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1 Tolerance and vagueness
Vagueness is standardly opposed to precision. Just as gradable adjectives like ‘tall’
and a quantity modifier like ‘a lot’ are prototypically vague expressions, mathematical
adjectives like ‘rectangular’, and measure phrases like ‘1.80 meters’ are prototypically
precise. But what does it mean for these latter expressions to be precise? On first thought
it just means that they have an exact mathematical definition. However, if we want to use
these terms to talk about observable objects, it is clear that these mathematical definitions
would be useless: if they exist at all, we cannot possibly determine what are the existing
(non-mathematical) rectangular objects in the precise geometrical sense, or objects that
are exactly 1.80 meters long. For this reason, one allows for a margin of measurement
error, or a threshold, in physics, psychophysics and other sciences. The assumption that
the predicates we use are observational predicates gives rise to another consequence as
well. If statements like ‘the length of stick S is 1.45 meters’ come with a large enough
margin of error, the circumstances in which this statement is appropriate (or true, if you
don’t want the notion of truth to be empty) might overlap with the appropriate circum-
stances for uttering statements like ‘the length of stick S is 1.50 meters’. Thus, although
the predicates ‘being a stick of 1.45 meters’ and ‘being a stick of 1.50 meters’ are incon-
sistent under a precise interpretation, the predicates might well be applicable to the same
object when a margin of error is taken into account, i.e., when the predicates are inter-
preted tolerantly.2 Thus, although the standard, i.e. precise, semantic meanings of two
predicates might be incompatible, when one or both of these observational predicates
are more realistically interpreted in a tolerant way, they might well be compatible.

1The main ideas of this paper were first presented in a workshop on vagueness at Pamplona, Spain in
June, 2009. Paul Égré acted as a commentator on this paper and soon ‘joined’ the project. Shortly after,
Pablo Cobreros and Dave Ripley joined the project as well, and thanks to them I now have a much better
understanding of what I was actually proposing in Section 4 of this paper. I thank them for this, but in this
paper I tried to stay as close as possible to my original contribution to the Pamplona workshop. Nevertheless,
I still got rid of some needless complications, and used already some terminology that is used in our joint
work as well (published as ‘Tolerant, classical, strict’ in the Journal of Philosophical Logic). The original
idea of Section 4 came up during a talk of Elia Zardini, when I was trying to understand in my own terms
what he was proposing. I would like to thank the anonymous reviewers for helpful comments and suggestions
and Inés Crespo for checking my English.

2I don’t want to suggest that 1.45 meters does not have a precise meaning, but just that if you want to make it
meaningful in measurement, it cannot be as precise as one might hope. I will suggest that measurement error is
closely related with what we call vagueness (see also Section 6.2). Wheeler (2002) rightly argues, in my opin-
ion, that allowing for measurement errors is perhaps the most natural way to motivate paraconsistency in logic.
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A traditional way of thinking about vagueness is in terms of the existence of border-
line cases. If the sentence ‘John is a tall man’ is neither (clearly) true nor (clearly) false,
then John is a borderline case of a tall man. As a result, predicates like ‘tall’ and ‘bald’
do not give rise to a two-fold, but rather to a three-fold partition of objects: the positive
ones, the negatives ones, and the borderline cases. Authors like Dummett (1975), Wright
(1975), Kamp (1981), and others have argued that the existence of borderline cases is
inadequate to characterize vagueness. Instead, what we have to realize is that these pred-
icates are observational predicates that give rise to tolerance: a vague predicate is insen-
sitive to very small changes in the objects to which it can be meaningfully predicated.

If being tolerant to small changes is indeed constitutive to the meaning of vague
predicates, it seems that most approaches to vagueness went wrong. Consider the Sorites
paradox: from (i) a giant is tall, (ii) a dwarf is not, and (iii) if a is tall and not significantly
taller than b, b must be tall as well (the inductive premise), we derive a contradiction,
if we consider enough individuals with enough different lengths. Trying to account for
this paradox, most approaches claim that the inductive premise is false. But it is exactly
this inductive premise stating that the relevant predicate is tolerant. In this paper I argue,
instead, that the tolerance principle is valid with respect to a natural notion of truth and
consequence. What we should give up is the idea that this notion of consequence is
transitive. In this paper I will first introduce semi-orders and non-transitive similarity
relations in Section 2. In terms of that, I discuss traditional approaches to vagueness in
Section 3 before I introduce my own account in Section 4. In Section 5 I show that my
analysis is still closely related to other analyses. In the last section I will connect my
analysis to more general theories of concept-analysis in cognitive theories of meaning.

2 The Sorites and semi-orders
Consider a long series of people ordered in terms of their height, from tallest to shortest;
however the variance between any two adjacent people is indistinguishable (even though
one is taller than the other in the precise sense, one cannot tell in practice which one is
smaller). Of each of them you are asked whether he or she is tall. Let’s suppose that you
judge the shortest one to definitely be short (hence, not tall). Now consider the tallest
person. If you decide that this person is tall, it seems only reasonable to judge the second
individual to be tall as well, since you cannot distinguish by observation their heights.
But, then, by the same token, the third person must be tall as well, and so on indefinitely.
In particular, this makes also the last person tall, which is in contradiction with what we
have assumed before.

This so-called Sorites reasoning is elementary, based only on our intuition that the
first individual is tall, the last short, and the following inductive premise, which seems
unobjectable:

(P) If you call one individual tall, and this individual is not visibly taller
than another individual, you have to call the other one tall too.

Our above Sorites reasoning involved the predicate ‘tall’, but that was obviously
not essential. Take any predicate P that gives rise to a complete ordering ‘as P as’ with
respect to a domain of objects D. Let us assume that ‘∼P’ is the indistinguishability, or
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indifference, relation between individuals with respect to predicate P. Now we can state
the inductive premise somewhat more formally as follows:

(P) For any x,y ∈ D : (Px ∧ x∼P y)→ Py.

If we assume that it is possible that ∃x1, . . . ,xn : x1 ∼P x2∧·· ·∧xn−1 ∼P xn, but Px1
and ¬Pxn, the paradox will arise. It immediately follows that the relation ∼P cannot
be an equivalence relation. It is natural to define the indifference relation ∼P from an
ordering relation ‘P-er than’, �P. For many purposes it is natural to let the relation �P
be a strict weak order:

DEFINITION 1 A strict weak order is a structure 〈D,R〉, with R a binary relation on D
that is irreflexive (IR), transitive (TR), and almost connected (AC):

(IR) ∀x : ¬R(x,x)
(TR) ∀x,y,z : (R(x,y)∧R(y,z))→ R(x,z)
(AC) ∀x,y,z : R(x,y)→ (R(x,z)∨R(z,y))

If we now define the indifference relation, ‘∼P’, as follows: x ∼P y iffdef neither
x�P y nor y�P x, it is clear that ‘∼P’ is an equivalence relation. But this means that strict
weak orders cannot be used to derive the relevant indifference relation for vagueness.

