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Overview
At the basis of categorization theory stands the difference between sharp and vague con-
cepts. Sharp concepts are those for which categorial membership is an all-or-nothing
matter: a given object falls or does not fall under a sharp concept, and no intermediate
state is conceivable. For vague concepts, on the contrary, intermediate states are possi-
ble, and categorial membership becomes a matter of degree. This definition of vagueness
as opposed to sharpness conceals the fact that this notion is by no means a uniform one,
and that different types of vagueness coexist. The treatment of vague concepts therefore
depends of the type of vagueness these concepts instantiate. In this paper, we restrict
our attention to the family of concepts that are learnt and known through a list of defin-
ing features. Partial membership to the corresponding category then results from partial
membership relative to its defining features. In this elementary type of vagueness, we
show that the categorization process is fully accounted for by the construction of a mem-
bership order among the objects at hand, which, naturally defined for simple concepts,
can be easily extended to compound concepts, thus providing an interesting solution to
the problem of compositionality.

1 Introduction
In categorization theory, different models have been proposed to account for the notion
of concept. The classical model, formalized by Frege [2], identified concepts with func-
tions whose values were truth values. In this model, objects falling under a concept, that
is, objects the concept term is true of, form a mathematical set, called the category or
the extension of the concept. Membership to this set is in consequence given by a sim-
ple two-valued truth function, and set theory is viewed as the adequate tool to deal with
categorization. The inadequacy of this rudimentary model to capture phenomena like
the typicality effect inside a category, or the existence of a borderline between member-
ship and non-membership was pointed out by the work of Eleanor Rosch [14] and her
followers, who showed in particular the existence of vague concepts for which member-
ship cannot be an all-or-nothing matter. This led to several theories proposing different
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models aiming at a correct representation of the major domains of categorization theory
like categorial membership, typicality or resemblance.

In order to deal with the problem of vagueness, as early as 1965, Zadeh [18] intro-
duced fuzzy logic as a way to handle concepts for which membership could not be de-
cided on a simple IS-A procedure. Membership functions taking continuous or discrete
values in the unit interval were consequently substituted to the two-valued characteristic
function primitively associated with a category. Some drawbacks and counterintuitive
results pointed out by Osherson-Smith [11] and Kamp-Partee [5] led the researchers to
revise the initial fuzzy model and to look for alternative fuzzy logics displaying models
more suitable to represent membership relative to vague concepts (see [1] or [7] for a an
overview on the most recent work in this area).

For several reasons which will be explained in the next section, we shall depart from
the general framework in which categorization theory has progressed in recent years.
This paper will only focus on a very specific kind of concepts, and no general theory
will be elaborated. We shall circumscribe our work to a very particular area, being quite
aware that no generalization of our results is to be expected outside of the domain we
choose. This domain is restricted both to a specific family of concepts and to a specific
aspect of categorization theory: the class of concepts we are interested in, which we will
call definable, consists of the concepts that come to the knowledge of an agent through
a definition, that is with the help of simpler features; the categorization problem we are
interested in is restricted to that of categorial membership in the concerned class. The
solution we shall propose is therefore a particular one: we will show that, for definable
concepts, it is possible to account for categorial membership by means of a qualitative
ordering that compares the way the same concept may apply to different objects. This
ordering can then be extended to compound concepts in a way that fully conforms with
the intuition.

2 The notion of vagueness
The treatment of vague concepts suffers from an important drawback, which is its (de-
fault) assumption that vagueness is a uniform notion, and therefore bound to receive a
uniform treatment. This attitude is quite disputable, though, as the same term covers
different phenomena. For instance we may consider on the one hand concepts like to-
be-a-heap, to-be-tall, to-be-rich, and on the other hand, concepts like to-be-a-cause, to-
be-beautiful, to-be-a-lie. All these are vague concepts, but vagueness in the first group
stems from quantitative considerations, whereas these considerations are meaningless
for concepts of the second kind, which rather deserve to be qualified as qualitatively
vague. It is thus natural to expect a numerical treatment of membership in the first case
while looking for a different model in the second one.

The question then naturally arises whether we could use a criterion to characterize
these two kinds of concepts, and whether other distinctions could be made inside the
family of vague concepts. We observe however that, at this stage, we do not even have
at our disposal a clear way of distinguishing between vague and sharp concepts. Sev-
eral attempts have been conducted in the last decades to provide a strict definition of
vagueness. To say that ‘vagueness occurs whenever it is impossible to determine the
limit between membership and non-membership to the concerned category’ only leads
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to the conviction that vagueness itself is a vague notion. In [8], Lupu proposed to define
vagueness through membership functions: thus, a concept α would be vague if and only
if there existed objects x for which the sentence ‘x falls under the concept α’ was not a
Boolean proposition. It is interesting to note that this characterization does not imply by
itself the impossibility of deciding between membership and non-membership. At any
rate, we notice that the proposed definition implicitly assimilates vagueness with fuzzi-
ness as it treats this notion as a quantitative magnitude. A slight improvement in this
proposal could consist in considering as vague every concept α for which there exists
at least three objects to which α applies differently: this simple characterization would
avoid implicitly using membership functions that have not been themselves first defined.

These considerations tend to show that a general theory of vagueness is doomed
to fail. On the contrary, a study of the different kinds of vagueness together with the
search for an appropriate framework for each family of vague concepts constitute at
this stage a more promising approach. For this reason, we have chosen to focus our
study on a particular family of concepts that can be easily circumscribed, and whose
treatment appears possible and effective, without the need of any purpose-built complex
formalism.

