
Analytic Proof Systems for Classical logic

M. Ultlog∗

July 02, 2024

Abstract

We give sequent calculus, analytic tableaux, natural deduction, and
clause translation systems for resolution for classical logic.

1 Introduction

In this paper we present calculi for classical logic. Classical logic has two truth
values f , t (with t designated), connectives ¬, ∧, ∨, →, ↔, |, ↓, ⊕, ↛, ite, and
quantifiers ∀, ∃, C. Its syntax and semantics is detailed in section 2.

The sequent calculus and natural deduction systems for the Sheffer stroke
(nand) and Peirce’s arrow (nor) was investigated in [16] (see also [8]); the gener-
ated natural deduction system is a classical multi-conclusion system with general
elimination rules. For the other additional connectives and a proof of normal-
ization for the resulting natural deduction system, see [17].

We first present a 2-sided sequent calculus in section 3. The fundamental idea
for many-sided sequent calculi for finite-valued logics goes back to Schröter [12],
Rousseau [9], Takahashi [14]. We follow the method given by Baaz, Fermüller,
and Zach [4] and Zach [15] for constructing inference rules. This guarantees
that our system automatically has soundness and completness theorems, cut-
elimination theorem, mid-sequent theorem, and Maehara lemma (interpolation).
For proofs of these results see [4, 15].

Signed tableau systems for finite-valued logics were proposed by Surma [13]
and Carnielli [6], and generalized by Hähnle [7]. In section 4, we present a signed
tableau system for classical logic.

Many-valued natural deduction systems for finite-valued logics have been
investigated by Baaz, Fermüller, and Zach [3] and Zach [15]. We give the in-
troduction and elimination rules for the natural deduction system for classical
logic in section 5.

∗Cite as: Multlog (2024), “Analytic proof systems for classical logic.” [PDF
generated by MULTLOG, v. 1.16a, https://logic.at/multlog]. Available at
https://logic.at/multlog/classical.pdf.

See appendices A and B for the specification of classical logic.

1

https://logic.at/multlog
https://logic.at/multlog/classical.pdf

In addition to Hähnle’s work on tableaux-based theorem proving for finite-
valued logic, Baaz and Fermüller [1] have studied resolution calculi for clauses
of signed literals. In order for these calculi to be used to prove that formulas
of classical logic are tautologies or follow from some others, it is necessary to
produce sets of signed clauses. In section 6, we present a translation calculus
that yields a set of clauses from a set of formulas.

The rules we provide are optimal in each case, and use the algorithms de-
veloped by Salzer [10, 11].

2 Syntax and semantics

Definition 1. The first order language L for classical logic consists of

1. free variables: a0, a1, a2, . . .

2. bound variables: x0, x1, x2, . . .

3. function symbols of arity i (i ∈ N), including constants: f i
0, f

i
1, f

i
2, . . .

4. predicate constants of arity i (i ∈ N): P i
0, P

i
1, P

i
2, . . .

5. propositional connectives, arity given in parenthesis: ¬ (1) , ∧ (2), ∨ (2),
→ (2), ↔ (2), | (2), ↓ (2), ⊕ (2), ↛ (2) and ite (3)

6. quantifiers: ∀ , ∃ and C

7. auxiliary symbols: “(”, “)” and “,”

Terms are defined inductively: Every individual constant and free variable
is a term. If fn is a function symbol of arity n, and t1, . . . , tn are terms,
then fn(t1, . . . , tn) is a term.

Formulas are also defined inductively:

1. If Pn is a predicate symbol of arity n, and t1, . . . , tn are terms, then
Pn(t1, . . . , tn) is a formula. It is called atomic or an atom.

2. If A is a formula, so is ¬A.

3. If A and B are formulas, so is (A ∧B).

4. If A and B are formulas, so is (A ∨B).

5. If A and B are formulas, so is (A→B).

6. If A and B are formulas, so is (A↔B).

7. If A and B are formulas, so is (A |B).

8. If A and B are formulas, so is (A ↓B).

9. If A and B are formulas, so is (A⊕B).

2

10. If A and B are formulas, so is (A↛B).

11. If A1, . . . , A3 are formulas, so is ite(A,B,C).

12. If A is a formula not containing the bound variable x, a is a free variable
and Q is a quantifier, then (Qx)A(x), where A(x) is obtained from A by
replacing a by x at every occurrence of a in A, is a formula.

A formula is called open, if it contains free variables, and closed otherwise. A
formula without quantifiers is called quantifier-free.

As a notational convention, lowercase letters from the beginning of the al-
phabet (a, b, c, . . .) will be used to denote free variables, f, g, h, . . . for function
symbols and constants, x, y, z, . . . for bound variables, all possibly indexed. Up-
percase letters A,B,C, . . . will stand for formulas, greek letters Γ,∆,Λ, . . . for
sequences and sets of formulas, t and s for terms. The symbols 2 and Q stand
for general propositional connectives and quantifiers, respectively.

Definition 2. We will use α as a variable for free variables (eigenvariable) and
τ as a variable for terms (term variable). A formula consisting of some formula
variables, eigenvariables and term variables is called a schema.

A pre-instance A′ of a schema A is an actual formula from the formulas of
L which contains occurrences of the eigenvariables and term variables of A.

An instance A′′ of A is a pre-instance A′ of A, where the eigenvariables and
term variables have been replaced by free variables and terms not occurring in
A′.