Fortunately, there is a well-known ordering that does have the desired properties:
what Luce (1956) calls a semi-order. Semi-orders were introduced by Luce in eco-
nomics to account for the intuition that the notion of ‘indifference’ is not transitive:

A person may be indifferent between 100 and 101 grains of sugar in his
coffee, indifferent between 101 and 102, . . . , and indifferent between 4999
and 5000. If indifference were transitive he would be indifferent between
100 and 5000 grains, and this is probably false. (Luce, 1956)

Luce’s argument fits well with Fechner’s (1860) claim, based on psychophysics
experiments, that our ability to discriminate between stimuli is generally not transitive.
Of course, the problem Luce discusses is just a variant of the Sorites paradox. Luce
(1956) introduces semi-orders as an order that gives rise to a non-transitive similarity
relation. Following Scott & Suppes’ (1958) (equivalent, but still) simpler definition, a
structure 〈D,R〉, with R a binary relation on D, is a semi-order just in case R is irreflexive
(IR), satisfies the interval-order (IO) condition, and is semi-transitive (STr).3

DEFINITION 2 A semi-order is a structure 〈D,R〉, with R a binary relation on D that
satisfies the following conditions:

(IR) ∀x : ¬R(x,x)
(IO) ∀x,y,v,w : (R(x,y)∧R(v,w))→ (R(x,w)∨R(v,y))
(STr) ∀x,y,z,v : (R(x,y)∧R(y,z))→ (R(x,v)∨R(v,z))

3Any relation that is irreflexive and satisfies the interval-order condition is called an interval order. All
interval orders are also transitive, meaning that they are stronger than strict partial orders.
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It is important to see that if we interpret the relation ‘�P’ as a semi-order, it is
irreflexive and transitive, but it need not be almost connected. Informally, this means
that according to this ordering the statement ‘x �P y’ means that x is significantly or
noticeably P-er than y (if ‘P’ is ‘tall’, ‘noticeably P-er than’ could be ‘2 cm taller than’,
for instance, see the role of ε below). The fact that semi-orders are irreflexive and
transitive but not almost connected, is important for us. The reason is that in terms of
‘�P’ we can define our desired similarity relation ‘∼P’ as follows: x∼P y iff neither x�P
y nor y �P x. The relation ‘∼P’ is reflexive and symmetric, but need not be transitive.
Thus, ‘∼P’ does not give rise to an equivalence relation. Intuitively, ‘x ∼P y’ means
that there is no significant, or noticiceable, difference between x and y. I believe semi-
orders capture most of our intuitions about vagueness.4 Semi-orders can be given a
measure-theoretical interpretation in a weak sense. ‘x �P y’ is true iff there is a real-
valued function fP and some fixed (small) real number ε (the margin of error) such that
fP(x) > fP(y)+ ε (see Luce, 1956). Thus, if we fix the margin of error to 2 cm, for
instance, it would mean that x is significantly taller than y iff x is at least 2 cm taller than
y. In the same way ‘x ∼P y’ is true if the difference in P-ness between x and y is less
than or equal to ε , | fP(x)− fP(y)| ≤ ε . In case ε = 0, i.e., if there is no margin of error,
the semi-order is a strict weak order.

3 Solving the Sorites by weakening (P)
The standard reaction to the Sorites paradox is to say that the argument is valid, but that
the inductive premise (P) (or one of its instantiations) is false. The question that arises
then is why it seems to us that the inductive premise is true. It is here that the different
proposals to solve the Sorites paradox differ.

According to supervaluation theory, (P) seems true because none of the instantia-
tions of its negation is supertrue. According to proponents of degree theories such as
fuzzy logic, the inductive premise, or principle of tolerance seems true because it is
almost true.

Many linguists and philosophers do not like the fuzzy logic approach to vagueness,
for one thing because it is not really clear what it means for a sentence to be true to
degree n ∈ [0,1]. For another, the approach seems to over-generate. This is certainly
the case if one seeks to account for comparative statements in terms of degrees of truth.
First, it has been argued that an adjective like ‘clever’ is multidimensional, and thus that
the ‘cleverer than’-relation gives rise only to a partial order. But fuzzy logicians have to
say it gives rise to a strict weak, or linear order.5 Second, if all sentences have a degree of
truth, it remains unclear why ‘The temperature here is much higher than Paul is tall’ is so
hard to interpret.6 The treatment of vagueness and the Sorites paradox in supervaluation
theory is not unproblematic either, however. The selling point of supervaluation theory

4Kamp (1981), Pinkal (1984), Veltman (1987), van Deemter (1995), and Gaifman (1997) all make im-
plicitly or explicitly use of semi-orders. I argue in van Rooij (2011a) that Graff (2000) does the same. Also
Williamson’s (1994) accessibility relation between worlds, used to represent epistemic indistinguishability,
can be defined in terms of a corresponding semi-order relation R between these worlds.

5A linear order is a strict weak order that is also connected. R is connected iff ∀x,y : R(x,y)∨R(y,x)∨x= y.
6Linguists and philosophers have given many other reasons why they don’t like a fuzzy logic approach to

vagueness. I have to admit that I don’t find most of these reasons very convincing.