3 Definable concepts
The family we have chosen to study includes concepts whose meaning—as grasped by
a given agent—can be learnt and understood with the help of simpler concepts that are
already part of the agent’s knowledge. We shall call these concepts ‘definable’. Such are
for instance scientific concepts, (a mammal is a ‘warm-blooded vertebrate that secretes
milk’, a Banach space is a ‘complete normed vector space’, a bird is a ‘vertebrate with
beak, wings and feathers’. . . ). Note that for each of these examples, it is possible to
find more than two objects to which the concept applies differently: being a vertebrate,
a fish, for instance, has more mammalhood than a worm, and less than a cow; a normed
(incomplete) vector space is not quite a Banach space but it is closer to it than, say, the
set of odd numbers; a bat, finally, has somehow more birdhood than a mouse although
it is definitely not a bird. Thus, following the avatar of Lupu’s definition proposed in the
preceding section, we see that these concepts should be considered as vague. Of course,
it may seem paradoxical to call vague a mathematical or a scientific concept. More
generally, we have the feeling that a precise definition should exclude vagueness rather
than create it. However, in the absence of any satisfying definition of vagueness, we
do not see any contradiction in considering definable concepts as constituting a specific
subfamily of vague concepts. In any case, our goal in this paper is not to argue for or
against the vagueness of a certain class of concepts, but to provide a suitable framework
to study their categorization properties.

Definable concepts may be considered as constituting the heart of the so-called at-
tributional view advocated by some authors in the late seventies [16] and [15], which
gave rise to the so-called binary model [10]. Following this theory, class membership
relative to a concept is accounted for by a set of defining features, while all questions
regarding typicality are taken care of through a (different) set of characteristic features.
It is only the former set that will retain our attention in the present paper, since our aim
is actually to provide a framework for categorial membership.
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The attributional view linked categorization problems relative to a concept with cat-
egorization relative to its defining features. For example, for a given agent, the concept
to-be-a-bird may be seen as a definable concept, being defined trough the concepts to-
have-a-beak, to-have-feathers, and to-have-wings. For this agent, the birdhood of a
given item x will be consequently analyzed through its membership relative to the three
mentioned defining concepts. Namely, the agent will estimate to what extent x may be
considered as having a beak, having feathers and having wings. Similarly, to quote an
example of Putnam [13], the meaning of the term tiger will be captured by reference
to the terms yellow feline, fierce, black stripes, and jungle: the defining features asso-
ciated with the concept to-be-a-tiger then consist of the concepts to-be-a-yellow-feline,
to-have-black-stripes, to-live-in-the jungle and to-be-fierce. The word tiger applies to
an item in as much as this item is a feline that is yellow with black stripes, fierce and
lives in the jungle.

The defining features of a concept constituted a set of (necessary and sufficient)
conditions that an item had to fullfil to be considered as a plain exemplar of this con-
cept; at the same time they provided information on items that only partly fell under it,
attributing to them an intermediate membership degree based on the number of defining
features they possessed. However research in this direction was soon abandoned be-
cause of the few uncontroversial examples proposed by the theory: concepts cannot be
generally learnt through a simple list of key-words. As we shall see, however, some im-
provement in the treatment of definable concepts generates a technique for membership
evaluation that can be carried over to a more general and much representative family of
concepts. This justifies our interest for this theory.

An interesting point with the theory of definable concepts is that it implicitly sup-
poses a complexity hierarchy between the target concept and the sources that are used
in the defining process. Indeed, a definition is effective only on condition that the terms
used in the explanation or the description of a new concept are themselves already part
of the agent’s knowledge. In this sense, associating with a particular concept a set of
features that help understanding it evokes the process of a dictionary or an encyclope-
dia, which renders theoretically possible the construction of complex concepts from a
well-defined set of primitive ones. In principle, we could thus introduce the notion of
concept constructibility: choosing once and for all a set of primitive concepts, the family
of constructible concepts can be iteratively enumerated by requiring that

1) primitive concepts are constructible

2) any concept presented with a defining set of constructible features is constructible

3) there are no other constructible concepts than those obtained through 1) or 2).

Such ‘constructible’ concepts were partly studied in [3] under the additional hypothesis
that primitive concepts on which the construction was based were sharp concepts. We
shall come back later to this notion of conceptual dictionary.

If a definable concept takes all its meaning and properties from its defining features,
its associated categorial membership must be inherited from the categorial membership
associated with these defining features. This raises the problem of determining whether
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and how a model could account for this passage from the extensional properties of the
defining features to those of the newly defined concept. But before addressing this
problem, we first need to explain our position concerning the mathematical formalism
that we think is best adequate for the study of categorial membership.

Categorial membership relative to a concept measures how strongly this concept
applies to the different objects that an agent has at his disposal. In general, the human
mind disposes of no tool to directly evaluate this magnitude: even though differences in
membership may be felt—one undoubtedly agrees for instance that a conventional bomb
would be more a weapon of mass destruction than a machine-gun—it is impossible,
except in some limit cases, to assign a precise number that would exactly measure the
membership or the non-membership degree of a given item. When directly questioned
what membership degree should be attributed to a machine-gun considered as a weapon
of mass destruction, an agent will be generally unable to provide a sensible answer:
what indeed could be the meaning of a sentence like ‘a machine-gun is a weapon of
mass destruction up to degree .35’? Similarly, an agent may be unable to assign a
precise membership degree to a sink as a piece of furniture, while being fully ready to
decide that this sink is ‘more’ a piece of furniture than a heat-pipe, and ‘less’ a piece of
furniture than a window.

