
Analytic Proof Systems for Strong Kleene

logic K3

M. Ultlog∗

July 02, 2024

Abstract

We give sequent calculus, analytic tableaux, natural deduction, and
clause translation systems for resolution for Strong Kleene logic K3.

1 Introduction

In this paper we present calculi for Strong Kleene logic K3. K3 has three truth
values f , ∗, t (with t designated), and connectives ¬, ∧, ∨, →. Its syntax and
semantics is detailed in section 2.

We first present a 3-sided sequent calculus in section 3. The fundamental idea
for many-sided sequent calculi for finite-valued logics goes back to Schröter [11],
Rousseau [8], Takahashi [13]. We follow the method given by Baaz, Fermüller,
and Zach [4] and Zach [14] for constructing inference rules. This guarantees
that our system automatically has soundness and completness theorems, cut-
elimination theorem and Maehara lemma (interpolation). For proofs of these
results see [4, 14].

Signed tableau systems for finite-valued logics were proposed by Surma [12]
and Carnielli [6], and generalized by Hähnle [7]. In section 4, we present a signed
tableau system for Strong Kleene logic.

Many-valued natural deduction systems for finite-valued logics have been
investigated by Baaz, Fermüller, and Zach [3] and Zach [14]. We give the in-
troduction and elimination rules for the natural deduction system for K3 in
section 5.

In addition to Hähnle’s work on tableaux-based theorem proving for finite-
valued logic, Baaz and Fermüller [1] have studied resolution calculi for clauses
of signed literals. In order for these calculi to be used to prove that formulas
of Strong Kleene logic are valid or follow from some others, it is necessary to

∗Cite as: Multlog (2024), “Analytic proof systems for Strong Kleene logic K3.”
[PDF generated by MULTLOG, v. 1.16a, https://logic.at/multlog]. Available at
https://logic.at/multlog/kleene.pdf.

See appendices A and B for the specification of Strong Kleene logic.

1

https://logic.at/multlog
https://logic.at/multlog/kleene.pdf

produce sets of signed clauses. In section 6, we present a translation calculus
that yields a set of clauses from a set of formulas.

The rules we provide are optimal in each case, and use the algorithms de-
veloped by Salzer [9, 10].

2 Syntax and semantics

Definition 1. The propositional language L for Strong Kleene logic consists
of

1. propositional variables: x0, x1, x2, . . .

2. propositional connectives, arity given in parenthesis: ¬ (1) , ∧ (2), ∨ (2), and→ (2)

3. auxiliary symbols: “(”, “)” and “,”

Formulas are defined inductively:

1. Every propositional variable is a formula.

2. If A is a formula, so is ¬A.

3. If A and B are formulas, so is (A ∧B).

4. If A and B are formulas, so is (A ∨B).

5. If A and B are formulas, so is (A→B).

As a notational convention, lowercase letters will be used to denote variables,
possibly indexed. Uppercase letters A,B,C, . . . will stand for formulas, greek
letters Γ,∆,Λ, . . . for sequences and sets of formulas. The symbol 2 stands for
general propositional connectives.

Definition 2. The matrix for Strong Kleene logic is given by:

1. the set of truth values V = {f , ∗, t},

2. the set V + = {t} ⊆ V of designated truth values,

3. the truth functions for connectives ¬, ∧, ∨ and →, as given below;

The set of undesignated values is V − = V \ V + = {f , ∗}.

The truth functions for connectives ¬, ∧, ∨ and → are defined by

¬̃
f t
∗ ∗
t f

∧̃ f ∗ t
f f f f
∗ f ∗ ∗
t f ∗ t

∨̃ f ∗ t
f f ∗ t
∗ ∗ ∗ t
t t t t

→̃ f ∗ t
f t t t
∗ ∗ ∗ t
t f ∗ t

Definition 3. Let A be a formula and x0, x1, . . . , xk the variables occurring
in A. Then an interpretation I of A is an assignment of truth values to the
variables.

2

Definition 4. Given an interpretation I, we define the valuation valI for for-
mulas A to truth values as follows:

1. If A is atomic, then valI(A) simply is the interpretation of A.

2. If A = 2(A1, . . . , An), where A1, . . . , An are formulas, and 2̃ is the asso-

ciated truth function to 2, then valI(A) = 2̃
(
valI(A1), . . . , valI(An)

)
.

Definition 5. An interpretation I satisfies a formula A, in symbols: I |= A,
iff valI(A) ∈ V +.