Vagueness, Tolerance and Non-Transitive Entailment 209

is that it preserves all classical validities. Thus, it is claimed that logically speaking there
is no difference between classical logic and supervaluation theory. But the non-standard
way of accounting for these validities still comes with its logical price. Proponents of
supervaluation theory hold that although there is a cutoff-point—i.e. the formula ∃x,y
[Px∧ x ∼P y∧¬Py] is supertrue—, still, no one of its instantiations itself is supertrue.
This is a remarkable logical feature: in classical logic it holds that A∨B |=A,B (meaning
that at least one of A and B must be true in each model that verifies A∨B). In superval-
uation theory this doesn’t hold anymore; ∃x : Px 6|=supv Px1, . . . ,Pxn. Thus, contrary to
what is sometimes claimed, supervaluation theory does not preserve all classical validi-
ties.7 Another problem is of a more conceptual nature. Supervaluation theory makes use
of complete refinements, and supervaluation theory assumes that we can always make
sharp cutoff-points: vagueness exists only because in daily life we are too lazy to make
them. But this assumption seems to be wrong: vagueness exists, according to Dummett
(1975), because we cannot make such sharp cutoff-points even if we wanted to.8

For a while, the so-called ‘contextualist’ solution to the Sorites paradox was quite
popular (e.g., Kamp, 1981; Pinkal, 1984; Veltman, 1987; Raffman, 1996; Van Deemter,
1995; Graff, 2000). Kamp (1981) was the first, and perhaps also the most radical contex-
tualist. He proposed that each instance of the conditional ‘(Px∧ x ∼P y)→ Py’ is true,
but that one cannot put all these conditionals together into a true universal statement.
Most proponents of the contextualist solution follow Kamp (1981) in trying to preserve
(most of) (P), and by making use of a mechanism of context change.9 They typically
propose to give up some other standard logical assumption. One way of working out
the contextual solution assumes that similarity depends on context, and that this context
changes in a Sorites sequence. The similarity relation can be made context dependent
by turning it into a four-place relation. One way to do so is to assume that the simi-
larity relation is of the form ‘∼z

P’, and that x ∼z
P y is defined to be true iff x ∼P z and

y ∼P z (and defined only in case either x ∼P z or y ∼P z). Notice that x ∼P y iff x ∼x
P y

iff x∼y
P y, and that the paradox could be derived as usual in case (P) would be reformu-

lated as ∀x,y : (Px∧ x ∼x
P y)→ Py. Thus, this principle is still considered to be false,

though almost all of its instantiations are considered to be true. How, then, is the para-
dox avoided? Well, observe that ∼z

P is an equivalence relation, and thus that the relation
is transitive after all. Notice that if the contextual tolerance principle (Pc1) is formulated
in terms of a fixed ‘∼z

P’ relation,

(Pc1) ∀x,y : (Px∧ x∼z
P y)→ Py.

it is unproblematic to take the principle to be valid. As a consequence it has to be
assumed, however, that x∼z

P y is false for at least one pair 〈x,y〉 for which x∼P y holds:
in contrast to ‘∼P’, ‘∼z

P’ gives rise to a clear cutoff-point. Thus, (Pc1) is a weakening
of (P). However, the idea of contextualists is that this unnatural fixed cutoff-point is

7Of course, proponents of supervaluation theory (e.g., Fine, 1975; Keefe, 2000) claim that there is a good
reason for this, but that is another matter.

8Other problems show up if we want to account for higher-order vagueness in terms of a definiteness
operator. See Williamson (1994) and Varzi (2007) for discussion of the problem, and Keefe (2000) and
Cobreros (2008) for replies.

9For a discussion of this mechanism of context change, see Stanley (2003) and papers that followed that.
See also Keefe (2007).
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avoided, because in the interpretation of a Sorites sequence the relevant individual z that
determines the similarity relation changes, and the extension of P with it. Thus, although
every context gives rise to a particular cutoff-point, context change makes it so that we
are unable to find the cutoff-point between P and ¬P.

A somewhat more general way to work out the contextualist idea is to assume that
similarity is context-dependent because similarity depends on a contextually given com-
parison class c (cf. Veltman, 1987; van Deemter, 1995). Say that x ∼c

P y iff ¬∃z ∈ c :
x ∼P z �P y or x �P z ∼y y. Thus, x and y are similar with respect to comparison
class c if x and y are not (even) indirectly distinguishable w.r.t. elements of c.10 The
inductive premises are reformulated in terms of the new context-dependent similarity
relation. The idea is that c contains only the individuals mentioned before, and in the
sentence itself. Notice that this is fine if one just looks at specific conditionals of the
form ‘(P(x,c)∧ x∼c

P y)→ P(y,c)’: c consists just of {x,y}. However, a major problem
of this approach (and shared by the original contextual solutions of Kamp, 1981; Pinkal,
1984) shows up when we look at the inductive premise as a quantified formula:

(Pc2) ∀x,y : (P(x,c)∧ x∼c
P y)→ P(y,c).

In this case, c must be the set of all individuals, some of which are considered to
have property P and some which are considered not to have it. Notice that the relation
∼c

P is an equivalence relation. Hence, it gives rise to a fixed cutoff-point for what counts
as P. Notice that (Pc2) is again a weakening of (P). Thus, contextualists succeed in
making a weakened version of (P) valid, but do so for a surprising reason: (Pc2) is valid
because for some x and y for which x∼P y, it holds that the antecedent of ( Pc2) is false
because x 6∼c

P y.11

How good is the contextualist solution to the Sorites? As we saw, it comes with
two proposals: (i) the inductive premise of the Sorites seems to be valid, because a
close variant of it, i.e., (Pc1) or (Pc2) is valid, and (ii) context change. Both proposals
have been criticized. The first because the ‘natural’ notion of similarity is replaced
by an unnatural notion of indirect distinguishability (see, e.g. Williamson, 1994). The
contextualist realizes this unnaturalness, and claims that she can avoid the unnatural
consequences of making use of this indirect notion by an appeal to context change. But
either context change is pushed up until the last pair in a Sorites sequence, and we have a
contradiction after all, or it stops at one point, and we still have an unnatural cutoff-point
(a cutoff-point between x and y, even though x∼P y).

A more recent contextual solution to the paradox was proposed by Gaifman (1997/
2010) (see also Pagin, 2011; van Rooij, 2011a, 2011b).12 The idea is that it only makes
sense to use a predicate P in a context—i.e., with respect to a comparison class—if it
helps to clearly demarcate the set of individuals that have property P from those that do
not. Thus, c can only be an element of the set of pragmatically appropriate comparison

10This notion was defined previously by Goodman (1951) and Luce (1956).
11Still, Graff (2000) claims that this is the way it should be. According to her, c would (or could) rather say

that c just contains those individuals focussed on. Suppose we have the following ordering: v∼P w∼P x∼P y
such that v�P x and w�P y. Suppose now that c = {v,y}. In that case, she would claim, it is natural that the
cutoff-point between P and ¬P occurs between w and x.

12In van Rooij (2011a, 2011b) it is claimed (based on textual ‘evidence’ given to me by Frank Veltman) that
the solution is actually very much in the spirit of the later philosophy of Wittgenstein.
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classes CA just in case the gap between the last individual(s) that have property P and
the first that do(es) not must be between individuals x and y such that x is clearly, or
significantly, P-er than y. This is not the case if the graph of the relation ‘∼P’ is closed
in c× c. Indeed, it is exactly in those cases that the Sorites paradox arises. Notice that
also Gaifman’s solution comes down to weakening inductive hypothesis (P). This time
it is by quantifying only over the appropriate comparison classes:

(Pg) ∀x,y ∈ D,c ∈CA : (P(x,c)∧ x∼P y)→ P(y,c).

