6. NP-Completeness

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

21 June, 2010

Outline

6. NP-Completeness
6.1 Characterizing NP
6.2 Variants of Satisfiability
6.3 Some NP-complete Graph Problems
6.4 Further NP-complete Problems

Characterizing NP

Definition

1 A relation $R \subseteq \Sigma^* \times \Sigma^*$ is polynomially decidable if there is a deterministic TM deciding the language \{ $x; y \mid (x, y) \in R$ \} in polynomial time.

2 A relation R is polynomially balanced if $(x, y) \in R$ implies $|y| \leq |x|^k$ for some $k \geq 1$.

Proposition

Let $L \subseteq \Sigma^*$ be a language. Then $L \in \text{NP}$ if and only if there is a polynomially balanced and polynomially decidable relation R such that $L = \{ x \in \Sigma^* \mid (x, y) \in R \text{ for some } y \in \Sigma^* \}$.

Proof

"\Rightarrow" Suppose that there is such a relation R. Then L is decided by an NTM which, on input x, guesses a y of length at most $|x|^k$ and uses the machine for R to decide in polynomial time whether $(x, y) \in R$.

"\Leftarrow" Suppose that $L \in \text{NP}$, i.e. there is an NTM M deciding L in time $|x|^k$ for some k. We define the relation R as follows: $(x, y) \in R$ iff y is the encoding of an accepting computation of M on input x. Then R has the following properties:

- R is polynomially balanced, since each computation of M is polynomially bounded.
- R is polynomially decidable, since it can be checked in linear time whether y encodes an accepting computation of M on x.
- $L = \{ x \mid (x, y) \in R \text{ for some } y \}$, since M decides L.
Succinct Certificates

A problem is in NP if any positive instance x of the problem has at least one succinct certificate (or polynomial witness) y. NP contains a huge number of practically important, natural computational problems:

- A typical problem is to construct a mathematical object satisfying certain specifications (path, solution of equations, routing, VLSI layout, ...). This is the certificate.
- The decision version of the problem is to determine whether at least one such object exists for the input.
- The object is usually not very large compared to the input.
- The specifications of the object are usually simple enough to be checkable in polynomial time.

NP-Completeness and Algorithm Design Techniques

Showing that a problem is NP-complete implies that the problem is not in P unless NP = P (which is considered very unlikely).

When a problem is known to be NP-complete, further efforts are usually directed to:

- Attacking special cases
- Approximation algorithms
- Randomized algorithms
- (Exponential) algorithms that are practical for small instances
- etc.

Variants of Satisfiability

SAT
INSTANCE: Boolean formula φ.
QUESTION: Is φ satisfiable?

3-SAT
INSTANCE: Boolean formula φ in 3-CNF
QUESTION: Is φ satisfiable?

2-SAT
INSTANCE: Boolean formula φ in 2-CNF
QUESTION: Is φ satisfiable?
Complexity of SAT and 3-SAT

Cook-Levin Theorem

SAT is NP-complete.

Theorem

3-SAT is NP-complete.

Proof of the NP-membership

SAT and also 3-SAT and can be decided by the following NP-algorithm:
1. Guess a truth assignment \(T \) for the variables in \(\varphi \).
2. Check that \(\varphi \) is true in \(T \).

Proof idea of the NP-hardness of SAT

We have to reduce SAT to 3-SAT, i.e.: Let \(\varphi \) be an arbitrary Boolean formula. We have to show that there exists a Boolean formula \(R(\varphi) = \psi \), s.t. \(\psi \) is in 3-CNF and \(\varphi \) is satisfiable \(\Leftrightarrow \psi \) is satisfiable.

Remarks.

- Hence, an arbitrary Boolean formula \(\varphi \) can be transformed in polynomial time into a sat-equivalent formula \(\psi \) in 3-CNF.
- In general, \(\varphi \) and \(\psi \) are not logically equivalent.
- This result is by no means trivial: The “usual” transformation into CNF via de Morgan’s laws and the distributivity of \(\land \) and \(\lor \) usually leads to an exponential blow-up. For instance, consider the CNF, which is logically equivalent to \((x_1 \land y_1) \lor \ldots \lor (x_n \land y_n)\).
Some NP-complete Graph Problems

We have already encountered the **INDEPENDENT SET** problem. The following two problems are closely related:

CLIQUE

INSTANCE: Undirected graph \(G = (V, E) \) and integer \(K \).

QUESTION: Does there exist a clique \(C \) of size \(\geq K \) i.e., \(C \subseteq V \), s.t. for all \(i, j \in I \) with \(i \neq j \), \([i, j] \in E\).

VERTEX COVER

INSTANCE: Undirected graph \(G = (V, E) \) and integer \(K \).

