Nonclassical logics
(Nichtklassische Logiken)
VU 185.249 (lecture + exercises)

http://www.logic.at/lvas/ncl/

Chris Fermüller
Technische Universität Wien
www.logic.at/people/chrisf/
chrisf@logic.at

Summer term 2018
Lecture 1
Tentative overview:

0 What is meant by ‘nonclassical logics’?
 What are these logics good for?

1 A (possible) classification —
 Relations between various logics

2 A reminder on classical logic

3 Modal logics
 ▶ What are modal logics?
 ▶ General theory: syntax, semantics, proof systems,
 expressibility, relations between important modal logics,
 ‘correspondence theory’, multi-modal logics, . . .
 ▶ Epistemic logic(s) (for modelling multi-agent systems)
 ▶ Hints at other families of modal logics: temporal logic,
 deontic logic, dynamic logic, provability logic, . . .
Tentative overview (ctd.):

4 Intuitionistic logic (constructive logic)
 - general motivation: ‘From Brouwer to program extraction’
 - different semantics: Kripke/Beth style semantics, Brouwer-Heyting-Kolmogorov interpretation, topological semantics
 - different proof systems: Hilbert type, sequent system(s), ‘natural deduction’, . . .
 - dialogue games characterizing constructive (and other) logics

5 Many-valued logics, fuzzy logics:
 - finite valued logics: syntax, semantics, important examples of 3- and 4-valued logics (Kleene, Belnap) and families of logics (Gödel, Łukasiewicz, . . .)
 - internal and external proof systems
 - short appetizer t-norm based fuzzy logics
 (specialized course “Fuzzy Logic” by P. Cintula next term(?))

6 Overview of further topics:
 - e.g., substructural logics, logic in games and games in logic, logical dynamics, paraconsistent logics, relevance logics, . . .

Let me know your own interests!
Do we need nonclassical logics? Why?

A (related) possible reason for inadequateness of classical logic (CL) as a model for correct formal reasoning:

- **CL-semantics** is **too coarse**: e.g., lacking ‘truth value gaps’ or degrees of truth; concerns about ‘constructivity’; concerns about ‘paradoxes of material implication’

Exercise 1:
Explain (in your own words!) the paradoxes of material implication. Make your sources explicit!

Exercise 2:
Consider the following statement S, that we will assume to be true:

If god doesn’t exist then it is not the case that if I pray to god then she will answer my prayers.

This has the logical form $\neg G \supset \neg (P \supset A)$. I don’t pray to god means that P is false. But if P is false then $P \supset A$ is true and therefore $\neg (P \supset A)$ is false. Since we assume S to be true, $\neg G$ has also to be false and thus G (‘God exists’) is true.

Explain what exactly is wrong here?
Do we need nonclassical logics? Why? (ctd.)

Another possible reason:

- **insufficient expressibility**: e.g., concerning temporal dependencies or the knowledge/belief/truth distinction

An important remark: (motivation for NCL)
First-order classical logics can be considered universal. But it is often **computationally & conceptionally more adequate** to use, e.g., propositional modal logic instead of a classical first-order theory.
Note:
All nonclassical logics refer in some specific way to classical logic: (Not necessarily exclusively) either
– to propose a fundamental alternative to it, or
– to extend/augment it in a specific way, or
– to generalize some fundamental feature of it, or
– to refine it from a certain perspective.

[picture developed on blackboard → handout]

As a consequence,
we need to have a clear understanding of the main concepts of classical logic and of logics in general:

▶ Syntax (‘classical’ connectives and quantifiers)
▶ Semantics (‘Tarski-style’)
▶ Proof systems / algorithms (‘Gentzen-style’, ‘Frege-Hilbert-style’, tableaux, resolution, etc.)
Basic concepts of CL
— A quick reminder

Note:
Logic — not only classical logic! — comes in levels/orders:

▶ propositional logic
▶ first-order logic
▶ second-order logic
▶ ...(higher orders)

Main characteristics of CL at the different levels:

▶ propositional logic: decidable (validity coNP-complete)
▶ first-order logic: undecidable, but still axiomatizable
 (‘r.e.’/‘c.e.’, validity Π^0_1-complete = ‘semi-decidable’)
▶ second and higher orders: not (recursively) axiomatizable
 (validity not ‘arithmetical’, Π^1_1-complete)
Classical propositional logics — the logic of ‘bivalence’

Syntax: inductive definition of formulas $FORM^0$:
$A, B, \ldots, F, G, \ldots$

▶ propositional variables (atoms) PV:
p, q, r, \ldots

▶ logical connectives (operators):
\supset (implication), \lor (disjunction),
\land (conjunction), \neg (negation), \perp (‘falsum’)

▶ additional symbols: parenthesis

Note: We make liberal use of usual priority rules,
associativity and commutativity of \land and \lor etc.