The connectives ⊕, |, ↓, and ↚ are exclusive or, Sheffer stroke (nand),
Peirce arrow (nor), and exclusion, respectively. The 3-place ite connective is
“if—then—else”. C is the contingency quantifier: (Cx)A(x) is true if A(x) takes
both values true and false, and is false otherwise.

Definition 3. The matrix for classical logic is given by:

1. the set of truth values V = {f , t},

2. the set V + = {t} ⊆ V of designated truth values,

3. the truth functions for connectives ¬, ∧, ∨, →, ↔, |, ↓, ⊕, ↛ and ite, as
given below;

4. the truth functions for quantifiers ∀, ∃ and C, as given below.

The set of undesignated values is V − = V \ V + = {f}.

The truth functions for connectives ¬, ∧, ∨, →, ↔, |, ↓, ⊕, ↛ and ite are
defined by

¬̃
f t
t f

∧̃ f t
f f f
t f t

∨̃ f t
f f t
t t t

→̃ f t
f t t
t f t

↔̃ f t
f t f
t f t

3

|̃ f t
f t t
t t f

↓̃ f t
f t f
t f f

⊕̃ f t
f f t
t t f

↛̃ f t
f f f
t t f

ĩte
(f , f , f) f
(f , f , t) t
(f , t, f) f
(f , t, t) t
(t, f , f) f
(t, f , t) f
(t, t, f) t
(t, t, t) t

The truth functions for quantifiers ∀, ∃ and C are defined by

∀̃
{f , t} f
{f} f
{t} t

∃̃
{f , t} t
{f} f
{t} t

C̃
{f , t} t
{f} f
{t} f

Definition 4. A structure M = ⟨D,ΦM ⟩ for a language L (an L -structure)
consists of the following:

1. A nonempty set D, called the domain (elements of D are called individu-
als).

2. A mapping ΦM satisfying the following:

(a) Each free variable of L is mapped to an element of D.

(b) Each n-ary function symbol f of L is mapped to a function fM :
Dn → D, or to an element of D if n = 0. Additionally, ΦM maps
elements of D to themselves.

(c) Each n-ary predicate symbol P of L is mapped to a function PM :Dn →
V , or to a element of V if n = 0.

Definition 5. Let M be an L -structure. An assignment s is a mapping from
the free variables of L to individuals.

An interpretation I = ⟨M , s⟩ is an L -structure M = ⟨D,ΦM ⟩ together
with an assignment s. The mapping ΦM can be extended in the obvious way
to a mapping ΦI from terms to individuals:

1. If t is a free variable, then ΦI: = s(t).

2. If t is of the form f(t1, . . . , tk), where f is a k-ary function symbol and
t1, . . . , tk are terms, then ΦI := fM

(
ΦI(t1), . . . ,ΦI(tk)

)
.

Definition 6. Given an interpretation I = ⟨M , s⟩, we define the valuation valI
for formulas A to truth values as follows:

1. If A is atomic, A = P (t1, . . . , tn), where P is an n-ary predicate symbol
and t1, . . . , tn are terms, then let valI(A) = PM

(
ΦI(t1), . . . ,ΦI(tn)

)
.

4

2. If A = 2(A1, . . . , An), where A1, . . . , An are formulas, and 2̃ is the asso-

ciated truth function to 2, then valI(A) = 2̃
(
valI(A1), . . . , valI(An)

)
.

3. If A = (Qx)(B(x)), and Q̃ is the associated truth function to Q, then

valI(A) = Q̃
{
valI(B(d))|d ∈ D}

)
.

Definition 7. An interpretation I satisfies a formula A, in symbols: I |= A,
iff valI(A) ∈ V +.

Definition 8. ∆ entails A iff I |= A for every interpretation I such that I |= B
for all B ∈ ∆. A is valid iff it is satisfied by every interpretation I.

3 Sequent calculus for classical logic

Definition 9 (Syntax of Sequents). A sequent Γ is an ordered pair

Γf ⇒ Γt

of finite sequences Γv of formulas, where v ∈ V . The Γv are called the compo-
nents of Γ.

For a sequence of formulas ∆, and W ⊆ V , let [W : ∆] denote the sequent
whose component Γv is ∆ if v ∈ W and empty otherwise. For [{w1, . . . , wk}: ∆]
we also write [w1, . . . , wk: ∆]. If Γ and Γ′ are sequents, then Γ,Γ′ denotes the
component-wise union, i.e., the v-component of Γ,Γ′ is Γv,Γ

′
v.

Definition 10. Let I be an interpretation. I satisfies a sequent Γ iff there is a
v ∈ V so that for some formula A ∈ Γv, valI(F) = v. I is called a model of Γ,
in symbols I |= Γ.

Γ is called satisfiable iff there is an interpretation I so that I |= Γ and valid
iff for every interpretation I, I |= Γ.

Proposition 11. ∆ |= A iff the sequent ∆ ⇒ A is valid.

Definition 12. The sequent calculus for classical logic is given by:

1. axiom schemas of the form A ⇒ A,

2. weakening rules for every truth value v:

Γ
Γ, [v:A]

w:v

3. exchange rules for every truth value v:

Γ, [v:A,B],∆

Γ, [v:B,A],∆
x:v

4. contraction rules for every truth value v:

Γ, [v:A,A]

Γ, [v:A]
c:v

5

5. cut rules for every two truth values v ̸= w:

Γ, [v:A] ∆, [w:A]

Γ,∆
cut:vw

6. an introduction rule 2: v for every connective 2 and every truth value v,
as specified below,

7. an introduction rule Q: v for every quantifier Q and every truth value
v, as specified below, where the free variables α occurring in the upper
sequents satisfy the so-called eigenvariable condition: No α occurs in the
lower sequent.