As a matter of fact, the only thing the human mind is capable of concerning mem-
bership evaluation is to compare two objects and decide which one, if any, falls ‘more’
under the concerned concept. Thus, the concept to-be-a-weapon-of mass-destruction
will be generally considered as applying more to a machine-gun than to an arquebus,
and less to a spear than to an arquebus. Clearly, this judgement shows the existence
of a basic ordering induced by the concept to-be-a-weapon-of mass-destruction in the
universe of discourse, but this ordering is by no means a consequence of a supposed
degree assignment that the agent has set a-priori on the objects at his disposal. Natu-
rally such an assignment may be established by him once the collection of objects of
his universe has been displayed before him and comparison has been made between the
items of this collection. For instance, a non-decreasing ranking like bludgeon ≤ sword
≤ crossbow ≤ arquebus ≤ gun ≤ machine-gun ≤ flamethrower ≤ conventional bomb
≤ scud ≤ atomic bomb may yield a posteriori a membership degree of the concerned
items, which can be readily visualized on their position on a [0,1] scale: thus, an atomic
bomb will be considered as being 100% a WMD, a scud as 90%, a conventional bomb as
80% and so on. The point is that these numerical values will appear as a consequence of
a pre-recognized order among the different weapons that are part of the agent’s universe:
they won’t be at the origin of it.

Ordering relations therefore appear to provide the most adequate model to account
for categorial membership as perceived by a cognitive agent. Appealing systematically
to relations of this type whenever it is possible avoids the drawbacks, shortcomings or
counter-intuitive results that may result from the application of more sophisticated the-
ories. It is true that in some cases, order relations may be insufficient to fully treat cat-
egorial membership. Such will be for instance the case for fuzzy concepts, or for vague
concepts of a continuous type: for these concepts, interesting theories have been devel-
oped in different domains—fuzzy set theory, geometrical spaces, quantum mechanics.
But for the specific class of concepts studied in this paper, that of ‘definable concepts’,
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the family of order relations is sufficiently wide to perfectly model the problem of cate-
gorial membership.

With this in mind, the problem of determining how membership is transmitted to a
concept from its defining features transforms itself into that of understanding how the
different membership orders associated with the source features can melt into a single
target membership order.

The construction of such an order has already been proposed in [3] for the family of
concepts that can be recursively built out of a set of sharp primitives. We shall propose
a simplified construction for elementary definable concepts, that will then be extended
to compound concepts as well as to arbitrary definable concepts. But first a remark is
necessary.

As we mentioned, the theory of definable concepts suffers from an important draw-
back, which is its lack of convincing examples. Concepts tend to be not easily definable:
birdhood may be defined by a certain set of features that will be collectively possessed
by birds and only by birds, but this is not so for fishhood: naturalists failed to pro-
pose a list of features that would apply to and only to fish. One may also think of the
term knowledge, classically defined as justified true belief and thereafter subjected to
numerous criticisms. Moreover, definitions rarely boil down to a simple list of words:
disjunctions are frequently used, as well as negations, analogies or, even, examples.
Thus, natural kind concepts and usual artifacts are seldom, if ever, defined by a simple
enumeration of their most representative features, and the latter, when they exist, cannot
be systematically considered as simpler than the target concept. Nominal concepts may
be introduced through definitions—this is indeed the case for scientific concepts like
mathematic definitions or entities classifiers—but the items that intervene in this defini-
tion are organized in a dynamical sequential way, allowing a term to act on another, and
making use of constructors and modifiers. For this reason, it will be necessary to adapt
the apparatus used in the case of elementary definable concepts to a larger class that will
include non trivial examples of concept definitions. As we shall see, this task can be
achieved by translating the dynamical structure of a definition into an ordered sequence
of compound concepts built out through a determination operator, and to which we can
apply the construction elaborated in the case of elementary definitions.

4 Categorial membership for definable concepts
Before treating the general case of concepts introduced through a definition, we examine
the elementary case where both the structure of the definition and the defining terms used
in it are of the simplest form.

4.1 Elementary definable concepts
The family of elementary concepts that are part of the universe of an agent covers the
concepts that are brought to his knowledge through the help of several elementary (that
is non compound) concepts, which are already part of the agent’s knowledge. An ele-
mentary concept α is thus present in the agent’s mind together with a finite set ∆(α) of
defining features that are supposed to be simpler than α . From the point of view of the
agent, this set includes all the features that explain or illustrate α , helping to differentiate
it from its neighboring concepts. For instance, the meaning of tent may be explained to
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a child through the definition: tent = shelter made out of cloth; in the child’s mind, the
corresponding set ∆(α) would then consist of the concepts to-be-a-shelter, to-be-made-
of-cloth. Similarly, the defining feature set associated with the concept to-be-a-bird may
be the set {to-be-a-vertebrate, to-be-a-oviparous to-have-a-beak, to-have-feathers}, and
that associated with the concept to-be-carnivorous may consist in the concepts to-be-
an-animal and to-eat-meat. The definition of α is of an elementary type, consisting of
a simple list, and the elements of ∆(α) are elementary concepts that are supposed to be
less complex than the target concept α .

Our basic assumption concerning the concepts of ∆(α) is that they are part of the
agent’s knowledge, and that they are sufficient to enable him to acquire full knowledge
of the categorial membership associated with α .

From these two requirements, we see that the categorization process of a definable
concept results from the categorization process associated of its defining features. For in-
stance, to judge if a given object x is a bird, defined as a vertebrate that is oviparous, has
beak, wings and feathers, we have to evaluate its being a vertebrate, its being oviparous,
its having a beak and its having feathers.

Note at this point that the terms ’concept’ and ’feature’ cover different notions.
Formally, concepts are most often introduced through the auxiliary to-be followed by
a noun: to-be-a-bird, to-be-a-vector-space, to-be-a-democracy. Features may be pre-
sented through a verb (to-fly), the auxiliary to-have followed by a noun (to-have-a-beak),
or the auxiliary to-be followed by an adjective (to-be-tall). While concepts appear as
unary predicates, this condition is no more necessary for features, which may take ar-
bitrary forms. On the ground level, we know that features, like concepts, apply to the
objects at hand but, contrary to these latter, they borrow part of their significance from
the concept they are attached to. Properties like to-be-tall, to-be-rich, or to-be-red take
their full meaning only in a given context, that is when qualifying well-defined entities.
Even simple verbal forms like to-fly, to-run, to-live-in-water, to-be-made-of-metal need
a principal referent concept to fully seize the strength with which they apply to different
items. To summarize, we would say that the meaning of a feature depends on the context
in which this feature is used, contrary to the meaning of a concept which exists by itself.