Definition 6. ∆ entails A iff I |= A for every interpretation I such that I |= B
for all B ∈ ∆. A is a tautology iff it is satisfied by every interpretation I.

3 Sequent calculus for Strong Kleene logic

Definition 7 (Syntax of Sequents). A sequent Γ is a triple

Γf | Γ∗ | Γt

of finite sequences Γv of formulas, where v ∈ V . The Γv are called the compo-
nents of Γ.

For a sequence of formulas ∆, and W ⊆ V , let [W : ∆] denote the sequent
whose component Γv is ∆ if v ∈ W and empty otherwise. For [{w1, . . . , wk}: ∆]
we also write [w1, . . . , wk: ∆]. If Γ and Γ′ are sequents, then Γ,Γ′ denotes the
component-wise union, i.e., the v-component of Γ,Γ′ is Γv,Γ

′
v.

Definition 8. Let I be an interpretation. I satisfies a sequent Γ iff there is a
v ∈ V so that for some formula A ∈ Γv, valI(F) = v. I is called a model of Γ,
in symbols I |= Γ.

Γ is called satisfiable iff there is an interpretation I so that I |= Γ and valid
iff for every interpretation I, I |= Γ.

Proposition 9. ∆ |= A iff the sequent [f , ∗: ∆], [t :A] is valid.

Definition 10. The sequent calculus for Strong Kleene logic is given by:

1. axiom schemas of the form [V :A],

2. weakening rules for every truth value v:

Γ
Γ, [v:A]

w:v

3. exchange rules for every truth value v:

Γ, [v:A,B],∆

Γ, [v:B,A],∆
x:v

3

4. contraction rules for every truth value v:

Γ, [v:A,A]

Γ, [v:A]
c:v

5. cut rules for every two truth values v ̸= w:

Γ, [v:A] ∆, [w:A]

Γ,∆
cut:vw

6. an introduction rule 2: v for every connective 2 and every truth value v,
as specified below.

(2)–(5) are called structural rules. (6) are called logical rules.

The introduction rules for connective ¬ are given by

Γ, [t :A]

Γ, [f :¬A]
¬:f

Γ, [∗:A]

Γ, [∗:¬A]
¬:∗

Γ, [f :A]

Γ, [t :¬A]
¬:t

The introduction rules for connective ∧ are given by

Γ, [f :A,B]

Γ, [f :A ∧B]
∧:f

Γ, [∗, t :B] Γ, [∗:A,B] Γ, [∗, t :A]

Γ, [∗:A ∧B]
∧:∗

Γ, [t :B] Γ, [t :A]

Γ, [t :A ∧B]
∧:t

The introduction rules for connective ∨ are given by

Γ, [f :B] Γ, [f :A]

Γ, [f :A ∨B]
∨:f

Γ, [f , ∗:B] Γ, [∗:A,B] Γ, [f , ∗:A]

Γ, [∗:A ∨B]
∨:∗

Γ, [t :A,B]

Γ, [t :A ∨B]
∨:t

The introduction rules for connective → are given by

Γ, [f :B] Γ, [t :A]

Γ, [f :A→B]
→:f

Γ, [f , ∗:B] Γ, [∗:A,B] Γ, [∗, t :A]

Γ, [∗:A→B]
→:∗

Γ, [f :A], [t :B]

Γ, [t :A→B]
→:t

Definition 11. An upward tree of sequents is called a proof in the sequent
calculus iff every leaf is an axiom, and all other sequents in it are obtained
from the ones standing immediately above it by applying one of the rules. The
sequent at the root of P is called its end-sequent. A sequent Γ is called provable
iff it is the end-sequent of some proof.

4

Theorem 12 (Soundness and Completeness). A sequent is provable if and only
if it is valid.

Proof. See Theorems 3.1 and 3.2 of Baaz et al. [4] or Theorems 3.3.8 and 3.3.10
of Zach [14].

Corollary 13. In Strong Kleene logic, |= A iff [t :A] has a sequent proof, and
∆ |= A iff [f , ∗: ∆], [t :A] has a proof.

Theorem 14 (Cut-elimination). The cut rule is eliminable in the sequent cal-
culus for Strong Kleene logic.

Proof. See Theorem 4.1 of Baaz et al. [4] or Theorem 3.5.3 of Zach [14].

Theorem 15 (Maehara lemma). The Maehara lemma holds for the sequent
calculus for Strong Kleene logic.

Proof. See Theorem 3.8.1 of Zach [14].