(2)–(5) are called structural rules. (6) and (7) are called logical rules.

The introduction rules for connective ¬ are given by

Γf ⇒ Γt, A

Γf ,¬A ⇒ Γt
¬:f

Γf , A ⇒ Γt

Γf ⇒ Γt,¬A
¬:t

The introduction rules for connective ∧ are given by

Γf , A,B ⇒ Γt

Γf , A ∧B ⇒ Γt
∧:f

Γf ⇒ Γt, B Γf ⇒ Γt, A

Γf ⇒ Γt, A ∧B
∧:t

The introduction rules for connective ∨ are given by

Γf , B ⇒ Γt Γf , A ⇒ Γt

Γf , A ∨B ⇒ Γt
∨:f

Γf ⇒ Γt, A,B

Γf ⇒ Γt, A ∨B
∨:t

The introduction rules for connective → are given by

Γf , B ⇒ Γt Γf ⇒ Γt, A

Γf , A→B ⇒ Γt
→:f

Γf , A ⇒ Γt, B

Γf ⇒ Γt, A→B
→:t

The introduction rules for connective ↔ are given by

Γf , A,B ⇒ Γt Γf ⇒ Γt, A,B

Γf , A↔B ⇒ Γt
↔:f

Γf , A ⇒ Γt, B Γf , B ⇒ Γt, A

Γf ⇒ Γt, A↔B
↔:t

The introduction rules for connective | are given by

Γf ⇒ Γt, B Γf ⇒ Γt, A

Γf , A |B ⇒ Γt
|:f

Γf , A,B ⇒ Γt

Γf ⇒ Γt, A |B
|:t

The introduction rules for connective ↓ are given by

Γf ⇒ Γt, A,B

Γf , A ↓B ⇒ Γt
↓:f

Γf , B ⇒ Γt Γf , A ⇒ Γt

Γf ⇒ Γt, A ↓B ↓:t

The introduction rules for connective ⊕ are given by

Γf , A ⇒ Γt, B Γf , B ⇒ Γt, A

Γf , A⊕B ⇒ Γt
⊕:f

Γf , A,B ⇒ Γt Γf ⇒ Γt, A,B

Γf ⇒ Γt, A⊕B
⊕:t

6

The introduction rules for connective ↛ are given by

Γf , A ⇒ Γt, B

Γf , A↛B ⇒ Γt
↛:f

Γf , B ⇒ Γt Γf ⇒ Γt, A

Γf ⇒ Γt, A↛B
↛:t

The introduction rules for connective ite are given by

Γf , A,B ⇒ Γt Γf , C ⇒ Γt, A

Γf , ite(A,B,C) ⇒ Γt
ite:f

Γf , A ⇒ Γt, B Γf ⇒ Γt, A,C

Γf ⇒ Γt, ite(A,B,C)
ite:t

The introduction rules for quantifier ∀ are given by

Γf , A(τ) ⇒ Γt

Γf , (∀x)A(x) ⇒ Γt
∀:f

Γf ⇒ Γt, A(α)

Γf ⇒ Γt, (∀x)A(x)
∀:t

The introduction rules for quantifier ∃ are given by

Γf , A(α) ⇒ Γt

Γf , (∃x)A(x) ⇒ Γt
∃:f

Γf ⇒ Γt, A(τ)

Γf ⇒ Γt, (∃x)A(x)
∃:t

The introduction rules for quantifier C are given by

Γf , A(α2) ⇒ Γt, A(α1)

Γf , (Cx)A(x) ⇒ Γt
C:f

Γf , A(τ1) ⇒ Γt Γf ⇒ Γt, A(τ2)

Γf ⇒ Γt, (Cx)A(x)
C:t

Definition 13. An upward tree of sequents is called a proof in the sequent
calculus iff every leaf is an instance of an axiom, and all other sequents in it are
obtained from the ones standing immediately above it by applying one of the
rules. The sequent at the root of P is called its end-sequent. A sequent Γ is
called provable iff it is the end-sequent of some proof.

Theorem 14 (Soundness and Completeness). A sequent is provable if and only
if it is valid.

Proof. See Theorems 3.1 and 3.2 of Baaz et al. [4] or Theorems 3.3.8 and 3.3.10
of Zach [15].

Corollary 15. In classical logic, |= A iff ⇒ A has a sequent proof, and ∆ |= A
iff ∆ ⇒ A has a proof.

Theorem 16 (Cut-elimination). The cut rule is eliminable in the sequent cal-
culus for classical logic.

Proof. See Theorem 4.1 of Baaz et al. [4] or Theorem 3.5.3 of Zach [15].

Theorem 17 (Midsequent theorem). The midsequent theorem holds in the se-
quent calculus for classical logic.

Proof. See Theorem 6.1 of Baaz et al. [4] or Theorem 3.7.2 of Zach [15].

Theorem 18 (Maehara lemma). The Maehara lemma holds for the sequent
calculus for classical logic.

Proof. See Theorem 3.8.1 of Zach [15].