It is true that, strictly speaking, features cannot be considered as concepts in the
sense of Frege. It is for this reason that they did not call the attention of researchers
in such different logical approaches of categorization theory like Fuzzy Logics, Formal
Concept Analysis and Description Logics. In these approaches indeed, concepts are
implicitly or not, assimilated to unary predicates, that are introduced through a noun (to-
be-a-bird), a verb (to-fly) or an adjective (to-be-yellow). In Description Logics binary
predicates characterize the roles of the language, which are used to express relationship
between the concepts [9]. Thus, to-be-a-tree will be a concept, expressible by a sin-
gle symbol A, but to-have-green-leaves is a ‘role’, expressed by a formula of the type
‘∀ hasLeaves.Green’. This distinction renders impossible the treatment of membership
for concepts defined by two-place predicates. In this paper, we shall nevertheless con-
sider that all features that are used to define or characterize a concept can be themselves
treated as concepts.
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Any feature defining a concept α will therefore be considered as inducing a mem-
bership order among the objects at hand that is meant to reflect the strength with which
the feature, taken in the context of α , applies to the items of the universe of discourse.
Note that in most cases, this strength can be measured through a total preorder that ranks
the objects of the universe on a finite scale. This is clearly true for fuzzy features like
to-be-tall, to-be-rich or to-be-warm, since the measure of their applicability is always
approximative (to an inch, a cent or a degree); this is even truer in the general process
of categorization: in the context of a given concept α , ranking the objects relatively to a
feature only yields a small number of non equivalent classes. To determine, for instance,
to which extent a flower may be considered as a poppy, one evaluates very roughly its
redness, its shape and the size of its petals. Comparison with other real or fictitious
objects shows only a finite number of ordered non equivalent classes of reds between
the color of that particular flower and that of an ideal poppy. Thus, in the context of a
poppy, there exists only a small number of possible degrees of redness.

Let us now come back to the notion of definable concepts. The feature sets associ-
ated with this kind of concepts cannot be totally arbitrary, because all the features that
define α must have ‘something in common’—namely the fact that they qualify a well
defined concept. We shall therefore assume as a basic property of the set ∆(α) that all
its elements apply together on at least one object: as we shall see, this will guarantee the
existence of objects that fully fall under α .

4.2 A social choice problem for membership inheritance
How precisely does a concept inherit its category membership from that of its defining
features ? For the reasons evoked above, the categorial membership induced by a con-
cept α will be best accounted for by a partial preorder, that is a reflexive and transitive
relation �α , which can be used as a comparison tool between the objects at hand. The
expression ‘x�α y’ will translate the fact that ‘the concept α applies at least as much to
object y as to object x’. We shall denote by≺α the corresponding strict partial order, that
is the irreflexive and transitive relation defined by x≺α y iff x�α y and not y�α x. This
relation can be used to translate the fact that α applies better (or more) to y than to x.

Our assumption is that the defining features of the concept α are part of the agent’s
knowledge; this means that the agent knows, for every concept γ of ∆(α), the structure
of the associated membership preorder �γ . As we noticed, this latter is supposed to be
connected (total): given two items x and y, either x�γ y, or y�γ x. The requirement that
the knowledge of the �γ ’s is sufficient to acquire knowledge of the target order relation
�α shows that �α should be naturally deduced from the �γ ’s.

It is interesting to observe that the problem of determining �α from the orders
�γ ’s is closely related with that encountered in social choice theory: there indeed, one
tries to aggregate individual votes concerning a certain number of candidates into a
general ranking ≤ of these candidates that would best approach the individual rankings
≤1,≤2, . . . ,≤n proposed by the voters. Our situation is somewhat similar: having to
decide if the definable concept α applies more to the item x than to the item y, we may
consider each of the defining features γ of α as a voter, examine successively if this
feature applies more to x than to y, and eventually use a decision procedure to conclude.
Some differences however deserve to be pointed out: the first one is that, in social choice
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theory, the preference relations ≤i as well as the resulting relation ≤ are supposed to be
total (connected) relations. On the contrary, from our point of view, and unlike what
happens in most categorization theories, we accept that the resulting α-membership of
two items may be incomparable. For instance, an agent may consider that the ‘birdhood’
of a tortoise cannot be compared with that of a bat, for the reason that tortoises, contrary
to bats, share with birds the fact they lay eggs and have a beak, while bats, contrary to
tortoises, share with birds their having wings and being warm-blooded. No comparison
should therefore be made between these two items, as far as birdhood is concerned. A
second difference is that, in categorization theory, one looks for a membership order that
best models a known fact, namely the behavior of an intelligent agent while, in social
choice, one tries to determine an abstract and general procedure for aggregating votes
under some well defined constraints—an impossible task in the general case, as shown
by Arrow’s famous theorem. Note also that the constraints we are dealing with are
different from those encountered in social choice: for instance, the fact that all defining
features of a definable concept should apply simultaneously to at least one object would
impose that, in all elections, there should be one candidate on which all voters agree.

Of course, the simplest way to build the relation�α from the relations�γ , γ ∈∆(α),
would be to take their intersection, simply setting�α= ∩γ∈∆(α) �γ . This would amount
to considering that the concept α applies no more to x than to y if such is the case for
every defining feature of α . An alternative to this skeptical approach would consist
in ‘counting the votes’, and set x �α y if the number of defining features γ such that
x �γ y is at least as great as the number of defining features δ such that y �δ x: this
non-transitive relation leads to the so-called Condorcet method. However, the fact that
in these approaches, the defining features of α are all given equal importance forbids
their adoption, not mentioning the side drawbacks that these procedures may carry. In
categorization theory indeed, the defining features of a concept are rarely considered by
an agent as equivalent. Thus, each of the sets ∆(α) is usually presented with a salience
relation between its elements, which is adequately translated by a strict partial order on
∆(α). For instance, a particular agent may associate with the concept to-be-a-bird the
defining set {to-be-a-vertebrate, to-be-oviparous, to-have-feathers, to-habe-a-beak, to-
have-wings}, considering furthermore that having wings is a more important feature for
birdhood than having a beak. For this agent consequently, a bat would be given more
birdhood than a tortoise.