Another solution is closely related with recent work of Raffman (2005) and Shapiro
(2006).13 Shapiro states it in terms of three-valued logic, and Raffman in terms of
pairs of contrary antonymns. The idea is that a predicate P and its antonyms P do not
necessarily partition the set D of all objects, and there might be elements that neither
(clearly) have property P nor property P, but are somewhere ‘in the middle’. Once one
makes such a move it is very natural to assume that the inductive principle (P) is not
valid, but a weakened version of it, (Ps), is. This weakened principle says that if you
call one individual tall, and this individual is not visibly, or relevantly, taller than another
individual, you will or should not call the other one short or not tall.

(Ps) ∀x,y : (Px∧ x∼P y)→¬Py.

Of course, principle (Ps) can only be different from the original (P) if ¬Py does not
come down to the same as Py. Thus, a gap between the sets of P- and P-individuals is
required. Notice that the Sorites paradox can now be ‘solved’ in a familiar way: Px1
and Pxn are true, and modus ponens is valid, but the inductive hypothesis, or (all) its
instantiations, are not. However, since we adopt (Ps) as a valid principle of language
use, we can explain why inductive hypothesis (P) seems so natural. To illustrate, if
D = {x,y,z}, it might be that I(P) = {x}, I(P) = {z}, and x∼P y∼P z. Notice that such
a models satisfies (Ps) but not (P).

A final proposal I will discuss here was made by Williamson (1994). It is well-
known that according to Williamson’s epistemic approach, predicates do have a strict
cutoff-point, it is just that we don’t know it. As in other approaches, also for Williamson
it is clear that adopting (P) immediately gives rise to paradox. To explain why we are
still tempted to accept it, Williamson (1994) offers the following weakening of (P) that
doesn’t give rise to paradox:

(P2) ∀x,y ∈ D : (2Px∧ x∼ y)→ Py

Thus, if x is known to have property P, and x is similar to y, y will actually have
property y. Notice that this is also a weakening of (P) because the 2Px entails Px.
Williamson’s proposal is closely related to the ‘three-valued’ one discussed above. Sup-
pose we redefine the objects that do not have property P as the objects that might have
property P (in model M): M |=3Px iffdf M 6|= Px. In that case, (Ps) comes down to (Ps′)
∀x,y ∈ D : (Px∧ x ∼ y)→ 3Py. If ‘3’ is the dual of ‘2’, this, in turn, comes down to
(P2). The notion of duality will play an important role in the following section as well.

13Shapiro (2006) argues that his solution is closely related to Waismann’s (1945) notion of ‘Open Texture’.
For what it is worth, I believe that Waismann’s notion is more related to the previously discussed ‘solution’ of
the Sorites.
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4 Tolerance and non-transitive entailment
In the previous section we have seen that it is standard to tackle the Sorites paradox by
weakening the inductive premise (P) in some way or other. But there exists an interesting
alternative, which perhaps goes back to Kamp (1981), and has recently been defended by
Zardini (2008). According to it, the tolerance principle is true, but the Sorites reasoning
is invalid because the inference relation itself is not transitive. Zardini’s way of working
out this suggestion into a concrete proposal is rather involved. In this section I work
out the same suggestion in a simpler and more straightforward way. My aim in this
section is to make this rather non-standard approach more plausible on independent
grounds. In Section 5 I will try to seduce proponents of other views by showing that this
solution is actually closely related to (some of) the approaches discussed in the previous
section.

Let us start with a semi-order 〈D,�P〉 for each vague predicate P holding in all
models; this gives rise to a similarity relation ‘∼P’ that is reflexive, symmetric, but not
transitive. I would like to propose now that given this similarity relation, we can interpret
sentences in at least two different ways: in terms of ‘|=’ as we normally do, but also in a
tolerant way in terms of ‘|=t ′ ’. Take a standard first order model 〈D, I〉 extended with a
fixed semi-order relation�P (for each P), M = 〈D, I,�P〉, and define (i) x∼P y as before
and (ii) ‘|=t ′ ’ (and ‘|=’) recursively as follows (for simplicity I use the substitutional
analysis of quantification and assume that every individual has a unique name):

M |= φ defined in the usual way.

M |=t ′ P(a) iff ∃d ∼P a : M |= P(d), with d as name for d.

M |=t ′ ¬φ iff M 6|=t ′ φ .

M |=t ′ φ ∧ψ iff M |=t ′ φ and M |=t ′ ψ .

M |=t ′ ∀xφ iff for all d ∈ IM : M |=t ′ φ [x/d ].

Now we can define two tolerant entailment relations, ‘|=tt ’ and ‘|=ct’, as follows:
φ |=tt ψ iff [[φ ]]t

′ ⊆ [[ψ]]t
′
, and φ |=ct ψ iff [[φ ]]⊆ [[ψ]]t

′
, where [[φ ]](t

′) = {M |M |=(t ′) φ}.
We will say that φ is tolerance-valid iff M |=t ′ φ in all models M with an indistinguisha-
bility relation. Although the first tolerant entailment relation is defined rather classically,
I will be mostly interested in the second entailment relation. This second entailment rela-
tion is not transitive: from φ |=ct ψ and ψ |=ct χ it doesn’t follow that φ |=ct χ . Assume,
for instance, that for all models a ∼P b ∼P c, but that a �P c. Now P(a) |=ct P(b) and
P(b) |=ct P(c), but not P(a) |=ct P(c): there might be a model M such that IM(P) = {a}.

Material implication doesn’t mirror ‘|=ct’, but we can define a new conditional con-
nective, i.e. ‘→ ct’, that does. Say that M |= φ →ct ψ iffdef if M |= φ , then M |=t ′ ψ .
Notice that (Pt) ∀x,y : (P(x)∧ x ∼P y)→ct P(y) is classically valid. This is not prob-
lematic to account for the Sorites, because the hypothetical syllogism is not valid when
formulated in terms of ‘→ct’.14 Instead of reinterpreting implication, it is also possible
to interpret negation differently. I will show that with negation defined in this way, (P)
itself is tolerance-valid.

14A similar story would hold for conditionals like ‘→sc’ and ‘→st ’.
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In the following I will define the meaning of negation used to interpret tolerance-
truth (from now on ‘|=t ’) in terms of a new notion of strict truth: ‘|=s’. In fact, we have
to define ‘|=t ’ and ‘|=s’ simultaneously.