7

4 Tableaux for classical logic

Although the method of Surma [13] and Carnielli [6] for obtaining signed ana-
lytic tableaux systems applies to classical logic, it has a drawback. As Hähnle
[7] pointed out, to show that a formula is valid, it is required to provide as
many closed tableaux as there are non-designated values. This is usually not
desirable; the generalized approach by Hähnle [7] solves this problem. Below
we give a tableau system for classical logic using the sets of signs V \ {v}, i.e.,
the tableau system exactly dual to that of Carnielli (in the sense of [2]).

Definition 19. A signed formula is an expression of the form v:A where v ∈ V
and A is a formula.

Definition 20. A tableau for a set of signed formulas ∆ is a downward rooted
tree of signed formulas where each one is either an element of ∆ or results from
a signed formula in the branch above it by a branch expansion rule. A tableau is
closed if every branch contains, for some formula A, the signed formulas v:A for
all v ∈ V , or a signed formula v:A with a branch expansion rule that explicitly
closes the branch (⊗).

The branch expansion rules for connective ¬ are given by

f :¬A
t:A

t:¬A
f :A

The branch expansion rules for connective ∧ are given by

f :A ∧B
f :A
f :B

t:A ∧B
t:B t:A

The branch expansion rules for connective ∨ are given by

f :A ∨B
f :B f :A

t:A ∨B
t:A
t:B

The branch expansion rules for connective → are given by

f :A→B
f :B t:A

t:A→B
f :A
t:B

The branch expansion rules for connective ↔ are given by

f :A↔B
f :A
f :B

t:A
t:B

t:A↔B
f :A
t:B

t:A
f :B

The branch expansion rules for connective | are given by

8

f :A |B
t:B t:A

t:A |B
f :A
f :B

The branch expansion rules for connective ↓ are given by

f :A ↓B
t:A
t:B

t:A ↓B
f :B f :A

The branch expansion rules for connective ⊕ are given by

f :A⊕B
f :A
t:B

t:A
f :B

t:A⊕B
f :A
f :B

t:A
t:B

The branch expansion rules for connective ↛ are given by

f :A↛B
f :A
t:B

t:A↛B
f :B t:A

The branch expansion rules for connective ite are given by

f : ite(A,B,C)
f :A
f :B

t:A
f :C

t: ite(A,B,C)
f :A
t:B

t:A
t:C

The branch expansion rules rules for quantifier ∀ are given by

f : (∀x)A(x)
f :A(τ)

t: (∀x)A(x)
t:A(α)

The branch expansion rules rules for quantifier ∃ are given by

f : (∃x)A(x)
f :A(α)

t: (∃x)A(x)
t:A(τ)

The branch expansion rules rules for quantifier C are given by

f : (Cx)A(x)
t:A(α1)
f :A(α2)

t: (Cx)A(x)
f :A(τ1) t:A(τ2)

Definition 21. An interpretation I satisfies a signed formula v:A iff valI(A) ̸=
v. A set of signed formulas is satisfiable if some interpretation I satisfies all
signed formulas in it.

Theorem 22. A set of signed formulas is unsatisfiable iff it has a closed tableau.

Proof. Apply Theorems 4.14 and 4.21 of Hähnle [7]; interpreting v:A as S A
where S = V \ {v}.

Corollary 23. In classical logic, |= A iff {v:A | v ∈ V +} has a closed tableau.
∆ |= A iff {v:B | v ∈ V −, B ∈ ∆} ∪ {v:A | v ∈ V +} has a closed tableau.

9

5 Natural deduction for classical logic

Let Γ be a (set) sequent, V + ⊆ V the set of designated truth values. The set
of non-designated truth values is then V − = V \ V +. We divide the sequent Γ
into its designated part Γ+ and its non-designated part Γ− in the obvious way:

Γ+ := ⟨Γv | v ∈ V +⟩
Γ− := ⟨Γv | v ∈ V −⟩

Definition 24. The natural deduction rules for classical logic are given by:

1. A weakening rule for all v ∈ V +:

Γ+

Γ+, [v:A]
w:v

2. For every connective 2 and every truth value v an introduction rule 2i:v
(if v ∈ V +) or an elimination rule 2e:v (if v ∈ V −).

3. For every quantifier Q and every truth value v an introduction rule Qi:v
(if v ∈ V +) or an elimination rule Qe:v (if v ∈ V −).

The introduction and elimination rules for connective ¬ are given by

Γ−
0

Γ+
0 , [t:¬A]

Γ−
1

Γ+
1 , [t:A]

Γ+
0 ,Γ

+
1

¬e: f

Γ−
1 , ⌈[f :A]⌉

Γ+
1

Γ+
1 , [t:¬A]

¬i: t

The introduction and elimination rules for connective ∧ are given by

Γ−
0

Γ+
0 , [t:A ∧B]

Γ−
1 , ⌈[f :A,B]⌉

Γ+
1

Γ+
0 ,Γ

+
1

∧e: f

Γ−
1

Γ+
1 , [t:B]

Γ−
2

Γ+
2 , [t:A]

Γ+
1 ,Γ

+
2 , [t:A ∧B]

∧i: t

The introduction and elimination rules for connective ∨ are given by

Γ−
0

Γ+
0 , [t:A ∨B]

Γ−
1 , ⌈[f :B]⌉

Γ+
1

Γ−
2 , ⌈[f :A]⌉

Γ+
2

Γ+
0 ,Γ

+
1 ,Γ

+
2

∨e: f

Γ−
1

Γ+
1 , [t:A,B]