We therefore have to deal with the presence of voters whose voices have different
importance. When this difference is quantifiable, that is, when it can be translated by
a natural number that corresponds to an importance rank, it can be accounted for by a
simple perequation: the voice of a voter of rank i will weigh i times that of an ‘ordinary’
voter. Alternatively, it is also possible to attach to each defining feature of α its cue
validity probability: given a defining feature β ∈ ∆(α), its cue validity is the probability
P(α/β ) that an object x falls under α , knowing that it has the feature β . Then, the
membership degree of an object x, defined as the probability that x falls under α , can be
computed as the sum Σβ P(α/β )P(β ). However, in our case, there is no reason why the
defining features of a concept should be attributed such a numerical rank of importance
or such a degree of probability: again, an agent may be quite able to compare the relative
salience of two features of a concept without being able to associate a degree to these
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saliences. Apart from this pragmatic inability, salience may be simply not expressible
by a gradation. For instance, taking again the concept to-be-a-bird and its defining set
{to-be-a-vertebrate, to-be-oviparous, to-have-feathers, to-have-a-beak, to-have-wings},
suppose we equip this set with an order that renders having-wings more salient than
having-a-beak, all other features being incomparable. Clearly, any grading function on
∆(α) consistent with this order would attribute a greater rank to the feature having-wings
than to the feature to-be-oviparous, thus making these two features comparable in ∆(α),
which they were not supposed to be.

Except for some specific cases, we therefore have to work with a completely arbi-
trary salience relation on ∆(α). We will only assume that this salience is translated by a
strict partial order in ∆(α). Our task is to build a voting procedure that takes into account
the relative importance of the voters, so that, in case of conflict, the voice of a subordi-
nate can be overruled by that of a hierarchical superior. This may be done through the
simple following idea which simplifies the construction proposed in [3]: a candidate y
will be declared at least as good as a candidate x if for any voter that prefers x to y there
exists a more important voter that prefers y to x. Formally this yields the relation:

x�α y iff for each feature γ ∈ ∆(α) such that y≺γ x there exists a feature δ ∈ ∆(α),
δ more salient than γ , such that x≺δ y.

This relation �α is clearly reflexive; its transitivity follows from the connectedness of
the membership preorders �γ .

The corresponding strict partial order is then defined by

x≺α y if and only if x�α y and there exists a feature γ ∈ ∆(α) such that x≺γ y.

EXAMPLE 1 Let α be the concept to-be-a-bird, with associated defining feature set
∆(α)={to-be-an-animal,to-have-two-legs,to-lay-eggs,to-have-a-beak,to-have-wings},
all features being considered as sharp by the agent. Suppose that the salience order is
given by the Hasse diagram, to be read bottom-top:
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Let us compare the relative birdhood of a sparrow, a mouse, a tortoise, a bat, a
dragonfly and a plane, respectively denoted by s, m, t, b, d and p.
In order to determine the induced membership order, we build the following array:

two-legs lay-eggs beak wings animal
sparrow ? ? ? ? ?
mouse ?

tortoise ? ? ?
bat ? ? ?

plane ?
dragonfly ? ? ?

We readily check that d ≺α s, m ≺α t, and m ≺α b. Note that we have b �α d, since
the concept to-have-two-legs under which the bat falls, contrary to the dragonfly, is
dominated by the concept to-lay-eggs that applies to the dragonfly and not to the bat. On
the other hand, we do not have d�α b, as nothing compensates the fact that the dragonfly
lays eggs and the bat does not. This yields b≺α d. Similarly, we have p≺α m. We also
remark that the tortoise and the bat are incomparable, that is, we have neither b �α t,
nor t �α b.

The strict α-membership order induced on these six elements is therefore given by
the following diagram:

The construction of the (pre)order ≺α we presented in this section is simpler and more
intuitive than that proposed in [3]. It renders possible a computation of the target mem-
bership order directly from the membership orders induced by the defining features. It
successfully takes care of the salience order on ∆(α) even in the cases where this order
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cannot be expressed by a degree or a rank of importance among the defining features of
α . However, in some situations, the results this order leads to may seem disputable: this
happens in particular in the case where the concept α is defined by a significant number
of features that are all equally salient except for a particular one, which is more salient
than all others. Then if this particular attribute applies less to x than to y, we will have
x≺α y, even in the case where every other defining feature δ applies more to x than to y.
The situation is analogous to an election where, because of his rank, a single individual
could dictate his preferences to everybody.

Although it is rarely the case that ∆(α) consists of a single salient feature opposed
to a bunch of non salient ones, it may be useful to consider an alternative to the above
construction so as to take into account the number of voters that prefer a candidate to
another one. This can be done by requiring that a candidate y cannot be preferred to
a candidate x unless, for any group of voters that prefer x to y, there exists an equally
numerous group of more salient voters that prefer y to x. In other words we consider
now the relation ≤α defined by:

x≤α y if for each sequence of distinct elements κ1,κ2, . . .κn of ∆(α) such
that y≺κi x, there exists a sequence of distinct elements γ1,γ2, . . .γn of
∆(α), γi more salient than κi, such that x≺γi y.

In this situation, each voter may see his decision overruled by a personally attached
direct superior, but the voice of a single voter, be it the most important of all, cannot
overrule more than one voice.

The relation ≤α is clearly reflexive. It is not in general transitive. We shall denote
by �?

