A sample theory
Consider a language with the binary predicate symbol ‘≡’ (written infix) as its only non-logical symbol.
We want to study (and count) models of \(\text{Eq} = \text{Re} \land \text{Sy} \land \text{Tr} \):

\[
\begin{align*}
\text{Re} & : \forall x \ x \equiv x \\
\text{Sy} & : \forall x \forall y \ x \equiv y \rightarrow y \equiv x \\
\text{Tr} & : \forall x \forall y \forall z \ (x \equiv y \land y \equiv z) \rightarrow x \equiv z
\end{align*}
\]

[As a ‘warm up’: describe two non-isomorphic 2-element models of \(\text{Eq} \)]

Equivalence relations
The models of \(\text{Eq} \) are equivalence relations (over some set \(X \)). Formally: Structures \((X, \sim)\), where for all \(a, b, c \in X \):

(E1) Reflexivity: \(a \sim a \),
(E2) Symmetry: If \(a \sim b \) then also \(b \sim a \),
(E3) Transitivity: If \(a \sim b \) as well as \(b \sim c \), then \(a \sim c \).

Equivalence relations can be obtained from partitions.
DEF: A partition \(\Pi \) of \(X \) is a set of nonempty subsets of \(X \), s.t.

(P1) Disjointness: \(A, B \in \Pi \) implies either \(A = B \) or \(A \cap B = \emptyset \),
(P2) Exhaustiveness: Every \(a \in X \) belongs to some \(A \in \Pi \).

IMPORTANT: We consider only denumerable models \(M \) of \(\text{Eq} \).
DEF:
The signature of \(M \) is a mapping \(\sigma_M : \omega \rightarrow \omega \cup \{ \infty \} \), where \(\sigma_M(n) \) is the number of equivalence classes of size \(n \), \(n \geq 1 \), and \(\sigma_M(0) \) is the number of equivalence classes of infinite size.

We denote signatures as infinite vectors
\((\sigma_M(0), \sigma_M(1), \sigma_M(2), \sigma_M(3), \ldots) \)

Example: (A promiscuous model)
Let \(M \) be a model of \(\text{Eq} \) and also of \(\text{E} \text{prom} \):

\(\forall x \forall y \ x \equiv y. \)

Then \(a \equiv^M b \) holds for all \(a, b \in |M| \).
Therefore there is only one equivalence class (which, by definition, is of infinite size): i.e., \(\sigma_M = (1, 0, 0, 0, \ldots) \). All models of \(\text{Eq} \land \forall x \forall y \ x \equiv y \) are isomorphic to \(M \); i.e., there is only one isomorphism type.
Example: (An eremitic model)
Add the following sentence to Eq:

$$E_{erem}: \forall x \forall y \ x \equiv y \leftrightarrow x \equiv y.$$

All models M have signature $\sigma_M = (0, \infty, 0, 0, \ldots)$.

Again, there is only one isomorphism type.

Example: (Two isomorphism types)
$Eq \land (E_{prom} \lor E_{erem})$ is made true only by the eremitic and the promiscuous model.

Hence there are exactly two isomorphism types.

Example: (An uxorious model)

$$E_{ux}: \forall x \exists y (x \neq y \land x \equiv y \land \forall z (z \equiv x \rightarrow (z = x \lor z = y)))$$

is made true only by models M with only 2-element equivalence classes; i.e. $\sigma_M = (0, 0, \infty, 0, \ldots)$.

37

Example: (n isomorphism types)

Analogously to E_{ux} we can enforce n-element equivalence classes for every $n \geq 1$.

For every $k > 0$, exactly k isomorphism types can be enforced by disjunction over corresponding sentences.

Example: (denumerably many isomorphism types)

$$E_{den}: \forall x \forall y (\exists u (u \neq x \land u \equiv x \land \exists v (v \neq y \land v \equiv y)) \rightarrow x \equiv y)$$

has models, where all elements that are not ‘isolated’ are in a single equivalence class (which can be of any size).

The following signatures arise:

$$(0, \infty, 0, 0, \ldots) \quad (1, 0, 0, 0, \ldots)$$
$$(1, \infty, 0, 0, \ldots) \quad (1, 1, 0, 0, \ldots)$$
$$(0, \infty, 1, 0, \ldots) \quad (1, 2, 0, 0, \ldots)$$
$$(0, \infty, 0, 1, \ldots) \quad (1, 3, 0, 0, \ldots)$$
$$(0, \infty, 0, 0, \ldots) \quad \ldots \quad \ldots$$

38

The Löwenheim-Skolem theorem

Remember: We can enforce models of all finite sizes, but also models of infinite size.

Can we enforce non-enumerable models? (Think, e.g., of \mathbb{R}.)

Obviously yes, if we allow non-enumerably many constants and non-enumerably many sentences.

However: We forbid non-enumerable languages (but don’t restrict sets of sentences otherwise).

The answer then is no:

Theorem (downward Löwenheim-Skolem theorem)

Every satisfiable set of sentences has an enumerable model.

[Before proving this we explore its consequences]
Consequences of the Löwenheim-Skolem theorem 1
An immediate application of the Löwenheim-Skolem theorem is the existence of certain non-standard models.

Corollary: (Skolem’s paradox)
The first-order theory of \mathbb{R}, i.e., the set all of sentences (over some enumerable language) that are made true by \mathbb{R}, has enumerable models.

Consequently:
The reals cannot be characterized canonically by any set of sentences: There are always models \mathcal{R}, non-isomorphic to \mathbb{R}.

Similar remarks hold for first-order set theory.

For cognoscenti:
‘Powers sets’ need not be interpreted to ‘contain really’ all subsets, but only those that can be ‘described’ within the theory.

Consequences of the Löwenheim-Skolem theorem 2

Corollary: (Canonical-domains lemma 1)
Let Γ be a sentence or a set of sentences.
If Γ is satisfiable, then it has a model with domain either $\{0, 1, \ldots, n-1\}$ or ω.

Corollary: (Canonical-domains lemma 2)
Let Δ be a sentence or a set of sentences without identity and without function symbols.
If Δ is satisfiable, then it has a model with domain ω.

Proof:
In addition to Löwenheim-Skolem one needs the following observation:
Without identity and function symbols we can map all ‘too large’ integers into a particular element of a finite model. (See [BBJ])

Consequences of the Löwenheim-Skolem theorem 3
Γ ... set of sentences

DEF:
Γ is (implicationally) complete if for every sentence A of its language either $\Gamma \models A$ or $\Gamma \models \neg A$.

DEF:
Γ is denumerably categorical if all denumerable models of Γ are isomorphic.

Corollary: (Vaught’s test).
If Γ is denumerably categorical but not finitely satisfiable, then Γ is complete.

[[Proof on blackboard]]