Γ+
1 , [t:A ∨B]

∨i: t

The introduction and elimination rules for connective → are given by

Γ−
0

Γ+
0 , [t:A→B]

Γ−
1 , ⌈[f :B]⌉

Γ+
1

Γ−
2

Γ+
2 , [t:A]

Γ+
0 ,Γ

+
1 ,Γ

+
2

→e: f

Γ−
1 , ⌈[f :A]⌉
Γ+
1 , [t:B]

Γ+
1 , [t:A→B]

→i: t

The introduction and elimination rules for connective ↔ are given by

10

Γ−
0

Γ+
0 , [t:A↔B]

Γ−
1 , ⌈[f :A,B]⌉

Γ+
1

Γ−
2

Γ+
2 , [t:A,B]

Γ+
0 ,Γ

+
1 ,Γ

+
2

↔e: f

Γ−
1 , ⌈[f :A]⌉
Γ+
1 , [t:B]

Γ−
2 , ⌈[f :B]⌉
Γ+
2 , [t:A]

Γ+
1 ,Γ

+
2 , [t:A↔B]

↔i: t

The introduction and elimination rules for connective | are given by

Γ−
0

Γ+
0 , [t:A |B]

Γ−
1

Γ+
1 , [t:B]

Γ−
2

Γ+
2 , [t:A]

Γ+
0 ,Γ

+
1 ,Γ

+
2

|e: f

Γ−
1 , ⌈[f :A,B]⌉

Γ+
1

Γ+
1 , [t:A |B]

|i: t

The introduction and elimination rules for connective ↓ are given by

Γ−
0

Γ+
0 , [t:A ↓B]

Γ−
1

Γ+
1 , [t:A,B]

Γ+
0 ,Γ

+
1

↓e: f

Γ−
1 , ⌈[f :B]⌉

Γ+
1

Γ−
2 , ⌈[f :A]⌉

Γ+
2

Γ+
1 ,Γ

+
2 , [t:A ↓B]

↓i: t

The introduction and elimination rules for connective ⊕ are given by

Γ−
0

Γ+
0 , [t:A⊕B]

Γ−
1 , ⌈[f :A]⌉
Γ+
1 , [t:B]

Γ−
2 , ⌈[f :B]⌉
Γ+
2 , [t:A]

Γ+
0 ,Γ

+
1 ,Γ

+
2

⊕e: f

Γ−
1 , ⌈[f :A,B]⌉

Γ+
1

Γ−
2

Γ+
2 , [t:A,B]

Γ+
1 ,Γ

+
2 , [t:A⊕B]

⊕i: t

The introduction and elimination rules for connective ↛ are given by

Γ−
0

Γ+
0 , [t:A↛B]

Γ−
1 , ⌈[f :A]⌉
Γ+
1 , [t:B]

Γ+
0 ,Γ

+
1

↛e: f

Γ−
1 , ⌈[f :B]⌉

Γ+
1

Γ−
2

Γ+
2 , [t:A]

Γ+
1 ,Γ

+
2 , [t:A↛B]

↛i: t

The introduction and elimination rules for connective ite are given by

Γ−
0

Γ+
0 , [t: ite(A,B,C)]

Γ−
1 , ⌈[f :A,B]⌉

Γ+
1

Γ−
2 , ⌈[f :C]⌉
Γ+
2 , [t:A]

Γ+
0 ,Γ

+
1 ,Γ

+
2

itee: f

Γ−
1 , ⌈[f :A]⌉
Γ+
1 , [t:B]

Γ−
2

Γ+
2 , [t:A,C]

Γ+
1 ,Γ

+
2 , [t: ite(A,B,C)]

itei: t

The introduction and elimination rules for quantifier ∀ are given by

11

Γ−
0

Γ+
0 , [t: (∀x)A(x)]

Γ−
1 , ⌈[f :A(τ)]⌉

Γ+
1

Γ+
0 ,Γ

+
1

∀e: f

Γ−
1

Γ+
1 , [t:A(α)]

Γ+
1 , [t: (∀x)A(x)]

∀i: t

The introduction and elimination rules for quantifier ∃ are given by

Γ−
0

Γ+
0 , [t: (∃x)A(x)]

Γ−
1 , ⌈[f :A(α)]⌉

Γ+
1

Γ+
0 ,Γ

+
1

∃e: f

Γ−
1

Γ+
1 , [t:A(τ)]

Γ+
1 , [t: (∃x)A(x)]

∃i: t

The introduction and elimination rules for quantifier C are given by

Γ−
0

Γ+
0 , [t: (Cx)A(x)]

Γ−
1 , ⌈[f :A(α2)]⌉
Γ+
1 , [t:A(α1)]

Γ+
0 ,Γ

+
1

Ce: f

Γ−
1 , ⌈[f :A(τ1)]⌉

Γ+
1

Γ−
2

Γ+
2 , [t:A(τ2)]

Γ+
1 ,Γ

+
2 , [t: (Cx)A(x)]

Ci: t

Definition 25. A natural deduction derivation is defined inductively as follows:

1. Let A be any formula. Then

[V −:A]

[V +:A]

is a derivation of A from the assumption [V −:A] (an initial derivation).

