Interpolation

Motivation: Consider
\[A_1, \ldots, A_n \models C, \]
where \(C \) is some mathematical theorem and the \(A_i \) are specific axioms, definitions, lemmas, or other theorems.

(\text{Let} \(A = A_1 \land \cdots \land A_n \).

\(A \) may contain symbols that do not occur in \(C \), and vice versa.

Can we find a sentence \(B \), such that
\[A \models B \quad \text{and} \quad B \models C \]
where \(B \) contains only symbols occurring in both: \(A \) and \(C \)?

As stated above, the answer is \textbf{no}.

Proof of Craig's Interpolation Theorem

\text{Degenerate case:} \(A \) and \(C \) are valid or unsatisfiable.

Let \(A \) be \(\exists x F(x) \land \forall x \neg F(x) \) and let \(C \) be \(\exists u P(u) \).

The \(\exists x \neq x \) may serve as interpolant.

\[\Rightarrow \quad \text{We may have to use} \quad \ldots \quad \text{in the interpolant} \quad B, \]

\[\text{even if it neither occurs in} \quad A \text{\ or nor in} \quad C: \]

Other ways deal to with this case:

\[\diamond \quad \text{Exclude unsatisfiable sentences} \quad A \quad \text{and valid sentences} \quad C. \]

\[\diamond \quad \text{Include the truth constants} \quad \bot, \top \text{ as (0-ary) connectives.} \]

For the rest of the proof we may assume that \(A \) is satisfiable and that \(C \) is not valid.

Example: (Failure of interpolation)

\text{Let} \(A \) be \(\exists x F(x) \land \forall x \neg F(x) \)\text{ and let } \(C \) be \(\exists u \exists v u \neq v \).

\(A \models C \), but there are no common symbols (except \(\exists \) and \(\neg \)).

Focussing on more modest requirements we can state:

\text{Proposition:} (Interpolation w.r.t. constants)

If \(A \models C \) then there is a \(B \) such that \(A \models B \) and \(B \models C \), where \(B \) contains only constants that occur in \(A \) as well as in \(C \).

\text{Proof:} Take \(\exists v_1 \ldots \exists v_n A^* \) for \(B \), where \(A^* \) results from \(A \) by replacing the constants \(c_1, \ldots, c_n \), that do not occur in \(C \) by the new variables \(v_1, \ldots, v_n \). It is easy to check \(\text{q.e.d.} \)

More interestingly, let \(L(F) \) denote all non-logical symbols in \(F \):

\text{Theorem:} (Craig's Interpolation Theorem)

If \(A \models C \) then there is a \(B \) such that \(A \models B \) and \(B \models C \), where \(L(B) \subseteq L(A) \cap L(C) \).

\(B \) is called \textbf{interpolant} from \(A \) to \(C \).

Note:

- \(A \models C \quad \text{iff} \quad \{ A, \neg C \} \) is unsatisfiable.
- \(B \) is an interpolant of \(A \) to \(C \) \text{iff}
\[A \models B, \quad \neg C \models \neg B, \quad \text{and} \quad L(B) \subseteq L(A) \cap L(C). \]

We proceed indirectly and show:

If there is no interpolant of \(A \) to \(C \), then \(\{ A, \neg C \} \) is satisfiable.

We use the model existence lemma, \text{i.e.: appeal to (S0)--(S8)}.

\text{Some useful terminology:}

\[\diamond \quad B \text{ is said to separate } \Gamma_L \text{ from } \Gamma_R \text{ iff } \Gamma_L \models B, \Gamma_R \models \neg B, \text{ and } L(B) \subseteq L(\Gamma_L) \cap L(\Gamma_R). \]

\[\diamond \quad \Gamma \text{ is called divisible (without separation) if it can be written as } \Gamma = \Gamma_L \cup \Gamma_R, \text{ where } \Gamma_L \text{ and } \Gamma_R \text{ are satisfiable, and no sentence separates } \Gamma_L \text{ from } \Gamma_R. \]

\(B \) is an interpolant of \(A \) to \(C \) \text{ iff } \(B \) separates \(\{ A \} \) from \(\{ \neg C \} \).
Proof without identity and function symbols

Let S be the set of divisible L-sets.
It remains to establish (S0)–(S6) for S.

(S0) trivial [why ?]

(S1): Suppose $\Gamma = \Gamma_L \cup \Gamma_R$ is divisible, and $D, \neg D \in \Gamma$.
Since Γ_L and Γ_R are satisfiable we conclude w.l.o.g.: $D \in \Gamma_L, \neg D \in \Gamma_R$. But this means that D separates Γ_L from Γ_R, in contradiction to the assumption of divisibility.

(S2): Suppose $\Gamma = \Gamma_L \cup \Gamma_R$ is divisible, and $\neg \neg D \in \Gamma$.
W.l.o.g., $\neg D \in \Gamma_L$ and hence $\Gamma_L \models D$. This implies that also $(\Gamma_L \cup \{D\}) \cup \Gamma_R$ divisible, and thus that $\Gamma \cup \{D\} \in S$.