4 Tableaux for Strong Kleene logic

Although the method of Surma [12] and Carnielli [6] for obtaining signed an-
alytic tableaux systems applies to Strong Kleene logic, it has a drawback. As
Hähnle [7] pointed out, to show that a formula is valid, it is required to provide
as many closed tableaux as there are non-designated values. This is usually not
desirable; the generalized approach by Hähnle [7] solves this problem. Below
we give a tableau system for Strong Kleene logic using the sets of signs V \ {v},
i.e., the tableau system exactly dual to that of Carnielli (in the sense of [2]).

Definition 16. A signed formula is an expression of the form v:A where v ∈ V
and A is a formula.

Definition 17. A tableau for a set of signed formulas ∆ is a downward rooted
tree of signed formulas where each one is either an element of ∆ or results from
a signed formula in the branch above it by a branch expansion rule. A tableau is
closed if every branch contains, for some formula A, the signed formulas v:A for
all v ∈ V , or a signed formula v:A with a branch expansion rule that explicitly
closes the branch (⊗).

The branch expansion rules for connective ¬ are given by

f :¬A
t :A

∗:¬A
∗:A

t :¬A
f :A

The branch expansion rules for connective ∧ are given by

f :A ∧B
f :A
f :B

∗:A ∧B
∗:B
t :B

∗:A
∗:B

∗:A
t :A

t :A ∧B
t :B t :A

5

The branch expansion rules for connective ∨ are given by

f :A ∨B
f :B f :A

∗:A ∨B
f :B
∗:B

∗:A
∗:B

f :A
∗:A

t :A ∨B
t :A
t :B

The branch expansion rules for connective → are given by

f :A→B
f :B t :A

∗:A→B
f :B
∗:B

∗:A
∗:B

∗:A
t :A

t :A→B
f :A
t :B

Definition 18. An interpretation I satisfies a signed formula v:A iff valI(A) ̸=
v. A set of signed formulas is satisfiable if some interpretation I satisfies all
signed formulas in it.

Theorem 19. A set of signed formulas is unsatisfiable iff it has a closed tableau.

Proof. Apply Theorems 4.14 and 4.21 of Hähnle [7]; interpreting v:A as S A
where S = V \ {v}.

Corollary 20. In Strong Kleene logic, |= A iff {v:A | v ∈ V +} has a closed
tableau. ∆ |= A iff {v:B | v ∈ V −, B ∈ ∆} ∪ {v:A | v ∈ V +} has a closed
tableau.

5 Natural deduction for Strong Kleene logic

Let Γ be a (set) sequent, V + ⊆ V the set of designated truth values. The set
of non-designated truth values is then V − = V \ V +. We divide the sequent Γ
into its designated part Γ+ and its non-designated part Γ− in the obvious way:

Γ+ := ⟨Γv | v ∈ V +⟩
Γ− := ⟨Γv | v ∈ V −⟩

Definition 21. The natural deduction rules for Strong Kleene logic are given
by:

1. A weakening rule for all v ∈ V +:

Γ+

Γ+, [v:A]
w:v

2. For every connective 2 and every truth value v an introduction rule 2i:v
(if v ∈ V +) or an elimination rule 2e:v (if v ∈ V −).

The introduction and elimination rules for connective ¬ are given by

6

Γ−
0 , ⌈[∗:¬A]⌉
Γ+
0 , [t :¬A]

Γ−
1

Γ+
1 , [t :A]

Γ+
0 ,Γ

+
1

¬e: f

Γ−
0 , ⌈[f :¬A]⌉
Γ+
0 , [t :¬A]

Γ−
1 , ⌈[∗:A]⌉

Γ+
1

Γ+
0 ,Γ

+
1

¬e: ∗

Γ−
1 , ⌈[f :A]⌉

Γ+
1

Γ+
1 , [t :¬A]

¬i: t

The introduction and elimination rules for connective ∧ are given by

Γ−
0 , ⌈[∗:A ∧B]⌉
Γ+
0 , [t :A ∧B]

Γ−
1 , ⌈[f :A,B]⌉

Γ+
1

Γ+
0 ,Γ

+
1

∧e: f

Γ−
0 , ⌈[f :A ∧B]⌉
Γ+
0 , [t :A ∧B]

Γ−
1 , ⌈[∗:B]⌉
Γ+
1 , [t :B]

Γ−
2 , ⌈[∗:A,B]⌉

Γ+
2

Γ−
3 , ⌈[∗:A]⌉
Γ+
3 , [t :A]