2. If Dk are derivations of Γ+
k ,∆

+
k from the assumptions Γ−

k , ∆̂
−
k , and〈

Γ−
k , ⌈∆

−
k ⌉

Γ+
k ,∆

+
k

〉
k∈K

Π+

is an instance of a deduction rule with ∆̂−
k a subsequent of ∆−

k , and all
eigenvariable conditions are satisfied, then

⟨Dk⟩k∈K

Π+

is a derivation of Π+ from the assumptions
⋃

k∈K Γ−
k . The formulas in ∆̂−

k

which do not occur in
⋃

k∈K Γ−
k are said to be discharged at this inference.

Theorem 26. A partial sequent Γ+ can be derived from the assumptions Γ−

in the natural deduction system for classical logic iff, for every interpretation I,
either some formula in Γ−

v (v ∈ V −) evaluates to the truth value v, or there is
a w ∈ V + and a formula in Γ+

w that evaluates to w.

12

Proof. See Theorems 4.7 and 5.4 of Baaz et al. [3] or Theorems 4.2.8 and 4.3.4
of Zach [15].

Corollary 27. Γ |= A iff there is a natural deduction derivation of [V +:A]
from [V −: Γ].

6 Resolution and clause formation rules for clas-
sical logic

The many-valued resolution calculus of Baaz and Fermüller [1] applies to clas-
sical logic. We present the framework here, as well as a language preserving
clause translation system for classical logic.

Definition 28 (Signed formula). A signed formula is an expression of the form
Av, where A is a formula and v ∈ V . If A is atomic, Av is a signed atom.

Definition 29 (Signed clause). A (signed) clause C = {Av1
1 , . . . , Avn

n } is a finite
set of signed atoms (proper clause). The empty clause is denoted by 2.

An extended clause is a finite set of signed formulas.

Definition 30 (Semantics of clause sets). Let M be a structure. M satisfies
a clause C iff for every assignment s, there is some signed formula Av ∈ C, so
that valI(A) = v (where I = ⟨M , s⟩). M satisfies a clause set C iff it satisfies
every clause in C . C is called satisfiable iff some structure satisfies it, and
unsatisfiable otherwise.

The clause formation rules for connective ¬ are given by

C ∪ {C ∪ {(¬A)f}}
C ∪ {C ∪ {At}} ¬:f

C ∪ {C ∪ {(¬A)t}}
C ∪ {C ∪ {Af}}

¬:t

The clause formation rules for connective ∧ are given by

C ∪ {C ∪ {(A ∧B)f}}
C ∪ {C ∪ {Af , Bf}}

∧:f
C ∪ {C ∪ {(A ∧B)t}}

C ∪ {C ∪ {Bt}, C ∪ {At}}
∧:t

The clause formation rules for connective ∨ are given by

C ∪ {C ∪ {(A ∨B)f}}
C ∪ {C ∪ {Bf}, C ∪ {Af}}

∨:f
C ∪ {C ∪ {(A ∨B)t}}
C ∪ {C ∪ {At, Bt}}

∨:t

The clause formation rules for connective → are given by

C ∪ {C ∪ {(A→B)f}}
C ∪ {C ∪ {Bf}, C ∪ {At}}

→:f
C ∪ {C ∪ {(A→B)t}}

C ∪ {C ∪ {Af , Bt}}
→:t

The clause formation rules for connective ↔ are given by

13

C ∪ {C ∪ {(A↔B)f}}
C ∪ {C ∪ {Af , Bf}, C ∪ {At, Bt}}

↔:f

C ∪ {C ∪ {(A↔B)t}}
C ∪ {C ∪ {Af , Bt}, C ∪ {At, Bf}}

↔:t

The clause formation rules for connective | are given by

C ∪ {C ∪ {(A |B)f}}
C ∪ {C ∪ {Bt}, C ∪ {At}}

|:f
C ∪ {C ∪ {(A |B)t}}
C ∪ {C ∪ {Af , Bf}}

|:t

The clause formation rules for connective ↓ are given by

C ∪ {C ∪ {(A ↓B)f}}
C ∪ {C ∪ {At, Bt}}

↓:f
C ∪ {C ∪ {(A ↓B)t}}

C ∪ {C ∪ {Bf}, C ∪ {Af}}
↓:t

The clause formation rules for connective ⊕ are given by

C ∪ {C ∪ {(A⊕B)f}}
C ∪ {C ∪ {Af , Bt}, C ∪ {At, Bf}}

⊕:f

C ∪ {C ∪ {(A⊕B)t}}
C ∪ {C ∪ {Af , Bf}, C ∪ {At, Bt}}

⊕:t

The clause formation rules for connective ↛ are given by

C ∪ {C ∪ {(A↛B)f}}
C ∪ {C ∪ {Af , Bt}}

↛:f
C ∪ {C ∪ {(A↛B)t}}

C ∪ {C ∪ {Bf}, C ∪ {At}}
↛:t

The clause formation rules for connective ite are given by

C ∪ {C ∪ {ite(A,B,C)f}}
C ∪ {C ∪ {Af , Bf}, C ∪ {At, Cf}}

ite:f

C ∪ {C ∪ {ite(A,B,C)t}}
C ∪ {C ∪ {Af , Bt}, C ∪ {At, Ct}}

ite:t

The clause formation rules for quantifier ∀ are given by

C ∪ {C ∪ {((∀x)A(x))f}}
C ∪ {C ∪ {A(f (⃗a))f}}

∀:f
C ∪ {C ∪ {((∀x)A(x))t}}

C ∪ {C ∪ {A(b)t}} ∀:t

The clause formation rules for quantifier ∃ are given by

C ∪ {C ∪ {((∃x)A(x))f}}
C ∪ {C ∪ {A(b)f}}

∃:f
C ∪ {C ∪ {((∃x)A(x))t}}

C ∪ {C ∪ {A(f (⃗a))t}} ∃:t

The clause formation rules for quantifier C are given by

14

C ∪ {C ∪ {((Cx)A(x))f}}
C ∪ {C ∪ {A(b1)

