the form

(<v 1>, ..., <v k>) : <v>

where <v 1>,...,<v k>, and <v> are truth values. Assignments must be separated
by commas. For k = 0, the mapping consists of a single truth value.

Example:

operator (true /0, mapping { t }).
operator (and /2, mapping { (t,t):
(t,*):
(t,f):
(x,t):
(*x,%):
(x,f):
(f,t):
(£,%):
(f,f):

Hh Hh Hh Hh % % Hh ¥t

4.5.2 Tables

Binary operators can be also specified as tables. Since the order of truth values
in the table is significant, brackets are used instead of braces.

Syntax:

operator (<opname>/2, table [<v 1>, ..., <v m>]).

<opname> is defined according to RE2 above and may consist of up to 10
characters. <v 1>,...,<v m> are truth values. The number of elements in the
table, m, has to be equal to (n + 1)? — 1, where n is the number of different
truth values.

Example:

operator (and/2, table [

-

H ¥

4.5.3 Inf and sup

Operators may also be declared to be the infimum (greatest lower bound) or
supremum (least upper bound) with respect to some user-defined ordering.

Syntax:
operator (<opname>/<arity>, sup(<ordname>)).

operator (<opname >/<arity>, inf (<ordname>)).

Here, <opname> is defined according to RE2 above and may consist of up to 10
characters. <arity> is a non-negative integer greater than one. <ordname> is
the name of an appropriate ordering defined by an ordering statement.

“sup” stands for the least-upper-bound (= supremum) operation w.r.t. the given
ordering. The value of the operator is determined as the least upper bound of
the input truth values in the ordering. “inf” stands for the greatest-lower-bound
(= infimum) operation w.r.t. the given ordering. The value of the operator is
determined as the greatest lower bound of the input truth values in the ordering.

The ordering has to define a unique supremum/infimum for any two truth values.
Examples:

operator (and /2, inf(linear)).
operator (or /2, sup(linear)).

4.6 Definitions of (distribution) quantifiers

Optional.

4.6.1 Mappings

In its simplest and most general form, each quantifier is specified by its name
and a mapping assigning a truth value to each non-empty subset of the truth

values. The definitions should be complete: every non-empty subset should be
assigned exactly one value.

Syntax:

quantifier (<quname>, mapping { <ass 1>, ..., <ass m>
B

<quname> is defined according to RE2 above and may consist of up to 10

characters. <ass 1>,...,<ass m> are assignments of the form { <v 1>, ...,

<v k> } : <v>, where <v 1>,....<v k>, and <v> are truth values. k has to be

greater than one.
Example:

quantifier (forall, mapping { {t}
{t,*}
{t,f}
{t,x,f}:
{*} :
{x,f}
{f}

-

H H ¥ Hh Hh %

4.6.2 Induced quantifiers

The definition of induced quantifiers in a more comfortable and less error-prone
form. Quantifiers can only be induced by operators which are associative,
commutative and idempotent.

Syntax:

quantifier (<quname>, induced_by <opname>/<arity>).
<quname> is defined according to RE2 above and may consist of up to 10
characters. <opname> is defined according to RE2 above and may consist of up

to 10 characters, and should be an operator defined as above. <arity> is an
integer greater than one.

Example:

quantifier (forall, induced_by and/2).

4.6.3 Inf and sup
Quantifiers can also be induced by a lub/glb operator.
Syntax:

quantifier (<quname>, induced_by <bop>(<ordname>)).

10

<quname> is defined according to RE2 above and may consist of up to 10
characters. <bop> is either sup or inf. <ordname> is the name of an appropriate
ordering defined by an “ordering”-statement.

Example:

quantifier (forall, induced_by inf (linear)).

4.7 interactive Logic Creator

ilc is a graphical front-end to make creating .1gc files a little easier. It requires
Tcl/Tk (version 7.4/4.0 or later). To be exact, you only need the executable
wish (the windowing shell) but not the libraries and none of the extensions.

The program should be rather self-explanatory once you know what goes into
the .1gc file. You can load and save .1lgc files from the “File” menu. Before
you can specify orderings, operators, and quantifiers, you have to enter the name
of the logic and the list of truth values.