QUESTION: Does there exist a vertex cover \(N \) of size \(\leq K \) i.e., \(N \subseteq V \), s.t. for all \([i, j] \in E\), either \(i \in N \) or \(j \in N \).
INDEPENDENT SET vs. CLIQUE

Example

Proposition

Let $G = (V, E)$ be an undirected graph with $I \subseteq V$. Moreover, let $\overline{G} = (V, \overline{E})$ be the complement graph, i.e. $[i, j] \in E \iff [i, j] \not\in \overline{E}$.

I is an independent set in G \iff I is a clique in \overline{G}.

INDEPENDENT SET vs. VERTEX COVER

Example
INDEPENDENT SET vs. VERTEX COVER

Example

![Graph Example](image)

Proposition

Let \(G = (V, E) \) be an undirected graph with \(I \subseteq V \).
\(I \) is an independent set in \(G \) iff \(N = V \setminus I \) is a vertex cover in \(G \).

Idea. An independent set never contains both endpoints of an edge. Hence, of every edge in \(E \), at least one endpoint is in \(V \setminus I \).

Complexity

Theorem

INDEPENDENT SET, CLIQUE, and VERTEX COVER are NP-complete.

Proof

Membership. An NP-algorithm for these problems first guesses a subset \(S \) of the vertices \(V \) and then checks in polynomial time that \(S \) has the desired property (e.g., \(S \) is an independent set of size \(\geq K \)).

Hardness. By the above equivalences, it suffices to prove the NP-hardness of one of these 3 problems. In fact, we have already seen a reduction from **3-SAT** to **INDEPENDENT SET**, from which its NP-hardness follows immediately.

Further Graph Problems

3-COLORABILITY

INSTANCE: Undirected graph \(G = (V, E) \)
QUESTION: Does \(G \) have a 3-coloring? i.e., an assignment of one of 3 colors to each of the vertices in \(V \) such that any two vertices \(i, j \) connected by an edge \([i, j] \in E\) do not have the same color?

\(k \)-COLORABILITY (for fixed value \(k \geq 1 \))

INSTANCE: Undirected graph \(G = (V, E) \)
QUESTION: Does \(G \) have a \(k \)-coloring? i.e., an assignment of one of \(k \) colors to each of the vertices in \(V \) such that any two vertices \(i, j \) connected by an edge \([i, j] \in E\) do not have the same color?

HAMILTON-PATH

INSTANCE: (directed or undirected) graph \(G = (V, E) \)
QUESTION: Does \(G \) have a Hamilton path? i.e., a path visiting all vertices of \(G \) exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph \(G = (V, E) \)
QUESTION: Does \(G \) have a Hamilton cycle? i.e., a cycle visiting all vertices of \(G \) exactly once.
Further Variants of Satisfiability

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula \(\varphi \) in 3-CNF

QUESTION: Does there exist a truth assignment \(T \) on \(\varphi \), such that the 3 literals in each clause do not have the same truth value?

1-IN-3-SAT

INSTANCE: Boolean formula \(\varphi \) in 3-CNF

QUESTION: Does there exist a truth assignment \(T \) on \(\varphi \), such that in each clause, exactly one literal is true in \(T \)?

Remarks

- Clearly 1-IN-3-SAT \(\subset \) NAESAT \(\subset \) 3-SAT. The instances of these 3 problems are the same, namely 3-CNF formulae. However, the positive instances of 1-IN-3-SAT are a proper subset of NAESAT, which in turn are a proper subset of the positive instances of 3-SAT.

- Note that the NP-completeness of any of these 3 problems does not immediately imply the NP-completeness of any of the other problems, since it is a priori not clear if further constraining the positive instances makes things easier or harder.
NP-Completeness

Theorem
All of the following problems are NP-complete.
- k-COLORABILITY for any $k \geq 3$ (e.g., 3-COLORABILITY)
- HAMILTON-PATH, HAMILTON-CYCLE, TSP(D)
- k-SAT for any $k \geq 3$, NAESAT, 1-IN-3-SAT

Proof
Membership. see Übungsblatt, Exercise 6.
Hardness. in the Komplexitätstheorie lecture in the summer term

Learning Objectives
- The concept of NP-completeness and its characterizations in terms of succinct certificates.
- You should now be familiar with the intuition of NP-completeness (and recognize NP-complete problems).
- Two fundamental NP-complete problems: SAT and 3-SAT.
- Difference between logical equivalence and sat-equivalence.
- Many more examples of NP-complete problems, e.g.: CLIQUE, INDEPENDENT SET, VERTEX COVER, 3-COLORABILITY, HAMILTON-PATH, HAMILTON-CYCLE, TSP(D), etc.