t, A(b2)
f}}

C:f

C ∪ {C ∪ {((Cx)A(x))t}}
C ∪ {C ∪ {A(f1(⃗a))

f}, C ∪ {A(f2(⃗a))
t}}

C:t

In the translation rules for quantifiers, the indicated free variables b are
new free variables that do not already occur in the premise, and terms f (⃗a)
are formed using a new function symbol f and a⃗ all the free variables of the
corresponding clause in the premise.

Theorem 31. Let T (C) be the result of exhaustively applying the translation
rules to a clause set C . Then T (C) is a set of proper clauses, i.e., T (C) contains
only signed atoms (all connectives and quantifiers are eliminated). Furthermore,
T (C) is satisfiable iff C is.

Proposition 32. Let A be a sentence and ∆ be a set of sentences. Then

1. |= A iff {{Av | v ∈ V −}} is unsatisfiable.

2. ∆ |= A iff

{{Bw | w ∈ V +} | B ∈ ∆} ∪ {{Av | v ∈ V −}}

is unsatisfiable.

Definition 33. A clause R is a resolvent of clauses C1, C2 if R = (C1\{Av1
1 })σ∪

(C2 \ {Av2
2 })σ where

1. C1 and C2 have no free variables in common,

2. A1 and A2 are unifiable with most general unifier σ,

3. v1 ̸= v2.

If C1 and C2 have free variables in common, we say that R is a resolvent of C1

and C2 if it is a resolvent of variable-disjoint renamings C ′
1 and C ′

2 of C1 and
C2, respectively.

Definition 34. A resolution refutation of a clause set C is a sequence of clauses
C1, . . . , Cn so that for every i, Ci ∈ C or Ci is a resolvent of Cj , Ck with j, k < i,
and Cn = ∅.

Theorem 35. A clause set C is unsatisfiable iff it has a resolution refutation.

Proof. See Theorems 3.14 and 3.19 of Baaz and Fermüller [1] or Theorems 2.5.5
and 2.5.8 of Zach [15].

Corollary 36. ∆ |= A iff

T ({{Bw | w ∈ V +} | B ∈ ∆} ∪ {{Av | v ∈ V −}})

has a resolution refutation.

15

References

[1] Matthias Baaz and Christian G. Fermüller. Resolution-based theorem prov-
ing for many-valued logics. Journal of Symbolic Computation, 19(4):353–
391, 1995. DOI 10.1006/jsco.1995.1021.

[2] Matthias Baaz, Christian G. Fermüller, and Richard Zach. Dual systems
of sequents and tableaux for many-valued logics. Bulletin of the EATCS,
51:192–197, 1993. DOI 10.11575/PRISM/38908.

[3] Matthias Baaz, Christian G. Fermüller, and Richard Zach. Systematic con-
struction of natural deduction systems for many-valued logics. In 23rd In-
ternational Symposium on Multiple-Valued Logic. Proceedings, pages 208–
213. IEEE Press, 1993. DOI 10.1109/ISMVL.1993.289558.

[4] Matthias Baaz, Christian G. Fermüller, and Richard Zach. Elimination of
cuts in first-order finite-valued logics. Journal of Information Processing
and Cybernetics EIK, 29(6):333–355, 1993. DOI 10.11575/PRISM/38801.

[5] Matthias Baaz, Christian G. Fermüller, Gernot Salzer, and Richard Zach.
Labeled calculi and finite-valued logics. Studia Logica, 61(1):7–33, 1998.
DOI 10.1023/A:1005022012721.

[6] Walter A. Carnielli. Systematization of finite many-valued logics through
the method of tableaux. The Journal of Symbolic Logic, 52(2):473–493,
1987. DOI 10.2307/2274395.

[7] Reiner Hähnle. Automated Deduction in Multiple-Valued Logics. Oxford
University Press, 1993.

[8] Stephen Read. Sheffer’s stroke: A study in proof-theoretic harmony. Danish
Yearbook of Philosophy, 34:7–23, 1999.

[9] George Rousseau. Sequents in many valued logic I. Fundamenta Mathe-
maticae, 60:23–33, 1967. URL http://matwbn.icm.edu.pl/ksiazki/fm/

fm60/fm6012.pdf.

[10] Gernot Salzer. MUltlog: An expert system for multiple-valued logics. In
Collegium Logicum, pages 50–55. Springer, 1996. DOI 10.1007/978-3-7091-
9461-4 3.

[11] Gernot Salzer. Optimal axiomatizations of finitely valued log-
ics. Information and Computation, 162(1–2):185–205, 2000. DOI
10.1006/inco.1999.2862.

[12] Karl Schröter. Methoden zur Axiomatisierung beliebiger Aussagen- und
Prädikatenkalküle. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik, 1(4):241–251, 1955. DOI 10.1002/malq.19550010402.