α its transitive closure. This latter yields the desired new membership preorder.
Note that we have �?

α⊆�α and similarly ≺?
α⊆≺α . When the salience order on ∆(α) is

empty, both membership orders �α and �?
α boil down to the intersection ∩γ∈∆(α) �γ .

4.3 Defining membership through membership orders

It is now possible to precisely define the notion of (full) membership: we shall say
that an object x ‘falls under the concept α’ if x is ≺α -maximal among the objects that
form the universe of discourse, that is if there exists no object y such that x≺α y. This is
equivalent to saying that x is≺α -maximal in this set. When this is the case, x will be said
to be an instance or an exemplar of α . This definition by means of maximal membership
conforms with the intuition: an object x (fully) falls under a concept α if α cannot
apply more to an object y than to x. It has as a consequence that, whatever salience
order is set on ∆(α), an object falls under the definable concept α if and only if it falls
under each of its defining features.1 We find thus again the classical characterization
of a defining feature set as a set of features that are ‘individually necessary and jointly
sufficient to ensure membership relative to α’. We shall denote by Ext α the set of
all objects that fall under α; this set forms the extension or the category associated
with α .

1We use here the assumption made at the end of Section 4.1 that there exists at least one object that falls
under all the features of α .
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Contrary to full membership, partial membership cannot be directly defined from
the membership orders ≺α or ≺?

α . However, it is possible to introduce the notion of a
membership distance, which can be used to measure ‘how far’ an object x stands from
falling under α (see [3] for details). For this purpose, it is enough to consider the number
of objects that can be possibly inserted between x and an exemplar of α: more precisely,
the ≺α -membership distance µα of an object x is defined as the maximal length of a
chain x ≺α x1 ≺α x2 ≺α · · · ≺α xn. Such a chain must necessarily end up with an el-
ement of Ext α since, given any object x not falling under α , it holds x ≺α z for any
exemplar z of α .

EXAMPLE 2 Let us consider the preceding example and denote by µbird the member-
ship distance of an object x to the category birds. Then we have µbird(t) = 1 because,
except birds themselves, there exists no oviparous animal with beak that would have
two legs or that would have wings. Similarly, we have µbird(d) = 1, since there exists
no animal x such that d ≺bird x ≺bird s. Since the bat falls under three out of the five
elements of ∆bird we have necessarily µbird(b) < 3, and the inequality b ≺bird d ≺bird s
then yields µbird(b) = 2. As for the mouse, we have m ≺bird b ≺bird d ≺bird s, but this
is not a chain of maximal length. For instance, noting that men have two legs, we also
have the chain m≺bird k≺bird b≺bird d ≺bird s, where k denotes a man. This shows that
µbird(m) ≥ 4, and thus µbird(m) = 4 since, among the animals, only four features are
sufficient to define a bird (we recall that all these features are supposed to be sharp). As
a consequence, we have µbird(p) = 5.

Note that an object falls under α if and only if its membership distance is null. Clearly,
given two objects x and y with x ≺α y, the membership distance of y will be smaller
than that of x. The converse is generally not true, though: y may be closer to Ext α

than x without being comparable with it. In this sense the information provided by
the membership distance is not as precise as that provided by membership functions.
However, it is interesting to observe that the membership distance provides a threshold
for categorial membership: if x has membership distance equal to 1, and y falls more than
x under α , then it must be the case that y is an exemplar of α . In the above example, any
object that has more birdhood than a tortoise is necessarily a bird.

5 The case of compound concepts
Elementary concepts give rise to compound ones through different combinations. The
simplest one is the ordinary conjunction, &, which corresponds to a simple juxtaposi-
tion of terms, as in (to-be-green)&(to-be-light). Theoretically, it should be possible to
consider also logical operations like concept negation or concept disjunction, but the
pseudo-concepts to which these operations lead may end up into meaningless notions,
e.g. concepts with no prototypes, or concepts with empty extensions.

We shall therefore only examine concept conjunction, and moreover restrict our-
selves to the case where the resulting pseudo concept α&β has a non-empty extension:
that is, we suppose given two concepts α and β such that Ext α ∩Ext β 6= /0. The mem-
bership order on the conjunction α&β is set by considering the (fictitious) associated
defining feature set ∆(α&β ) = {α,β}, which we equip with an empty salience order.
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We have therefore x�α&β y iff x�α y and x�β y; similarly we define the relation�?
α&β

by x�?
α&β

y iff x�?
α y and x�?

β
y: thus, the membership order of the conjunction is just

the intersection of the membership orders of its components. For instance, given two
individuals x and y, x is considered as no more a physician-and-a-Parisian than y if x is
no more a physician than y and at the same time no more a Parisian than y. Note that we
have �α&α=�α=�?

α&α

Let us define the extension of α&β as the set of all ≺α&β -maximal elements. The
hypothesis made on Ext α and Ext β implies that this set is also the set of all ≺?

α&β
-

maximal elements. We easily check that full membership is compositional in the sense
that Ext α ∩Ext β = Ext α&β .

It is interesting to observe that the relations �α&β and �?
α&β

can be directly recov-
ered by assigning to the concept α&β a defining feature set equal to the disjoint union of
∆(α) and ∆(β ). More precisely, let ∆̃(α) be the set {(γ,α);γ ∈ ∆(α} equipped with the
salience order that makes (γ,α) more salient than (δ ,α) if and only if γ is more salient
than δ . Similarly set ∆̃(β ) = {(δ ,β );δ ∈ ∆(β} with the same corresponding salience
order. The structure of these sets emphasizes the fact that features are in general de-
pendent of the concept they apply to. Consider now the set ∆̃(α&β ) = ∆̃(α)∪ ∆̃(β )

with the salience order that extends those of ∆̃(α) and ∆̃(β ) and is empty elsewhere.
The membership order induced by the concept α&β with associated defining feature set
∆̃(α&β ) is then exactly the order �α&β .