Semantics: truth tables — e.g., for implication

<table>
<thead>
<tr>
<th>$A \supset B$</th>
<th>$B: 1$</th>
<th>$B: 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A: 1$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$A: 0$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

where 1, 0 are the truth values ‘true’, ‘false’
Semantics (ctd):
An interpretation I is an

- assignment: $PV \mapsto \{1, 0\}$.

Every interpretation I induces — via the truth tables — an

- evaluation function $v_I : FORM^0 \mapsto \{1, 0\}$.

F is satisfiable \ldots F evaluates to 1 (‘is true’) under some interpretation

F is valid \ldots F evaluates to 1 (‘is true’) under all interpretations

<table>
<thead>
<tr>
<th>Exercise 3:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarify the following notions for propositional CL: tautology, model, interpretation, (un)satisfiability, consequence. (Be aware of different terminolgy – specify your source(s)!)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exercise 4*:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show that the satisfiability problem for the fragment of propositional CL without \neg and \bot (‘positive fragment’) is trivial, whereas the validity problem is still coNP-complete.</td>
</tr>
</tbody>
</table>
Classical predicate logic (first-order CL)

Syntax: (set of formulas $FORM^1$)

Atomic formulas (atoms) are analyzed as structured

- predicate symbols PS_n of arity n (P, Q, R, …) ('0-ary' predicate symbol = propositional variable)
- (object) terms (s, t, t_i, …) are inductively built up from
 - (object) variables V (x, y, z, u, …)
 - constant symbols KS (a, b, c, …)
 - function symbols FS_n (f, g, h, …) of arity n
- resulting in atoms $P(f(a, x), g(f(x, y)), c)$ etc.
- general formulas (A, B, …, F, G, …) build up from connectives as well as quantifiers \forall, \exists

Exercise 5:
Present a formal definition of $FORM^1$ and define free(F) (set of free variables occurring in the formula F), accordingly.
First-order CL (ctd.)

Semantics: (be aware of variations in the literature!)
An interpretation is a tuple $I = (D, \Phi, d)$

1. D is a non-empty set — the domain of I
2. Φ is a signature mapping:
 2.1 $\Phi(c) \in D$ for all $c \in KS$.
 2.2 $\Phi(f)$ is a function of type $D^n \mapsto D$ for $f \in FS_n$.
 2.3 $\Phi(P)$ is a relation, represented as function of type $D^n \mapsto \{0, 1\}$ for $P \in PS_n$.
3. d is a variable assignment, i.e., a function of type $V \rightarrow D$

Note:
Sometimes all such structures I are called ‘models’.
(As in: ‘model theory’).
First-order CL — semantics (ctd.)

Given an interpretation $I = (D, \Phi, d)$ the value $v_I(t)$ of a term t in I is defined inductively as follows:

- if $t \in V$ then $v_I(t) = d(t)$
- if $t \in KS$ then $v_I(t) = \Phi(t)$
- otherwise t is of the form $f(t_1, \ldots, t_n)$ and $v_I(t) = \Phi(f)(v_I(t_1), \ldots, v_I(t_n))$

Exercise 6:

Present a formal definition of the evaluation function v_I, that assigns a truth value in I to every formula F.

Exercise 7:

Let $G = (P(x) \supset P(f(x, y)))$. Find models and counter-models for the following formulas: $\exists x \exists y \ G$, $\forall x \exists y \ G$, $\exists x \forall y \ G$, $\exists y \forall x \ G$.

Note:

Proof systems don’t refer to models, but are purely syntactical.
Syntax vs. semantics

<table>
<thead>
<tr>
<th>Semantics</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>F is valid</td>
<td>F is provable</td>
</tr>
<tr>
<td>(true in every interpretation)</td>
<td>(in a calculus, i.e.) is a theorem</td>
</tr>
<tr>
<td>F is unsatisfiable</td>
<td>F is refutable</td>
</tr>
<tr>
<td>(false in every interpretation)</td>
<td>(∼F is a theorem)</td>
</tr>
<tr>
<td>F follows from/is a consequence of set Γ ⊇ {G₁, . . . , Gₙ}</td>
<td>F is derivable from G₁, . . . , Gₙ</td>
</tr>
<tr>
<td>F and G are logically equivalent</td>
<td>(F ⊃ G) ∧ (G ⊃ F) is provable (abbrev.: F ≡ G or F ↔ G)</td>
</tr>
<tr>
<td>F and G are true/false in the same interpretations</td>
<td></td>
</tr>
</tbody>
</table>

Exercise 8:

Explain how soundness and completeness relates syntax and semantics (in particular in case of ‘follows’ vs. ‘derivable’).