16

https://doi.org/10.1006/jsco.1995.1021
https://doi.org/10.11575/PRISM/38908
https://doi.org/10.1109/ISMVL.1993.289558
https://doi.org/10.11575/PRISM/38801
https://doi.org/10.1023/A:1005022012721
https://doi.org/10.2307/2274395
http://matwbn.icm.edu.pl/ksiazki/fm/fm60/fm6012.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm60/fm6012.pdf
https://doi.org/10.1007/978-3-7091-9461-4_3
https://doi.org/10.1007/978-3-7091-9461-4_3
https://doi.org/10.1006/inco.1999.2862
https://doi.org/10.1002/malq.19550010402

[13] Stanislaw J. Surma. An algorithm for axiomatizing every finite logic. In
David C. Rine, editor, Computer Science and Multiple-Valued Logic: The-
ory and Applications, pages 137–143. North-Holland, 1977.

[14] Moto-o Takahashi. Many-valued logics of extended Gentzen style I. Science
Reports of the Tokyo Kyoiku Daigaku, Section A, 9(231):271–292, 1968.
URL https://www.jstor.org/stable/43699119.

[15] Richard Zach. Proof theory of finite-valued logics. Diplomarbeit, Technis-
che Universität Wien, 1993. DOI 10.11575/PRISM/38803.

[16] Richard Zach. Natural deduction for the Sheffer stroke and Peirce’s arrow
(and any other truth-functional connective). Journal of Philosophical Logic,
45(2):183–197, April 2016. DOI 10.1007/s10992-015-9370-x.

[17] Richard Zach. Cut elimination and normalization for generalized single and
multi-conclusion sequent and natural deduction calculi. Review of Symbolic
Logic, 2021. DOI 10.1017/S1755020320000015. forthcoming.

A classical.lgc – specification of classical logic

logic "classical ".

truth_values { f , t }.

designated_truth_values { t }.

ordering(truth ," f < t ").

operator(neg/1, mapping {

(f) : t,

(t) : f

}

).

operator(and/2, inf(truth)).

operator(or/2, sup(truth)).

operator(imp/2, table [

f, t,

f, t, t,

t, f, t

]

).

operator(equiv/2, table [

f, t,

f, t, f,

t, f, t

]

).

operator(nand/2, table [

f, t,

f, t, t,

t, t, f

]

).

operator(nor/2, table [

f, t,

17

https://www.jstor.org/stable/43699119
https://doi.org/10.11575/PRISM/38803
https://doi.org/10.1007/s10992-015-9370-x
https://doi.org/10.1017/S1755020320000015

f, t, f,

t, f, f

]

).

operator(xor/2, table [

f, t,

f, f, t,

t, t, f

]

).

operator(excl/2, table [

f, t,

f, f, f,

t, t, f

]

).

operator(ite/3, mapping {

(f,f,f) : f,

(f,f,t) : t,

(f,t,f) : f,

(f,t,t) : t,

(t,f,f) : f,

(t,f,t) : f,

(t,t,f) : t,

(t,t,t) : t

}

).

quantifier(forall , induced_by inf(truth)).

quantifier(exists , induced_by sup(truth)).

quantifier(cont , mapping {

{f,t} : t,

{f} : f,

{t} : f

}

).

B classical.cfg – LATEX translations

texName(t,"\\ mathbf{t}").

texName(f,"\\ mathbf{f}").

texName(forall , \\ forall).

texName(exists , \\ exists).

texName(cont , "\\ mathsf{C}").

texName(and , \\land).

texName(or, \\lor).

texName(xor , \\ oplus).

texName(neg , \\neg).

texName(equiv , \\ leftrightarrow).

texName(imp , \\ rightarrow).

texName(excl , \\ nrightarrow).

texName(nor , \\ downarrow).

texName(nand , \\mid).

texName(ite , "\\ mathit{ite}").

18

texInfix(and).

texInfix(or).

texInfix(xor).

texInfix(nand).

texInfix(nor).

texInfix(excl).

texInfix(imp).

texInfix(equiv).

texPrefix(neg).

texExtra ("Intro","The sequent calculus and natural deduction

systems for the Sheffer stroke (nand) and Peirce ’s arrow (nor)

was investigated in \\cite{Zach2016} (see also \\cite{Read1999

}); the generated natural deduction system is a classical multi

-conclusion system with general elimination rules. For the

other additional connectives and a proof of normalization for

the resulting natural deduction system , see \\cite{Zach2021 }.")

.

texExtra (" Semantics","The connectives $\\oplus$, $\\mid$, $\\
downarrow$, and $\\ nleftarrow$ are exclusive or, Sheffer stroke

(nand), Peirce arrow (nor), and exclusion , respectively. The

3-place \\ textit{ite} connective is ‘‘if ---then ---else ’’. $\\
mathsf{C}$ is the contingency quantifier: $(\\ mathsf{C}x)A(x)$
is true if $A(x)$ takes both values true and false , and is

false otherwise .").

texExtra ("Link", "https :// logic.at/multlog/classical.pdf").

texExtra (" Preamble ","\\ ESequentstrue \\ renewcommand {\\ esequent

}[1]{\\ sequent ##1}\\ def\\ sequent ##1 ,##2{##1 \\ Rightarrow ##2}")

.

19

	Introduction
	Syntax and semantics
	Sequent calculus for classical logic
	Tableaux for classical logic
	Natural deduction for classical logic
	Resolution and clause formation rules for classical logic
	classical.lgc – specification of classical logic
	classical.cfg – LaTeX translations

