
Reasoning About Uncertainty of Fuzzy Events:
An Overview
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1 Introduction and motivations
Similarly to many areas of Artificial Intelligence, Logic as well has approached the def-
inition of inferential systems that take into account elements from real-life situations. In
particular, logical treatments have been trying to deal with the phenomena of vagueness
and uncertainty. While a degree-based computational model of vagueness has been in-
vestigated through fuzzy set theory [88] and fuzzy logics, the study of uncertainty has
been dealt with from the measure-theoretic point of view, which has also served as a
basis to define logics of uncertainty (see e.g. [57]).

Fuzzy logics rely on the idea that truth comes in degrees. The inherent vagueness in
many real-life declarative statements makes it impossible to predicate their full truth or
full falsity. For this reason, propositions are taken as statements that can be regarded as
partially true.

Measures of uncertainty aim at formalizing the strength of our beliefs in the occur-
rence of some events by assigning to those events a degree of belief concerning their
occurrence. From the mathematical point of view, a measure of uncertainty is a func-
tion that assigns to each event (understood here as a formula in a specific logical lan-
guage LC) a value from a given scale, usually the real unit interval [0,1], under some
suitable constraints. A well-known example is given by probability measures which try
to capture our degree of confidence in the occurrence of events by additive [0, 1]-valued
assignments.

Both fuzzy set theory and measures of uncertainty are linked by the need of interme-
diate values in their semantics, but they are essentially different. In particular, in the field
of logics, a significant difference between fuzzy and probabilistic logic regards the fact
that, while intermediate degrees of truth in fuzzy logic are compositional (i.e. the truth
degree of a compound formula ϕ ◦ψ only depends on the truth degrees of the simpler
formulas ϕ and ψ), degrees of belief are not. In fact, for instance, the probability of a
conjunction ϕ ∧ψ is not always a function of the probability of ϕ and the probability of
ψ . Therefore, while fuzzy logics behave as (truth-functional) many-valued logics, prob-
abilistic logics can be rather regarded as a kind of modal logics (cf. [50, 51] for instance).
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The conclusion arising from the above mentioned differences is that the degree of
truth of a formula cannot be understood, in general, as the degree of belief of the same
formula. Still, we can interpret the degree of belief of a formula ϕ as the degree of truth
of the modal formula Pϕ that states that ϕ is plausible or likely.

This approach was first suggested by Hájek and Harmancová in [55], and later fol-
lowed by Hájek, Esteva and Godo in [54, 52, 44, 45] where reasoning under uncertainty
(modelled by probabilities, necessity and possibility measures, or even Dempster-Shafer
belief functions) with classical propositions was captured in the framework of t-norm
based logics. Indeed, given an assertion as “The proposition ϕ is plausible (probable,
believable)”, its degree of truth can be interpreted as the degree of uncertainty of the
proposition ϕ . In fact, the higher our degree of confidence in ϕ is, the higher the degree
of truth of the above sentence will be. In a certain sense, the predicate “is plausible
(believable, probable)” can be regarded as a fuzzy modal operator over the proposition
ϕ . Then, given a class of uncertainty measures, one can define modal many-valued for-
mulas Mϕ , whose interpretations are given by real numbers corresponding to the degree
of uncertainty assigned to ϕ under measures µ of the given class. Furthermore, one can
translate the specific postulates governing the behavior of particular classes of uncer-
tainty measures into axioms on the modal formulas over a certain t-norm based logic,
depending on the operations we need to represent.2

This logical approach to reason about uncertainty was also adopted to treat condi-
tional probability in [71, 46, 47]; (generalized) conditional possibility and necessity in
[67, 68]; and simple and conditional non-standard probability in [39]. A generalized
treatment for both simple and conditional measures of uncertainty over Boolean events
that covers most of the above ones was given by Marchioni in [69, 70].

Our aim, in this overview paper, is to give a comprehensive logical treatment of
several generalizations of main classes of measures of uncertainty over fuzzy events. In
particular, we will show how it is possible to represent and logically formalize reasoning
about classes of measures such as probabilities, plausibility, possibilities and necessities
over several classes of many-valued events. Fuzzy logics provide a powerful framework
to handle and combine fuzziness and uncertainty. Indeed, in such logics the operations
associated to the evaluation of the connectives are functions defined over the real unit
interval [0,1], that correspond, directly or up to some combinations, to operations used
to compute degrees of uncertainty. Then, such algebraic operations can be embedded
in the connectives of the many-valued logical framework, resulting in clear and elegant
formalizations.