5 TeX configuration files

MUltlog will generate a .tex and .sty file from a given .1gc file. If present,
it will also use the content of a corresponding .cfg file, which can be used to
fine-tune the formatted output.

The .cfg file for a logic can contain three kinds of declaration:

e texName(<name>, <definition>) associates the name <name> of a truth
value, operator, or quantifier used in the .1gc file with LaTeX code used
to typeset it. For instance, if t is a truth value in the .1gc file, then

texName (t, "\\mathbf{T}").

will result in the truth value t be typset as T. (Note that \ have to be
doubled.) If the LaTeX replacement is a simple command beginning with
a lowercase letter, the quotation marks can be left off, e.g.,

texName (and , \\wedge).
e texInfix(<op>) and texPrefix(<op>) will cause formulas involving an
operator to be set either as infix or prefix, as opposed to the default

operator notation. Of course, texInfix can only be applied to binary
operators, and texPrefix only to unary operators. For instance:

texInfix (or).
texPrefix (neg) .

11

e texExtra(<macro>, <definition>) will insert a definition for \<macro>
with body <definition> in the .sty file, which will be loaded in the

preamble. This can be used to (re-)define any macro used in the LaTeX
file. For instance,

texExtra ("ShortName", "\\textbf{\\L}_3").

will define \ShortName as \textbf{\L}_3, and this macro will be available

Using

in the LaTeX file. The LaTeX template file makes use of a number of
macros which can be defined in this way:

— \Preamble will be executed in the preamble just before \begin{

document}. It can be used, e.g., to load packages needed for some of
the operator symbols, or to change the document font.

\ShortName may contain code for an abbreviation or symbol for the
logic. \ShortName will be called in math mode.

\FullNameOfLogic is the macro used to insert the name of the logic.
By default it will be “<logname> logic”. Sometimes this doesn’t work,
S0, e.g., you could say:

texExtra ("FullNameOfLogic", "Halld\\'en's logic
of nonsense").

\Intro will be called (if defined) after the first paragraph of the
introduction, and can be used to print a paragraph on the history or
motivation of the logic. This paragraph can use \cite to generate
references to any entries in <logname>.bib.

\Semantics will be called just before the definition of the matrix of
the logic. It can be used to print a paragraph, say, about the intuitive
interpretation of the truth values, or how the truth functions of the
operators are defined (say, on the basis of an ordering).

\Link will be added as a download link to the citation information
at the bottom of the first page.

texExtra ("Preamble" ,"\\ESequentstrue") .

you can tell MUltlog to not use the compact representations of sequents, but to
explicitly list all components. This will only make sense if the number of truth
values is small. In this case, sequents are typeset using the macro \esequent. It
expects an argument consisting of the components of the sequent, separated by
commas. By default,

\esequent{{\Gamma_1}, ..., {\Gamma_n}}

12

produces I'y | - -+ | T',. It can be redefined; e.g., if you have a three-valued logic
and want sequents displayed as I'; = I's | I's you could do it using the following
Preamble declaration:

texExtra ("Preamble" ,"\\ESequentstrue\\renewcommand {\\
esequent }[1]{\\sequent##1}\\def\\sequent
##1 ,##2 ,##3{##1 \\Rightarrow ##2 \\mid ##3}").

(Note the double #.)

6 Interactive use

The command multlog will start Prolog and load the MUltlog source files. This
makes it possible to use MUltlog interactively. This feature is expermiental and
has not been tested extensively. In particular, it does not yet include detailed
error checks.

6.1 Loading and saving logics

Interactive mode allows you to load the specification files of logics and then
perform queries and operations on these logics. To load a logic, type, e.g.,

?7- loadLogic('lukasiewicz.lgc',luk).

Here, 7- is the Prolog prompt; you only enter the text after it. Now the definition
of Lukasiewicz logic is available using the ID luk.

You can save a logic as an .1gc file as well:

?7- savelogic('name.lgc',id).

6.2 Displaying a logic
To display the truth values and truth tables of your logic, say
?- showLogic (luk).

This will display the truth tables using the currently selected color scheme. Color
schemes are plain, designated, and all and can be set using, e.g., setColors
(luk,plain). By default, logics have color scheme all which displays different
values in different colors, with designated values reversed. This requires an
up-to-date version of SWI Prolog. Scheme plain just displays all truth values
in white, and designated in white, but with designated values reversed.