More interesting than the simple conjunction of two concepts is, in the framework
of categorization theory, the modification or the determination of a concept by another
one. In [3] we have introduced a specific connective called the determination operator,
that can be used to account for the modification of a principal concept α by a modifier
β . This determination, denoted by β ?α , is most often translated by the combination of
an adjective or an adjectived verb with a noun (e.g. the concepts to-be-a-carnivorous-
animal, to-be-a-flying-bird, to-be-a french-student, to-be-a-red-apple), but it can also
be rendered by a noun-noun combination (eg. to-be-a-pet-fish, to-be-a-barnyard-bird).
Typically, in the compound concept β ?α , the main concept α is defined through a
predicate of the type to-be-x, while the accessory concept β is of the form to-have-the-
property-y.

It is important to keep in mind that we consider only the conceptual combinations
that are intersective: the objects that fall under the composed concept β ?α are exactly
those that both fall under α and under β . Thus, and to mention the best known examples,
the determination connective cannot be used to form complex concepts like to-be-a-
brick-factory, to-be-a-criminal lawyer or to-be-a-topless-district: indeed, a brick factory
need not be a factory that is made out of bricks, a criminal lawyer not a lawyer that is
a criminal, and a topless district not a district that is topless (see [5] for the distinction
between intersective and non-intersective modifiers). Note also that the intersection
condition forbids us to consider a concept like to-have-green-leaves as the determination
of the concept to-have-leaves by the concept to-be-green.
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Some determinations that are not properly intersective may nevertheless benefit
from our treatment of concept determination. Consider for instance a concept like to-
be-a-good-violinist. We do not have intersection properly here, since a good violinist
is not somebody that is good and that is violinist. However, we have to remember that
features take part of their meaning from the concepts they are used with. Here the fea-
ture used as a modifier, good, takes the meaning to-play-well, and a good violinist is a
violinist that plays well. Thus, setting α for the principal concept to-be-a-violinist and β

for the modifier to-play-well-the-violin we can consider that the meaning of the concept
to-be-a-good-violinist is correctly translated by the composition β ?α .

Modified concepts are generally not definable, and they are not brought to the
agent’s knowledge with the help of a defining features set. It is not difficult however
to extend the order �α defined in the preceding paragraph to this family of concepts.
The construction of the membership order induced by β ?α is obtained by attaching to
this concept the (fictitious) set of features ∆(β ?α) = {β ,α} equipped with an order
that makes α more salient than β . We have thus x�β?α y iff x�α y and either x≺α y, or
x�β y. This construction yields a preorder that takes into account the predominance of
the principal concept α . In this model, the concept to-be-a-flying-bird will be considered
as applying more to a penguin than to a bat. Note that we have again�α?α =�α =�?

α?α .
As in the case of the conjunction, we observe that the relation �β?α may be d

through the disjoint union of ∆(α) and ∆(β ), equipped with an order that extends their
respective salience orders, making furthermore any element of ∆(α) more salient than
any element of ∆(β ).

5.1 Structured defining sets
As we already mentioned, the defining set associated with a (definable) concept cannot
be simply described by means of a list of features. Rather, these features are most often
articulated through some operators or constructors. The description of a term can also
make use of locutions like on which, through which, etc. The key words that intervene
in the definition of a concept are at any case constituted by a certain number of nouns,
verbs, and modifiers, to which an apparatus consisting of auxiliary verbs, pronouns,
locutions and ingredient markers provides the final Gestalt.

Similarly, a conceptual dictionary cannot be expressive if it does not propose, to-
gether with its set of primitive concepts, a structure or a grammar that helps extending
the meaning of an enumeration of defining features. This fact has already been under-
lined by Ray Jackendoff [4] and Anna Wierzbicka [17]. In particular, in her research on
a Natural Semantic Metalanguage (NSM), Wierzbicka and her followers proposed, to-
gether with a list of conceptual primitives, a list of conceptual elementary structures that
constitute the syntax of this (meta)language (For an introduction to Wierzbicka work,
see [12] or [6]).

Categorial membership clearly becomes more difficult to evaluate when the defini-
tion by which is introduced the target concept rests on a non-trivial subjacent grammar.
As an example of the problems encountered in this situation, let us consider the follow-
ing (structured) definition of maple:

‘a tall tree growing in northern countries, whose leaves have five points, and the resin
of which is used to produce a syrup’.
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Figure 1. Definition tree for maple.

Among the features listed in this definition, only that of tree directly applies to
the target concept maple. All the other ones are linked with some secondary concepts:
thus, tall refers to tree, to-have-fivepoints refers to leaves, northern refers to country,
and syrup refers to resin. The key features that intervene in this definition are the con-
cepts tree, tall, northern, fivepoints, syrup. The apparatus is encapsulated by the se-
quence: is a + key-feature, that is + key-feature, whose growing country is + key-feature,
whose shape of leaves is + key-feature, whose resin produces + key-feature. We can for-
malize the whole definition by a tree in which the edges translate the verbs used in
the definition process, and where the nodes underlined in roman letters stand for the key
features and those in italics indicate the auxiliary concepts used in the Gestalt (Figure 1).

It is clear that the membership of an object x relatively to the concept to-be-a-maple
not only depends on its own membership relative to the concept to-be-a-tree, but also
depends on the membership of other objects (the leaves of x, the resin of x) relative to
auxiliary concepts (to-have-five-points, to-provide-a-syrup): it is not the object x itself
that may be qualified as having fivepoints but the auxiliary object ‘leaves of x’. We see
in this example an important difference with the simple defining features sets used in the
preceding section, where the membership of an object relative to the target concept was
directly evaluated through the membership of this same object relative to the defining
features.