(S4)–(S6): Analogous to (S2). [[Blackboard, if needed]]

Adding identity and function symbols

The case with identity (but without function symbols) is reduced to the case without identity by replacing $=$ with a non-logical predicate symbol \equiv.

Terminology:
Let $E_A [E_C]$ be the conjunction of the equivalence axioms and the congruence axioms for the predicates in $A [C]$ (using \equiv for the congruence relation).
$F^* \ldots F$, where $=$ is replaced by \equiv.

Fact:
Any interpolant B^* from $E_A \land A^* \to E_C \to C^*$ can be re-translated into an interpolant B from A to C.
Similarly, appropriate ‘definitions’ of functions by predicates allow to reduce the case with function symbols to the case without function symbols. [[Details in [BBJ]]]

Combining theories — joint consistency

DEF:
A theory T (in L) is a set of sentences (over L) that is closed w.r.t. logical consequence: $T \models F$ implies $F \in T$.
F is also called a theorem of T.

Combining theories is an important and practically relevant topic in software verification.
[Can you explain why?]

Note:
For satisfiable theories T_1, T_2, in general:
$\diamond T_1 \cup T_2$ is not a theory
\diamond the theory $\{ F : T_1 \cup T_2 \models F \}$ is not satisfiable
even if the languages $L(T_1)$ and $L(T_2)$ are disjoint.
Lemma:
Let \(T_1, T_2 \) be theories. \(T_1 \cup T_2 \) is satisfiable iff there is no sentence \(A \in T_1 \), where \(\neg A \in T_2 \).

Note:
\(\diamond \) The lemma expresses the following:
joint satisfiability = joint consistency
(Note that this is a kind of completeness statement!)

\(\diamond \) The lemma is wrong for many non-classical logics.

Proof: The 'only if' part is trivial.
The 'if' part follows from compactness and interpolation:
Suppose \(T_1 \cup T_2 \) is unsatisfiable, then already some finite \(S_0 \subseteq T_1 \cup T_2 \) is unsatisfiable.
We will show that there is an \(A \in T_1 \), where \(\neg A \in T_2 \).

Joint consistency (ctd.)
DEF: Theory \(T' \) is a conservative extension of theory \(T \) if \(T \subseteq T' \) and every \(F \in T' \) over \(L(T) \) is already in \(T \).

Theorem: (Joint conservative extensions theorem)
For \(i = 0, 1, 2 \) let \(T_i \) be a theory over \(L_i \), where \(L_0 = L_1 \cap L_2 \).
Let \(T_3 \) consist of the consequences of \(T_1 \cup T_2 \) over \(L_1 \cup L_2 \).
If \(T_1 \) and \(T_2 \) are conservative extensions of \(T_0 \), then so is \(T_3 \).

Proof: We have to show: \(B \in T_3 \) for \(B \) in \(T_0 \).
\(B \in T_3 \) implies \(T_1 \cup T_2 \cup \{ \neg B \} \) is unsatisfiable.
By the above Lemma, for some \(D \in T_1 \): \(\neg D \in T_2 \cup \{ \neg B \} \), where \(D \) is in \(L_0 \). Hence also \(\neg B \rightarrow \neg D \) is in \(L_0 \).
\(T_2 \cup \{ \neg B \} \models \neg D \). \(\neg B \rightarrow \neg D \in T_2 \). Since \(T_2 \) is a conservative extensions of \(T_0 \), we conclude \(\neg B \rightarrow \neg D \in T_0 \). Since \(T_1 \) is a conservative extensions of \(T_0 \), we have \(D \in T_0 \). But \(\{ D, \neg B \rightarrow \neg D \} \models B \), and therefore \(B \in T_0 \). Q.e.d..

Corollary: (Robinson’s joint consistency theorem)
For \(i = 0, 1, 2 \) let \(T_i \) be a theory over \(L_i \), where \(L_0 = L_1 \cap L_2 \).
If \(T_0 \) is complete, and \(T_1 \supseteq T_0 \) as well as \(T_2 \supseteq T_0 \) are satisfiable, then \(T_1 \cup T_2 \) is satisfiable.

Proof:
Any satisfiable extension of a complete theory is conservative.
Any conservative extension of a satisfiable theory is satisfiable.
Thus if the \(T_i \) are as specified, then we may apply the joint conservative extensions theorem to conclude that the theory consisting of all consequences of \(T_1 \cup T_2 \) is satisfiable.
Therefore \(T_1 \cup T_2 \) itself is satisfiable. Q.e.d..
Note:
We have proved Robinson’s joint consistency theorem using Craig’s interpolation theorem. Also the converse is possible. (See [BBJ], page 265.)

In any case: the (term) model existence lemma is essentially involved in proving all of the following:

- Compactness theorem
- Löwenheim-Skolem theorem
- Completeness (in different versions)
- Craig’s interpolation theorem
- Robinson’s joint consistency theorem
- Beth’s definability theorem