You can also output the truth tables in LaTeX format by saying showLogic(
luk, tex). This will require some definitions included in the preamble of your
LaTeX document, which can be displayed using showTexDefs.

13

6.3 Operating with formulas and truth tables

Formulas of a logic are built using the operator names in the .1lgc file, in
operator notation. Prolog variables are used for propositional variables. So,
e.g., X - (X VY) would be written as imp(X, neg(or(X, Y))). Instead of
variables, you can also put truth values of your logic, e.g., imp(t, neg(or(*,f
))). To find the value of this formula:

?7- hasValue (luk,imp(t, neg(or(x,£))),V).
Prolog will display V.= (%), i.e., the value is *. If you hit space, Prolog will try
to find other solutions, and display false if no other solutions can be found. In

this case, V=x* is the only solution. However, if the formula contains variables,
Prolog will find all solutions. E.g.,

?- hasValue (luk,imp (X, neg(or(X,Y))),f).

will successively find all values for the variables X and Y so that the value is f:

X =1,

Y = £ ;

X =1,

Y = (%)

X =Y, Y =1t ;
false.

The value can itself be a variable. For instance to find a truth value fixed point
of =X V X, type.
?7- hasValue (luk, or(X, neg(X)),X).

This will find solutions * and t.

If you want to know if a formula is designated (or can be made designated), use:
?7- isDesignated (luk, or(X, neg(X))).

This will find the values t and f. Use isUnDesignated instead if you are
interested in undesignated values.

To test if a formula is a tautology, say

?- isTaut (luk, or(X, neg(X))).

This will just produce false since X V —X is not a tautology: if X is * the
result is *, which is not designated:

?- isUnDesignated (luk, or(X, neg(X))).

X = (%)

To test for consequence, use

14

?- isConseq(luk, [X, imp(X,Y)], Y).

Here, the second argument [X, imp(X,Y)] is a list of formulas, and since in
Lukasiewicz logic, X, X — Y Y, this will result in true.

You can also test for equivalence of two formulas:

?- isEquiv (luk, or(X,Y), luk, imp(imp(X, Y), Y)).

Here, the first formula is evaluated according to the operations (truth tables) of
the first listed logic, and the second formula according to the operations of the
second logic. In this case we use the same logic 1uk for both.

To find formulas with various properties, do the following: findFmla(logic, F)
will successively find solutions F which are formulas of logic. The solutions will
be ugly, e.g., F = and(_100, neg(_136)) (_ followed by a number is Prolog’s
generic way of naming variables). This can then be combined with other tests,
e.g., to find all tautologies, say:

?7- findFmla(luk,F), isTaut (luk, F).

The predicate findTaut (luk, F) does the same.

To find a formula equivalent to a given one, use findEquiv, e.g.,

?- findEquiv (luk, or(X,Y), luk, F).

will find all formulas F equivalent to X VY. The first two are boring—X VY
itself and Y V X—but then it will discover that you can express X VY using
(X = Y)—Y in Lukasiewicz logic.

To find only formulas not involving V here, you can define a second version of
FLukasiewicz logic without V:

?- loadLogic('lukasiewicz.lgc',luk2), delOp(luk2,o0r/2)

(del0p(1luk2,0p/2) deletes the 2-place operator or from luk2.) Now
?- findEquiv (luk, or(X,Y), 1luk2, F).

will only find formulas of 1uk2 (i.e., formulas not containing or) that are equiva-
lent to X VY.

You can display a formula in a more readable format using prettyFmla(F) or
make a pretty copy of a formula using prettyCopy (F, P). For instance, to find
and print consequences of logic 11 that are invalid in 12 you could say:

?- findFmla(l1, and(A,B)), isComnseq(1l1, [A], B), \+
isConseq (12, [A]l, B),
prettyCopy ((A,B), (Ap, Bp)),
format ('~w entails ~w in ~w but not in ~w~n', [Ap,
Bp, 11, 12]).