The problem is now that the auxiliary objects that correspond to the auxiliary con-
cepts may simply not exist for the chosen item x whose membership is to be evaluated:
thus, it may be the case that x is not a tree, or that x is a pine-tree and has no leaves,
in which case it is meaningless to pretend to evaluate the membership of its leaves rel-
ative to the concept to-have-fivepoints. This observation seems to ruin any attempt to
evaluate an item’s membership through the elementary key-features that intervene in its
definition when the defining feature set is not presented as a simple list.

Fortunately, in a great number of cases, we can still use the (complex) auxiliary
features, provided we do not systematically try to break them down into elementary
components. Let us take again the maple example: we may interpret its definition by
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saying that an object x is a maple if it is a tree that is tall, if it has a growing country that
is northern and if it has resin that produces syrup. This translation enables us to consider
the membership of the same single object, x, relative to the four compound concepts (to-
be-tall)?(to-be-a-tree), to-have-a-((northern)?(growing-country)), to-have((five points)
?(leaves)), to-have-a-((producing syrup)?(resin)). The first concept—(to-be-tall)?(to-
be-a-tree)—is obtained through a determination, and its application to any object will
be evaluated from that of the concepts to-be-a-tree and to-be-tall, as shown in Section 5.
As for the other ones, we have to consider them as complex indecomposable concepts:
there exists indeed no way to compute their associated membership through that of their
constituents: similarly, the concept to-eat-a-red-apple cannot be simply formed through
the concepts to-eat, to-be-an-apple and to-be-red. We find here again the difference of
treatment between one-place and two-place predicates.

In order to compare the respective maplehood of two items, we will therefore have to
compare their respective memberships relative to each of these four concepts. Note that
this again amounts to associating with the target concept to-be-a-maple a set of defining
features: this set simply consists of the concepts: to-have-a-(producing syrup)?(resin),
(to-be-tall)?(to-be-a-tree), to-have-a-(northern)?(growing-country), to-have(five points)
?(leaves), on which a salience order may be set as in the elementary case.

These observations show that, in the general case, it is possible to account for the
categorial membership associated with any definable concept whose structured defini-
tion can be modelled by an ordered set of simple or compound concepts. For such a
concept α we will simply define the membership order ≺α as one of the orders defined
in paragraph 4.2.

As we see, the evaluation of the categorial membership order relative to a much
larger family of concepts than those that can be elementarily definable is now possible.

5.2 Conceptual dictionaries
In this final section, we examine the theoretical case of concepts that can be recursively
defined from a fixed set of primitive concepts. Formally, we suppose given a fixed set of
concepts C together with a defining function ∆ from C into the set ℘0(C ) of all finite
subsets of C : this function associates with every concept α of C a subset ∆(α) that,
when non empty, gathers the defining features of α . The elements of C whose image
by ∆ is the empty set are the primitive concepts of the dictionary constituted by the
pair (C ,∆). Primitive concepts are characterized by the fact that they cannot be learnt
through other concepts: they have no defining features, they are presented as a whole.
The defining function ∆ is supposed to be effective and non-redundant, in the sense that
a finite number of operations should be sufficient to define any concept of C from the
primitive ones. To be more precise, we require the following condition of Finite Delta
Sequences to be satisfied by the dictionary:

(FDS): any sequence α0, α1, . . . ,αn−1, αn, . . . with αi ∈ ∆(αi−1) is finite.

Let α <∆ β be the relation on C defined as:

α <∆ β if there exists a sequence α = α0 ,α1 , . . . ,αn−1 ,αn = β such that for all
i < n−1, αi ∈ ∆(αi+1).
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The relation ‘α <∆ β ’ may be read as ‘α is simpler than β ’: indeed, it translates the fact
that α intervenes in the definition of β , and thus must be more accessible to the agent.

The (FDS) condition readily implies the following properties:

• The graph determined by the function ∆ is acyclic

• <∆ is a strict partial order

• Every <∆-descending chain is finite

• The <∆-minimal elements are the primitive elements of C .

Given a concept α of C , a defining chain for α is a descending chain from α that has
maximal length. By condition (FDS) such a chain necessarily ends up with a primitive
concept, which can be considered as a root of α . Its length measures the complexity of
the concept α .

The membership order associated with a concept α of the dictionary depends on the
membership orders associated with all the elements β that intervene in its definition, that
is all the elements β such that β <∆ α . Using the construction proposed in the preced-
ing paragraph, it is theoretically possible to compute the α-membership order from the
orders associated with all the primitive elements γ such that γ <∆ α . However, the pro-
cedure is complex because it requires to take into account the salience orders of all the
sets ∆(β ), β <∆ α . It is only in the particular case where these salience orders are empty
that the membership order associated with α can be directly computed from its roots.

Things are simpler if we restrict ourselves to the problem of determining the exten-
sion of α , that is the set of all objects that fall under α: we have indeed the equality
Ext α =

⋂
Ext γ , where the intersection is taken over all the roots of α . An object there-

fore falls under a concept of the dictionary if and only if it falls under all its roots. Full
membership can be thus totally evaluated at the ground level.

6 Conclusion
Concept definitions through defining features provide an interesting and effective tool
for the study of problems linked with categorization theory. They render possible the
construction of a purely qualitative membership order that enables to compare the mem-
bership of two objects relative to a given concept. This order, that takes into account the
relative salience of the different features by which a concept is defined, can be extended
to complex concepts built through juxtaposition or determination. It enjoys composi-
tional properties and yields the extension of a composed concept as the intersection of
the extensions of its components. These results can be extended to concepts whose defi-
nition requires the use of a simple subjacent structure, and provide an interesting insight
on the extensional properties of conceptual dictionaries. However, one has to be aware
that this study only concerns the family of concepts for which exists a definition, which
is not the case for all concepts. Also, categorial membership in itself is not sufficient to
account for problems that go beyond the extensional treatment of concepts: in particu-
lar, problems linked with prototype or resemblance theory need more sophisticated tools
than those provided in this work.
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