Γ+
0 , . . . ,Γ

+
3

∧e: ∗

Γ−
1

Γ+
1 , [t :B]

Γ−
2

Γ+
2 , [t :A]

Γ+
1 ,Γ

+
2 , [t :A ∧B]

∧i: t

The introduction and elimination rules for connective ∨ are given by

Γ−
0 , ⌈[∗:A ∨B]⌉
Γ+
0 , [t :A ∨B]

Γ−
1 , ⌈[f :B]⌉

Γ+
1

Γ−
2 , ⌈[f :A]⌉

Γ+
2

Γ+
0 ,Γ

+
1 ,Γ

+
2

∨e: f

Γ−
0 , ⌈[f :A ∨B]⌉
Γ+
0 , [t :A ∨B]

Γ−
1 , ⌈[f , ∗:B]⌉

Γ+
1

Γ−
2 , ⌈[∗:A,B]⌉

Γ+
2

Γ−
3 , ⌈[f , ∗:A]⌉

Γ+
3

Γ+
0 , . . . ,Γ

+
3

∨e: ∗

Γ−
1

Γ+
1 , [t :A,B]

Γ+
1 , [t :A ∨B]

∨i: t

The introduction and elimination rules for connective → are given by

Γ−
0 , ⌈[∗:A→B]⌉
Γ+
0 , [t :A→B]

Γ−
1 , ⌈[f :B]⌉

Γ+
1

Γ−
2

Γ+
2 , [t :A]

Γ+
0 ,Γ

+
1 ,Γ

+
2

→e: f

Γ−
0 , ⌈[f :A→B]⌉
Γ+
0 , [t :A→B]

Γ−
1 , ⌈[f , ∗:B]⌉

Γ+
1

Γ−
2 , ⌈[∗:A,B]⌉

Γ+
2

Γ−
3 , ⌈[∗:A]⌉
Γ+
3 , [t :A]

Γ+
0 , . . . ,Γ

+
3

→e: ∗

7

Γ−
1 , ⌈[f :A]⌉
Γ+
1 , [t :B]

Γ+
1 , [t :A→B]

→i: t

Definition 22. A natural deduction derivation is defined inductively as follows:

1. Let A be any formula. Then

[V −:A]

[V +:A]

is a derivation of A from the assumption [V −:A] (an initial derivation).

2. If Dk are derivations of Γ+
k ,∆

+
k from the assumptions Γ−

k , ∆̂
−
k , and〈

Γ−
k , ⌈∆

−
k ⌉

Γ+
k ,∆

+
k

〉
k∈K

Π+

is an instance of a deduction rule with ∆̂−
k a subsequent of ∆−

k , and all
eigenvariable conditions are satisfied, then

⟨Dk⟩k∈K

Π+

is a derivation of Π+ from the assumptions
⋃

k∈K Γ−
k . The formulas in ∆̂−

k

which do not occur in
⋃

k∈K Γ−
k are said to be discharged at this inference.

Theorem 23. A partial sequent Γ+ can be derived from the assumptions Γ−

in the natural deduction system for Strong Kleene logic iff, for every interpreta-
tion I, either some formula in Γ−

v (v ∈ V −) evaluates to the truth value v, or
there is a w ∈ V + and a formula in Γ+

w that evaluates to w.

Proof. See Theorems 4.7 and 5.4 of Baaz et al. [3] or Theorems 4.2.8 and 4.3.4
of Zach [14].

Corollary 24. Γ |= A iff there is a natural deduction derivation of [V +:A]
from [V −: Γ].

6 Resolution and clause formation rules for Strong
Kleene logic

The many-valued resolution calculus of Baaz and Fermüller [1] applies to Strong
Kleene logic. We present the framework here, as well as a language preserving
clause translation system for Strong Kleene logic.

Definition 25 (Signed formula). A signed formula is an expression of the form
Av, where A is a formula and v ∈ V . If A is a propositonal variable, Av is a
signed atom.

8

Definition 26 (Signed clause). A (signed) clause C = {Av1
1 , . . . , Avn

n } is a finite
set of signed atoms (proper clause). The empty clause is denoted by 2.

An extended clause is a finite set of signed formulas.

Definition 27 (Semantics of clause sets). Let I be an interpretation. I satisfies
a clause C iff there is some signed formula Av ∈ C, so that valI(A) = v.
I satisfies a clause set C iff it satisfies every clause in C . C is called satisfiable
iff some structure satisfies it, and unsatisfiable otherwise.