15

Logic 11 has to include a binary operator—in this case and—to find two formulas
A and B with shared variables. It’s assumed that the operators of 11 are also
operators of 12.

6.4 Operating on logics

If you have two logics loaded or defined, you can have MUltlog define a new
logic as the direct product of the two.

?- makeProduct (11, 12, new).

The logic new is has truth values that are pairs of truth values of the logics 11
and 12, with pairs where both components are designated in 11 and 12 being
designated in new, and operators defined componentwise. This assumes that 11
and 12 have the same operators defined.

To make a copy of a logic, say:

?- copylLogic(l, new, 'Name').

The logic new is a copy of logic 1 with name “Name”.
You can change the disignated and undesignated values of a logic this way:

?7- designateTVs(1l, [t, f1).
?- undesignateTVs (1, [t, £f]1).

This will change the designated values of Logic 1 to include (or exclude) the
values t and f£.

6.5 Congruences and homomorphisms
To find the congruences of a logic, say

?7- showCong(new) .

This will look through all partitions of the designated and undesignated values
of logic new and test if the partition is a congruence. If it is, it will display
the partition of truth values and the resulting truth tables, with congruent
values colored identically. Each class in the partition is a truth value in the
factor logic; truth values are congruent if they are elements of the same class.
Equivalent truth values “behave the same” on all operators, e.g., if v and u
are equivalent, then —v and —wu are also equivalent. Only “strong” congruences
are found, i.e., congruences that respect the designated values (i.e., designated
values are equivalent to other designated values, and undesignated values to
other undesignated values). (The first congruence found is always the trivial
one: every truth value is only equivalent to itself.)

Once you have a congruence, you can define a new logic as the factor logic of
the old one by

16

?- makeFactor (logic, part, factor).

where logic is the ID of the old logic, part is the set of sets of truth values
that defines the congruence (displayed by showCong) and factor is the ID of
the new logic.

MUTltlog can test if two logics are isomorphic, or if there is a homomorphism
from one to another:

?7- isIso(Iso, logl, log2).
?- isHom(Hom, logl, log2).

will succeed with Iso (Hom) bound to a list of pairs of truth values of logics
logl and log2 which represents an isomorphism (homomorphism), and fail if
no isomorphism exists.

?- showHom (Hom, logl, log2).

will display the homomorphism Hom in a nicer format. To find and show all

homomorhisms between logl and log2, say:

?7- isHom(Hom, logl, log2), showHom(Hom, logl, log2),
fail.

(The fail at the end will automatically find all of them; otherwise you’ll have
to hit space to backtrack after each.)

7 Creating sequent rule files for MUItseq

The sequent prover MUlItseq requires .msq files containing the sequent rules
for a logic. MUltlog can generate such files from logic specification (.1lgc) and
configuration (.cfg) files. Just say

lgc2msq <name>

8 Troubleshooting

8.1 Installation errors
The installation script may produce the following warnings and errors.
o “Error: <directory> does not exist.”

The installation script did not find the directory for executables, library, or
documentation (/usr/local/bin, /usr/local/lib, and /usr/share/doc
or ~/.local/bin, ~/.local/lib, ~./local/doc by default). Create the
directories before running the script or select different directories when
prompted.

17

https://www.logic.at/multseq

— “Error: could not find Unix command <command>.” where <command>
is one of

basename chmod cp dirname false grep mkdir pwd rm
sed true.

The installation script and the scripts for starting MUltlog (1gc2tex,
lgc2dvi, 1gc2pdf, and 1gc2ilc) need these Unix commands. The error
message means that could not be located, neither on the current command
search path nor in the directories /usr/local/bin, /usr/local/sbin,
/usr/bin, /usr/sbin, /bin, or /sbin. Locate the directory containing
<command> and put it on your command search path during installation.

If your Unix system does not have <command> at all, submit an issue on
https://github.com/rzach/multlog/.

“Warning: could not find TeX command <command>.” where <command> is
one of

latex bibtex.

The script 1gc2dvi needs latex and bibtex to produce a DVI-file from the
TeX document created by MUltlog. The warning means that <command>
could not be located, neither on the current command search path nor in
the directories

/usr/local/bin /usr/local/sbin /usr/bin/usr/sbin/bin/sbin‘

Check whether TeX is properly installed and put the directory containing
<command> on your command search path during installation.