M |=t P(a) iff ∃d ∼P a : M |= P(d).
M |=t ¬φ iff M 6|=s φ .
M |=t φ ∧ψ iff M |=t φ and M |=t ψ .
M |=t ∀xφ iff ∀d ∈ IM,M |=t φ [x/d ].

M |=s P(a) iff ∀d ∼P a,M |= P(d).
M |=s ¬φ iff M 6|=t φ .
M |=s φ ∧ψ iff M |=s φ and M |=s ψ .
M |=s ∀xφ iff ∀d ∈ IM,M |=s φ [x/d ].

The connectives ‘∨’ and ‘→’ are defined in terms of ‘¬’ and ‘∧’ as usual. No-
tice that P(a)∨¬P(a) is tolerant-valid, can be strictly true, but is not a strict-tautology.
P(a)∧¬P(a), on the other hand, cannot be strictly true, but can be tolerantly true.15 For
each predicate P we can add a P-similarity relation to the language. For convenience,16

I will simply denote it in the same way as it should be interpreted: ‘∼P’. We will as-
sume that the similarity relation should be interpreted in a fixed way, and cannot have
a separate strict or tolerant reading: M |= a ∼P b iff M |=s a ∼P b iff M |=t a ∼P b iff
I(a) ∼P I(b). The most appealing fact about this system is that the original tolerance
principle, (P) ∀x,y[(Px∧ x ∼P y)→ Py] is tolerance-valid! This is easy to see because
for this sentence to be tolerance-true in M it has to be the case for any a and b such that
a∼P b that M |=t Pa→ Pb, or equivalently M |=t ¬Pa∨Pb. Hence, given the analysis of
negation, either ∃d ∼P a : M 6|= P(d) or ∃d′ ∼P b : M |= P(d′). But this is always the
case. Thus, on the present analysis we can say that the original (P) is, though not classi-
cally valid, still tolerantly valid. Notice that (P) is neither classically nor strictly valid.17

Thus, what we have now, finally, is a notion of validity according to which the orig-
inal (P) is valid. This does not give rise to the prediction that all objects have property
P in case the entailment relation is |=tt . For that relation, modus ponens is not valid.
However, we have opted for entailment relation |=ct (with t ′ replaced by t everywhere)
according to which modus ponens is valid. Still, no reason to worry, because this re-
lation is non-transitive. We can conclude that it does not follow that all objects have
property P.18

15Dave Ripley (p.c.) pointed out that my notions of tolerant and strict truth in fact correspond with the no-
tions of truth in Priest’s (1979) logic of paradox (LP) and Kleene’s system K3, respectively. These connections
are proved and explored in Cobreros et al. (2011).

16Though perhaps confusing for the formally inclined.
17It was also not valid in our earlier formulation of tolerant truth, |=t′ .
18Although it is widely acknowledged that one can ‘solve’ the Sorites by assuming that the entailment

relation is non-transitive, it is hardly ever seriously defended (if at all). The reason for this, it seems, is
Dummett’s (1975) claim that one cannot seriously deny the ability to chain inferences, because this principle
is taken to be essential to the very enterprise of proof. To counter this objection, in Cobreros et al. (2011) we
provide a proof theory that corresponds to |=ct (and, in fact, many other non-classical inference relations). For
completeness, in Cobreros et al. (2011) the non-transitive entailment relation that is actually preferred is ‘|=st ’
rather than ‘|=ct’ that I originally proposed (in this paper). See Cobreros et al. (2011) for motivation.



214 Robert van Rooij

5 Comparison with other approaches
Although our approach seems rather non-standard, it is closely related with other ap-
proaches. Consider, for instance super- and subvaluationalism.19 There exists a close
relation between our notions of strict and tolerant truth with the notions of truth in super-
valuationalism, and subvaluationalism (Hyde, 1997), respectively. Notice in particular
that subvaluationalism is paraconsistent, just like our notion of tolerant truth: Pa can be
both true and false, without giving rise to catastrophic consequences. Indeed, these theo-
ries, just like supervaluationalism and our notion of strict truth, are very similar when we
only consider atomic statements: in both cases we define truth in terms of existential and
universal quantification, respectively. Moreover, in both cases the two notions are each
other’s duals. But the analogy disappears when we consider more complex statements.

The reason is that we make use of this quantificational interpretation at the local
level, while they only do so only at the global level. Although looking at the global
level means to give up on the idea that interpretation goes compositional, interpreting
globally instead of locally still seems to be advantageous. This is so because as a result,
both P(a)∨¬P(a) and P(a)∧¬P(a) are validities, while for us the former can be strictly
false, and the latter can be tolerantly true.

Moreover, the idea of interpreting globally is crucial for Fine’s (1975) analysis of
penumbral connections. We have already seen that supervaluationalism is not so clas-
sical after all, once one does not limit oneself to single-conclusion arguments. Some-
thing similar holds for subvaluationism, as already observed in the original article, and
stressed by Keefe (2000). Hyde (1997) makes non-classical predictions once one does
not limit oneself to single-premise arguments: φ ,ψ 6|=subv φ ∧ψ . In Cobreros et al.
(2011) we argue that there is much to say in favor of our notions of truth and entailment.
In particular, φ ,ψ |=ct φ ∧ψ and φ ∨ψ |=ct φ ,ψ . As for penumbral connections, we
admit that ¬P(a)∧P(b) can be tolerantly true even if a�P b. In Cobreros et al. (2011)
we argue that as far as semantics is concerned, this is, in fact, not a problem. What has to
be explained, though, is why it is pragmatically inappropriate to utter a statement saying
‘¬P(a)∧P(b)’. The explanation is that without any further information, a hearer of this
utterance will conclude from this that b�P a, because this is the only way in which the
statement can be true if the statement is interpreted in the strongest possible way.20 If the
speaker knows that a�P b it is thus inappropriate to make such a statement. See Alxatib
& Pelletier (2011) for a very similar move to solve the very similar problem of why con-
tradictory attributed can sometimes truthfully be attributed to the same borderline object.