The clause formation rules for connective ¬ are given by

C ∪ {C ∪ {(¬A)f }}
C ∪ {C ∪ {At}}

¬:f
C ∪ {C ∪ {(¬A)∗}}

C ∪ {C ∪ {A∗}}
¬:∗

C ∪ {C ∪ {(¬A)t}}
C ∪ {C ∪ {Af }}

¬:t

The clause formation rules for connective ∧ are given by

C ∪ {C ∪ {(A ∧B)f }}
C ∪ {C ∪ {Af , Bf }}

∧:f

C ∪ {C ∪ {(A ∧B)∗}}
C ∪ {C ∪ {B∗, Bt}, C ∪ {A∗, B∗}, C ∪ {A∗, At}}

∧:∗

C ∪ {C ∪ {(A ∧B)t}}
C ∪ {C ∪ {Bt}, C ∪ {At}}

∧:t

The clause formation rules for connective ∨ are given by

C ∪ {C ∪ {(A ∨B)f }}
C ∪ {C ∪ {Bf }, C ∪ {Af }}

∨:f

C ∪ {C ∪ {(A ∨B)∗}}
C ∪ {C ∪ {Bf , B∗}, C ∪ {A∗, B∗}, C ∪ {Af , A∗}}

∨:∗

C ∪ {C ∪ {(A ∨B)t}}
C ∪ {C ∪ {At , Bt}}

∨:t

The clause formation rules for connective → are given by

C ∪ {C ∪ {(A→B)f }}
C ∪ {C ∪ {Bf }, C ∪ {At}}

→:f

C ∪ {C ∪ {(A→B)∗}}
C ∪ {C ∪ {Bf , B∗}, C ∪ {A∗, B∗}, C ∪ {A∗, At}}

→:∗

C ∪ {C ∪ {(A→B)t}}
C ∪ {C ∪ {Af , Bt}}

→:t

9

Theorem 28. Let T (C) be the result of exhaustively applying the translation
rules to a clause set C . Then T (C) is a set of proper clauses, i.e., T (C)
contains only signed atoms (all connectives are eliminated). Furthermore, T (C)
is satisfiable iff C is.

Proposition 29. Let A be a sentence and ∆ be a set of sentences. Then

1. |= A iff {{Av | v ∈ V −}} is unsatisfiable.

2. ∆ |= A iff

{{Bw | w ∈ V +} | B ∈ ∆} ∪ {{Av | v ∈ V −}}

is unsatisfiable.

Definition 30. A clause R is a resolvent of clauses C1, C2 if R = (C1\{Av1})∪
(C2 \ {Av2}) where v1 ̸= v2

Definition 31. A resolution refutation of a clause set C is a sequence of clauses
C1, . . . , Cn so that for every i, Ci ∈ C or Ci is a resolvent of Cj , Ck with j, k < i,
and Cn = ∅.

Theorem 32. A clause set C is unsatisfiable iff it has a resolution refutation.

Proof. See Theorems 3.14 and 3.19 of Baaz and Fermüller [1] or Theorems 2.5.5
and 2.5.8 of Zach [14].

Corollary 33. ∆ |= A iff

T ({{Bw | w ∈ V +} | B ∈ ∆} ∪ {{Av | v ∈ V −}})

has a resolution refutation.

References

[1] Matthias Baaz and Christian G. Fermüller. Resolution-based theorem prov-
ing for many-valued logics. Journal of Symbolic Computation, 19(4):353–
391, 1995. DOI 10.1006/jsco.1995.1021.

[2] Matthias Baaz, Christian G. Fermüller, and Richard Zach. Dual systems
of sequents and tableaux for many-valued logics. Bulletin of the EATCS,
51:192–197, 1993. DOI 10.11575/PRISM/38908.

[3] Matthias Baaz, Christian G. Fermüller, and Richard Zach. Systematic con-
struction of natural deduction systems for many-valued logics. In 23rd In-
ternational Symposium on Multiple-Valued Logic. Proceedings, pages 208–
213. IEEE Press, 1993. DOI 10.1109/ISMVL.1993.289558.

[4] Matthias Baaz, Christian G. Fermüller, and Richard Zach. Elimination of
cuts in first-order finite-valued logics. Journal of Information Processing
and Cybernetics EIK, 29(6):333–355, 1993. DOI 10.11575/PRISM/38801.