“Warning: couldn’t find any PDF converters.”

The script 1gc2pdf needs either pdflatex or latex, dvips and ps2pdf
to produce a PDF-file from the TeX document created by MUltlog. The
warning means that either pdflatex or dvips and ps2pdf could not be
located, neither on the current command search path nor in the directories
/usr/local/bin, /usr/local/sbin, /usr/bin, /usr/sbin, /bin, or /
sbin. Check whether TeX and Ghostscript are properly installed and put
the directory containing the PDF converter on your command search path
during installation.

“Warning: could not find Tcl/Tk command wish.”

The editor ilc needs the Tcl/Tk package, in particular the program wish.
The warning means that wish could not be located, neither on the current
command search path nor in the in the directories /usr/local/bin, /
usr/local/sbin, /usr/bin, /usr/sbin, /bin, or /sbin. Check whether
Tcl/Tk is properly installed and put the directory containing wish on your
command search path during installation.

18

8.2

“Error: <command> does not exist or has no execute permission.”

<command> (suggested by the user as Prolog interpreter) does not exist or
cannot be executed.

“Error: <command> does not behave like Prolog.”

<command> (suggested by the user as Prolog interpreter) exists but fails
the test performed by the installation script. This test is a heuristic check
whether <command> is indeed a Prolog system; more precisely, the output
of

echo 'f(X,not)=f(ger,Y), print(X),print(Y),halt.'
| <command >

is checked for the string “gernot”. If <command> is a Prolog system but
fails this test, or if it is no Prolog system but passes the test, submit an
issue on https://github.com/rzach/multlog/.

Runtime errors
Warnings/errors about stack or heap overflows, like Qut of global stack.

Such messages indicate that the Prolog system needs more space for the
computation than it is currently granted. Check out by which option the
space can be increased with your Prolog system. For SWI-Prolog, the
command-line option --stack-1imit=2g will increase the total stack limit
from 1GB on 64-bit-architectures (512MB on 32-bit-architectures) to 2GB.
There are three ways to tell MUItlog to use this option.

— For a single run: Add the Prolog option as a further argument on the
command line.

lgc2pdf sample --stack-limit=2g

— Permanently during installation: Re-install MUltlog. When the
installation script asks for the Prolog to be used, type e.g., /usr/bin
/swipl --stack-limit=2g.

— Permanently after installation: Add the option --stack-limit=2g
manually, by editing the files

/usr/local/bin/lgc2tex
/usr/local/bin/lgc2dvi
/usr/local/bin/lgc2pdf
/usr/local/lib/multlog/ilc/1gc2ilc

Near their top there is a line starting with PROLOG=. Replace this line,
e.g., by

PROLOG='/usr/bin/swipl --stack-limit=2g'

19

Make sure that the files have still execute permission after saving.

9 About MUltlog

The following people contributed to MUltlog (in alphabetical order):

o Stefan Katzenbeisser and Stefan Kral rewrote the optimization procedure
for operators using more efficient data structures.

e Andreas Leitgeb is the author of iL.C, the interactive Logic Creator.

e Gernot Salzer wrote the MUltlog kernel and coordinated the project.

¢ Richard Zach worked on the contents of the MUltlog paper and added the
tableaux calculus.

20

	Requirements
	Installation
	Obtaining MUltlog
	Running the installation script
	Deinstallation

	Using MUltlog
	Guide for the impatient
	Creating the specification of a logic
	Creating the paper (PDF)
	Creating the paper (LaTeX)
	Creating the paper (DVI)

	Specification of a logic
	The name of the logic (mandatory)
	Truth values (mandatory)
	Designated truth values (mandatory)
	Orderings of truth values (optional)
	Definitions of operators
	Definitions of (distribution) quantifiers
	interactive Logic Creator

	TeX configuration files
	Interactive use
	Loading and saving logics
	Displaying a logic
	Operating with formulas and truth tables
	Operating on logics
	Congruences and homomorphisms

	Creating sequent rule files for MUltseq
	Troubleshooting
	Installation errors
	Runtime errors

	About MUltlog