For another comparison, consider Williamson’s approach. Recall that he wanted
to ‘save’ the intuition of tolerance by turning (P2) (∀x,y : (2Px∧ x ∼P y)→ Py) into
a validity. Similarly for our reformulation of the tolerance principle of Shapiro: (Ps)
(∀x,y : (Px∧ x ∼P y)→ 3Py). I will show now that by re-interpreting ‘2’ and ‘3’
in terms of our similarity relation, there exists an obvious relation between these ap-
proaches and mine. The redefinition goes as follows:

M |=2φ iff M |=s
φ and M |=3φ iff M |=t

φ

19This connection is made much more explicitly in Cobreros et al. (2010).
20Interpreting sentences that semantically allow for different interpretations in the strongest possible way

is quite standard in pragmatics. Of course, this kind of pragmatic interpretation can be overruled by further
information—it behaves non-monotonically—, in our case that a� b.
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Notice that 3P(a) ∧3¬P(a) is possible, but 3P(a) ∧ ¬3P(a) is impossible;
3P(a) ∨ ¬3P(a) and 2P(a) ∨ ¬2P(a) are tautologies; 2P(a) ∧ ¬2P(a) is impos-
sible, just as 3P(a) ∧2¬P(a). Observe also that it now immediately follows that
¬2¬φ ≡ 3φ and ¬3¬φ ≡ 2φ : ‘2’ and ‘3’ are duals of each other. Notice that both
∀x,y : 2Px∧x∼P y→ Py and ∀x,y : Px∧x∼P y→3Py are valid, and are equivalent to
each other. The fact that (P) is tolerantly valid is actually weaker than either of them: the
reformulation of (P) would be ∀x,y : 2Px∧ x∼P y→3Py. For Williamson (1994) it is
only natural to assume that if (Pw) holds, agents know that it holds. The corresponding
strengthening of (P) in our case, however, doesn’t seem natural. Indeed, it is certainly
not the case that 2∀x,y[(Px∧ x ∼P y)→ 3Py] is valid. Before I suggested to account
for a notion of vague inference as follows: φ |=ct ψ iff [[φ ]]c ⊆ [[ψ]]t . Alternatively,
we could do something else, which sounds equally natural: φ |=sc ψ iff [[ψ]]s ⊆ [[φ ]]c.
In terms of our ‘modal’ system, these inference relations can be incorporated into the
object-language as follows: φ |=ct ψ iff for all M, M |= φ →3ψ , and φ |=sc ψ iff for all
M, M |=2φ → ψ . These notions do not exactly coincide.

Consider, finally, the contextualist solution. Recall that according to Kamp (1981),
each instance of the conditional (Px∧ x∼P y)→ Py is true, it is just that we cannot put
all these conditionals together to turn them into a true universal statement. Our solution
is similar, though we don’t talk about truth of conditional statements but of valid infer-
ences: each inference step is (ct)-valid, but we cannot chain them together to a (ct)-valid
inference. As a second connection, observe that our introduced conditional ‘→ct’ is very
similar to the conditional introduced by Kamp (1981). As a last point of contact, con-
sider the notion of meaning change proposed in contextualist solutions. Contextualists
typically say that the meaning of predicate P changes during the interpretation of the
Sorites sequence. It is almost immediately obvious in terms of our framework how this
meaning change takes place: first, it has to be the case that M |= Pa. At the second step,
the meaning of P changes, and we end up with a new model M′ such that M′ |= Pb iff
M |=3Pb (or M |=t Pb). At the third step, the meaning of P changes again, and we end
up with a new model M′′ such that M′′ |= Pc iff M′ |= 3Pc (or M′ |=t Pc). And so on,
indefinitely. But do we really need to go to new models every time? We need not, if we
can iterate modalities, as we will see in the subsequent section.

6 Similarity and borderlines
Traditional approaches of vagueness start with borderlines. To account for higher-order
vagueness, one then needs a whole sequence of higher-order borderlines. In this section
I suggest two ways to represent higher-order borderlines: one in terms of iteration of
‘modalities’; another in terms of fine-grainedness.

6.1 Iteration, and higher order vagueness
Let Bφ be an abbreviation of ¬2φ ∧¬2¬φ . Thus, BP(a) means that a is a borderline
case of P. Our system allows for first-order borderline cases, but it makes it impos-
sible to account for higher-order borderlines, and thus cannot account for higher-order
vagueness. But why don’t we just say that a is a second-order borderline case of P if
¬22P(a)∧¬22¬P(a). This sounds right, but the problem is that we cannot yet in-
terpret these types of formulas, because we haven’t specified yet how to make sense of
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‘M |=s 2φ ’ or ‘M |=t 2φ ’. So let us try to do just that. What we need to do is to in-
terpret formulas with respect to a (perhaps empty) sequence of s’s and t’s, like 〈s,s, t〉
or 〈t, t〉. We will abbreviate a sequence by ‘σ ’, and if σ = 〈x1, . . . ,xn〉, then ‘σt’ will
be 〈x1, . . . ,xn, t〉 and ‘σs’ will be 〈x1, . . . ,xn,s〉. σ∗ will just be the same as σ except
that all t’s and s’s are substituted for each other. Thus, if σ = 〈s,s, t〉, for instance, then
σ∗ = 〈t, t,s〉. Furthermore, we are going to say that if σ is the empty sequence, ‘〈〉’,
M |=σ φ iff M |= φ .

M |=σ 2φ iff M |=σs φ and M |=σ 3φ iff M |=σt φ .

M |=σt P(a) iff ∃d ∼P a : M |=σ P(d).
M |=σt ¬φ iff M 6|=σ∗s φ .
M |=σt φ ∧ψ iff M |=σt φ and M |=σt ψ .
M |=σt ∀xφ iff ∀d ∈ IM : M |=σt φ [x/d ] .

M |=σs P(a) iff ∀d ∼P a : M |=σ P(d).
M |=σs ¬φ iff M 6|=σ∗t φ .
M |=σs φ ∧ψ iff M |=σs φ and M |=σs ψ .
M |=σs ∀xφ iff ∀d ∈ IM : M |=σs φ [x/d ].