10

https://doi.org/10.1006/jsco.1995.1021
https://doi.org/10.11575/PRISM/38908
https://doi.org/10.1109/ISMVL.1993.289558
https://doi.org/10.11575/PRISM/38801

[5] Matthias Baaz, Christian G. Fermüller, Gernot Salzer, and Richard Zach.
Labeled calculi and finite-valued logics. Studia Logica, 61(1):7–33, 1998.
DOI 10.1023/A:1005022012721.

[6] Walter A. Carnielli. Systematization of finite many-valued logics through
the method of tableaux. The Journal of Symbolic Logic, 52(2):473–493,
1987. DOI 10.2307/2274395.

[7] Reiner Hähnle. Automated Deduction in Multiple-Valued Logics. Oxford
University Press, 1993.

[8] George Rousseau. Sequents in many valued logic I. Fundamenta Mathe-
maticae, 60:23–33, 1967. URL http://matwbn.icm.edu.pl/ksiazki/fm/

fm60/fm6012.pdf.

[9] Gernot Salzer. MUltlog: An expert system for multiple-valued logics. In
Collegium Logicum, pages 50–55. Springer, 1996. DOI 10.1007/978-3-7091-
9461-4 3.

[10] Gernot Salzer. Optimal axiomatizations of finitely valued log-
ics. Information and Computation, 162(1–2):185–205, 2000. DOI
10.1006/inco.1999.2862.

[11] Karl Schröter. Methoden zur Axiomatisierung beliebiger Aussagen- und
Prädikatenkalküle. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik, 1(4):241–251, 1955. DOI 10.1002/malq.19550010402.

[12] Stanislaw J. Surma. An algorithm for axiomatizing every finite logic. In
David C. Rine, editor, Computer Science and Multiple-Valued Logic: The-
ory and Applications, pages 137–143. North-Holland, 1977.

[13] Moto-o Takahashi. Many-valued logics of extended Gentzen style I. Science
Reports of the Tokyo Kyoiku Daigaku, Section A, 9(231):271–292, 1968.
URL https://www.jstor.org/stable/43699119.

[14] Richard Zach. Proof theory of finite-valued logics. Diplomarbeit, Technis-
che Universität Wien, 1993. DOI 10.11575/PRISM/38803.

A kleene.lgc – specification of Strong Kleene logic

logic "Strong Kleene ".

truth_values {f,*,t}.

designated_truth_values {t}.

ordering(linear , "f < * < t").

operator(neg /1, mapping { (t): f,

(*): *,

(f): t

}

).

11

https://doi.org/10.1023/A:1005022012721
https://doi.org/10.2307/2274395
http://matwbn.icm.edu.pl/ksiazki/fm/fm60/fm6012.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm60/fm6012.pdf
https://doi.org/10.1007/978-3-7091-9461-4_3
https://doi.org/10.1007/978-3-7091-9461-4_3
https://doi.org/10.1006/inco.1999.2862
https://doi.org/10.1002/malq.19550010402
https://www.jstor.org/stable/43699119
https://doi.org/10.11575/PRISM/38803

operator(and /2, mapping { (t,t): t,

(t,*): *,

(t,f): f,

(*,t): *,

(*,*): *,

(*,f): f,

(f,t): f,

(f,*): f,

(f,f): f

}

).

operator(or /2, mapping { (t,t): t,

(t,*): t,

(t,f): t,

(*,t): t,

(*,*): *,

(*,f): *,

(f,t): t,

(f,*): *,

(f,f): f

}

).

operator(imp /2, mapping { (t,t): t,

(t,*): *,

(t,f): f,

(*,t): t,

(*,*): *,

(*,f): *,

(f,t): t,

(f,*): t,

(f,f): t

}

).

B kleene.cfg – LATEX translations

texName(and , \\land).

texName(or, \\lor).

texName(neg , \\lnot).

texName(imp , \\to).

texInfix(and).

texInfix(or).

texInfix(imp).

texPrefix(neg).

texExtra (" ShortName", "\\ mathbf{K}_3").

texExtra ("Link", "https :// logic.at/multlog/kleene.pdf").

12

	Introduction
	Syntax and semantics
	Sequent calculus for Strong Kleene logic
	Tableaux for Strong Kleene logic
	Natural deduction for Strong Kleene logic
	Resolution and clause formation rules for Strong Kleene logic
	kleene.lgc – specification of Strong Kleene logic
	kleene.cfg – LaTeX translations