To see what is going on, let us assume a domain {u,v,w,x,y,z} such that u∼P v∼P
w∼P x∼P y∼P z and u�P w, v�P x, w�P y, and x�P z together with the assumption
that ‘�P’ is a semi-order. Let us now assume that IM(P) = {u,v,w}. If we build the
complex predicate ‘2P’ and say that this holds of a in M iff M |=2P(a), it follows that
IM(2P) = {u,v}, and IM(22P) = {u}. Similarly, it follows that IM(2¬P) = {y,z}, and
IM(22¬P) = {z}. The first-order borderline cases of P, B1P, are those d for which
it holds that ¬21P(d)∧¬21¬P(d). Thus, IM(B1P) = {w,x}. Similarly, IM(B2P) =
{d ∈ D |M |= ¬22P(d)∧¬22¬P(d)}= {v,w,x,y} and IM(B3P) = {u,v,w,x,y,z}.21

Our analysis of higher-order vagueness is similar to Gaifman’s (1997/2010) treat-
ment. Both start with a standard two-valued logic and build higher-order vagueness in
terms of it. What would happen if our basic logic were not two-valued, but three-valued
instead? Very little, except that n-order borderlines are now defined ‘one step behind’.
Suppose we take the same domain as above, giving rise to the same semi-order, but as-
sume that IM(P) = {u,v} and IM(P) = {y,z}. One proposal would be to say that IM(BnP)
= {d ∈ D | M |= ¬2n−1P(d)∧¬2n−1P(d)}. Thus IM(B1P) = D− (IM(P)∪ IM(P)) =
{w,x}, while IM(B2P) = {v,w,x,y} and IM(B3P) = {u,v,w,x,y,z}. Perhaps more in
accordance with tradition would be to define IM(BnP) as follows:

IM(BnP) = {d ∈ D |M |= ¬2n−1P(d)∧¬2n−1P(d)∧¬Bn−1P(d)}.

But to make sense of this, we have to know what things like M |=t BP(d) mean. A
natural definition goes as follows:

M |= BP(d) iff d 6∈ IM(P)∪ IM(P).
M |=σs BP(d) iff ∀d′ ∼P d : M |=σ BP(d′).

21Alternatively, we might define the nth order borderline cases of P as those d for which it holds that
¬2nP(d)∧P(d)∧3nP(d). In that case, IM(B1P) = {w}, IM(B2P) = {v,w} and IM(B3P) = {u,v,w}.
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M |=σt BP(d) iff ∃d′ ∼P d : M |=σ BP(d′).

Shapiro’s (2006) weakened version of (P), i.e. (Ps), could now perhaps best be stated
as follows: ∀x,y : (2nPx∧ x∼P y)→ (2nP(y)∨Bn+1P(y)).

6.2 Borderlines and fine-grainedness
In natural language we conceptualize and describe the world at different levels of gran-
ularity. A road, for instance, can be viewed as a line, a surface, or a volume. The level
of granularity that we make use of depends on what is relevant (cf. Hobbs, 1985). When
we are planning a trip, we view the road as a line. When we are driving on it, we view it
as a surface, and when we hit a pothole, it becomes a volume to us. In our use of natural
language we even employ this fact by being able to describe the same phenomenon at
different levels of granularity within the same discourse. Thus, we sometimes explicitly
shift perspective, i.e., shift the level of granularity to describe the same situation. This is
perhaps most obviously the case when we talk about time and space: “It is two o’clock.
In fact, it is two minutes after two.” In this sentence we shift to describe a time-point in
a more specific way. Suppose that we consider two models, M and M′ that are exactly
alike, except that they differ on the interpretation of a specific ordering relation, such
as ‘earlier than’, or ‘taller than’. When can we think of the one model, M′, as being
finer-gained than the other, M? The only reasonable proposal seems to be to say that M′

is a refinement of M with respect to some ordering ≥, M v M′, only if ∀x,y,z ∈ D: if
M′ |= x≥ y∧y≥ z and M |= x∼ z (with x∼ y iff x 6> y and y 6> x), then M |= x∼ y∧y∼ z.
This follows if we define refinements as follows: M′ is a refinement of M with respect
to ≥ iff VM(>)⊆VM′(>).

In the special case that the ordering relation is a weak order, this way to relate
different models in terms of a coarsening relation makes use of a standard technique.
Recall, first, that the relation ∼ is in that case an equivalence relation. In a coarser-
grained model M we associate each equivalence class in the finer-grained model M′ via
an homomorphic function f with an equivalence class of the coarse grained model M,
and say that M |= x > y iff ∀x′ ∈ f−1(x),y′ ∈ f−1(y) : M′ |= x′ > y′. But observe that
only a slight extension of the method can be used for other orders as well, in particular
for semi-orders (recall that a weak order is a special kind of semi-order). Thus we
say that M′ is a refinement of M with respect to � iff VM(�) ⊆ VM′(�). Notice that
if VM(�) ⊂ VM′(�), it means that in M more individuals are ∼-related than in M′. In
measure theoretic terms, it means that the margin of error ε is larger in M than it is in M′,
which is typically the case if in M′ more is at stake.22 Similarly, we say that M |= x� y
iff ∀x′ ∈ R(x),∀y′ ∈ R(y) : M′ |= x′ � y′, where R is a relation between elements of M
and M′ that preserves�.23 Suppose that the ordering is ‘(observably) P-er than’. Notice
that at M it only makes sense to say that Px∧¬Py in case M |= x �P y. Suppose that
in M the last individual in the extension of P is x, while y is the first individual in its
anti-extension. Does that mean that we have a clear cutoff-point for the extension of P?
It does not, if we are allowed to look at finer-grained models, where the domain of such
a finer-grained model might be bigger than the domain of M.

22I believe that much of what Graff (2000) discusses as ‘interest relative’ can be captured in this way.
23Meaning that if M |= x� y, then ∀x′ ∈ {z ∈ DM′ | xRz} and ∀y′ ∈ {z ∈ DM′ | yRz} : M′ |= x′ � y′.
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One can image a whole sequence of refinements of a model M0: M0 < M1 < · · · <
Mn . . .

24 It terms of it, we might define a definiteness operator to account for higher-
order vagueness.25 Say that Mi |= DPx iff ∀x′ ∈ {y ∈DM j | xRi jy} : M j |= Px′ (where M j
is the immediate refinement of Mi, and Ri j is a relation with domain Mi and range M j
respecting the ordering relations � in their respected models). Similarly, we might def-
ine a to be a borderline-case of P in Mi, Mi |=BPa, if it holds that Mi |=¬DPa∧¬D¬Pa.
Similarly for higher-order borderline cases.

Recall that Mi |=s Pa iff ∀d ∼P a : Mi |= Pd. Observe that there exists a relation
between Pa being stricty true in Mi, and Pa being definitely true in in Mi: Mi |=s Pa
iff Mi |= DPa iff ∀d ∈ {x ∈ DMi | aRi jx} : M j |= Pd. Similarly, Mi |=t Pa iff Mi |=
DPa∨BPa, i.e., if ∃d ∈ {x′ ∈ DM j | aRi jx′} : M j |= Pd. Notice that Mi 6|=s Pa does not
correspond with Mi |= ¬DPa, but rather with Mi |= D¬Pa.

7 Clusters, prototypes, and defining similarity
In Section 2 we started with an ordering relation and defined a similarity relation in terms
of it. But this is obviously not crucial for thinking about similarity, or resemblance. Sup-
pose we start out with a primitive similarity relation, ∼, that is reflexive and symmetric,
but not necessarily transitive. We can now think of a similarity class as a class of objects
S such that ∀x,y∈ S : x∼ y. A maximal such similarity class might be called a cluster.26

Clusters hardly play a role in categorization when starting out with one-dimensional
ordering relations like ‘taller than’, or ‘earlier than’. But they play a crucial role in cate-
gorization when more dimensions are at stake. Clusters can be tolerant, or strict. Let us
say that a cluster is tolerant in case Ct =d f {x ∈ D | ∃y ∈C : x ∼ y} 6=C, and strict oth-
erwise. If predicate P is interpreted by cluster CP, it holds that M |=t Pa iff a ∈Ct

P. We
can also define the strict version of a cluster, Cs

P =d f {x ∈CP | ∀y∈D : y∼ x→ y∈CP}.
It follows immediately that M |=s Pa iff a ∈Cs

P. Notice that if CP is strict, CP =Cs
P. In

general, the classical interpretation of P, [[P]] =CP, should be such that Cs
P ⊆ [[P]]⊆Ct

P.
Notice that by definition it holds that Ct

P ⊆CQ iff CP ⊆Cs
Q, which is again an interesting

relation between our dual concepts.
In terms of a similarity relation and a cluster, we can define a notion of a prototype.

First, define ‘�’ as follows: x� y iffd f {z∈D | z∼ x} ⊆ {z∈D | z∼ y}.27 Now suppose
that for a cluster C, there exists an element x ∈C such that ∀y ∈C : x� y. In such a case
it makes sense to call this element a prototype of C. Notice that it is well possible that
a cluster C has more than one prototype. It is useful to have such prototypes, because
it is taken to be much more effortful to represent meanings in terms of their extensions
than in terms of their prototypes. There need not be any loss involved: in Gärdenfors’
(2000) geometrical approach to meaning, for instance, the extension of a (set of) term(s)
can be derived from the prototype(s). But if a cluster has a prototype, something similar
(actually, something stronger) can be done here as well: the cluster C associated with

24Perhaps there is no most fine-grained model.
25For what it is worth, I feel that this is in the spirit of what is proposed by Fine (1975) and Keefe (2000).
26This definition of clusters follows the pattern of quasi-analysis proposed in Carnap (1961). I will ignore

Goodman’s (1951) well-known imperfect community problem of this construction in this paper.
27Notice that if we define x≈ y as true iff x� y and y� x, it immediately follows that ‘≈’ is an equivalence

relation, and, in fact, the indirect indistinguishability relation as defined by Goodman (1951) and Luce (1956).
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prototype xC is determined as the unique cluster such that x is an element of it. Notice
that being a prototype is something special, because there might well be two clusters, C1
and C2, such that ∃x∈C1,∃y∈C2 : x∼ y, i.e., Ct

1∩C2 6= /0 (or equivalently, C1∩Ct
2 6= /0).

‘Similarity’ is not an absolute notion: one pair of objects can be more similar to
each other than another pair. In geometrical models of meaning, similarity is measured
by the inverse of a distance measure d between two objects. In Tversky’s (1977) contrast
model, the similarity of two objects is determined by the primitive features they share,
and the features they differ on. Say that object x and y come with sets of primitive
features X and Y . If we only consider the features they share, the similarity of x and y
can be measured in terms of X ∩Y : x is more similar to y than v is to w iff f (X ∩Y ) >
f (V ∩W ), with f some real valued function monotone on ‘⊇’.28 Clusters as determined
above now depend on when we take two objects similar enough to be called ‘similar’.
If we fix this, we can determine what a cluster is, and what a tolerant cluster is. If C is a
cluster, there still might be some elements in C that are more similar to all other elements
of C than just ‘similar’. Following Tversky, we can measure the prototypicality of each
x ∈C as follows: p(x,C) = ∑y∈C f (X ∩Y ). A prototype of C is then simply an element
of C with the highest p-value.

Note that until now I started with a specific notion of similarity, perhaps explained
in terms of measurement errors, or a primitive idea of what counts as a relevant differ-
ence. But Tversky’s model suggests that we can explain our similarity relation in terms
of shared features. Take any arbitrary n-ary partition Q of the set D of all individuals.
Which of those partitions naturally classifies those individuals? Take any element q of
Q, and determine its family resemblance as follows: FR(q) = ∑x,y∈q f (X ∩Y ). Catego-
rization Q can now be called ‘at least as good’ as categorization Q′ (another partition of
D) just in case ∑q∈Q FR(q) ≥ ∑q′∈Q′ FR(q′). With Rosch (1973) we might now call X
a ‘basic category’ just in case X is an element of the best categorization of D. What is
interesting for us is that a best categorization Q can determine a level of similarity to be
the ‘basic’ one, i.e., to be ‘∼’. But first let us assume that a basic categorization is ‘nice’
in case ∀q,q′ ∈Q : min{ f (X ∩Y ) | x,y ∈ q} ≈min{ f (X ∩Y ) | x,y ∈ q′}.29 With respect
to such a ‘nice’ categorization Q, we can define the similarity relation as follows: x∼ y
iffd f f (X ∩Y )≥min{ f (V ∩W ) | v,w ∈ q}, for any q ∈ Q.

8 Conclusion
In this paper I argued that vagueness is crucially related with tolerant interpretation, and
that the latter is only natural for observational predicates. Still, most approaches dealing
with the Sorites in the end give up the principle of tolerance. I argued, instead, that
once tolerance plays a role, the entailment relation need not be transitive anymore. It
was shown how to make sense of this proposal by virtue of a paraconsistent language
and semantics, and how it relates to some of the standard analyses. Finally, I related our
analysis to some analyses of concepts in cognitive science.

28Tversky’s model is much more flexible than this; who allows for x to be more similar to y than y is to x.
29If we assume that ∀q,q′ ∈ Q : min{ f (X ∩Y ) | x,y ∈ q}> max{ f (X ∩Z) | x ∈ q,z ∈ q′}, categorization is

clearly analogous to Gaifman’s treatment to avoid the Sorites paradox. In fact, this principle is behind most of
the hierarchical structuring models: If one starts with a difference measure, one can show that if for all x,y,z :
d(x,y)≤ d(x,z) = d(y,z), then the set of objects give rise to a hierarchically ordered tree (cf. Johnson, 1967).
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