This article is organized as follows. In Section 2, we provide the necessary logical
background for the different fuzzy logics we will use throughout the paper. In Section 3,
we introduce the basic concepts regarding some classes of measures over non-classical
events. In Section 4, we deal with several modal expansions of particular fuzzy logics
to treat classes of measures over fuzzy events. In Section 5, we study how to expand
the language of those modal fuzzy logics by adding truth constants from the rational
unit interval [0,1]. In Section 6, we rely on those modal expansions to characterize,
in purely logical terms, the problem of extending a partial uncertainty assignment over

2Needless to say, there are logics that are better suited than others to express the axioms of specific uncer-
tainty measures, since some logics are not rich enough to capture the particular behavior of certain measures.
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fuzzy events to a measure over the whole algebra they generate. We conclude with
Section 7, where we discuss further and complementary readings about the topic of
uncertainty measures over non-classical many-valued events.

2 Logical background
In this section, we introduce the background notions concerning the logic MTL [29], its
extensions and expansions.

2.1 Core and ∆-core fuzzy logics
The language of MTL consists of a countable set V = {p1, p2, . . .} of propositional vari-
ables and a set of connectives LC = (&,→,∧,⊥) of type (2,2,2,0). The set FmV of
formulas defined from the variables in V and the above connectives is built with the
usual inductive clauses.

MTL has the following axiomatization:

(A1) (ϕ → ψ)→ ((ψ → χ)→ (ϕ → χ)) (A2) ϕ &ψ → ϕ

(A3) ϕ &ψ → ψ &ϕ (A4) ϕ ∧ψ → ϕ

(A5) ϕ ∧ψ → ψ ∧ϕ (A6) ϕ &(ϕ → ψ)→ ϕ ∧ψ

(A7a) (ϕ → (ψ → χ))→ (ϕ &ψ → χ) (A7b) (ϕ &ψ → χ)→ (ϕ → (ψ → χ))
(A8) ((ϕ → ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ) (A9) ⊥→ ϕ.

The only inference rule of MTL is modus ponens: from ϕ and ϕ→ ψ , infer ψ . A proof
in MTL is a sequence ϕ1, . . . ,ϕn of formulas such that each ϕi either is an axiom of
MTL, or follows from some preceding ϕ j,ϕk ( j,k < i) by modus ponens. As usual, a
set of formulas is called a theory. We say that a formula ϕ can be derived from a theory
Γ, denoted as Γ `MTL ϕ , if there is a proof of ϕ from a set Γ′ ⊆ Γ. A theory Γ is said to
be consistent if Γ 6`MTL ⊥.

Other definable connectives are the following:

ϕ ∨ψ is ((ϕ → ψ)→ ψ)∧ ((ψ → ϕ)→ ϕ),
ϕ ↔ ψ is (ϕ → ψ)& (ψ → ϕ),
¬ϕ is ϕ →⊥,
> is ¬⊥.

We also use the following abbreviation: for all n ∈N, and for every ϕ ∈ FmV , ϕn stands
for ϕ & . . .& ϕ (n-times).

DEFINITION 1 (1) Let ϕ(p1, . . . , pk) be a formula in FmV . Then the axiom schema
defined by ϕ is the set of all those formulas in FmV that can be defined from ϕ by
substituting every propositional variable pi occurring in ϕ , by a formula ψi ∈ FmV .

(2) A logic in the language LC is said to be a schematic extension of MTL if its
axioms are those of MTL plus additional axiom schemas, with modus ponens as the
unique inference rule.

(3) Consider a language LC′ ⊃ LC. A logic axiomatized in the language LC′ con-
taining all the axioms and rules of MTL is said to be an expansion of MTL.
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An important expansion of MTL is the one obtained by expanding the language LC
with the unary connective ∆ (known in the literature as Baaz’s delta, [6]), and adding
the following axiom schemas:

(∆1) ∆ϕ ∨¬∆ϕ (∆2) ∆(ϕ ∨ψ)→ (∆ϕ ∨∆ψ)
(∆3) ∆ϕ → ϕ (∆4) ∆ϕ → ∆∆ϕ

(∆5) ∆(ϕ → ψ)→ (∆ϕ → ∆ψ)

along with the deduction rule of ∆-necessitation: from ϕ , deduce ∆ϕ . The above logical
system is called MTL∆.

THEOREM 2 Let L ∈ {MTL,MTL∆}. Consider the following properties for every set
of formulas Γ∪{ϕ,ψ,χ} in the language of L :

(ldt) Γ,ϕ `L ψ iff there is an n ∈ N such that Γ `L ϕn→ ψ.
(∆dt) Γ,ϕ `L ψ iff Γ `L ∆ϕ → ψ.
(cong) ϕ ↔ ψ `L χ(ϕ)↔ χ(ψ).

Then, MTL satisfies (ldt) and (cong) while MTL∆ satisfies (∆dt) and (cong).

Following [14], we say that a logic L is a core fuzzy logic if L expands MTL and
satisfies (ldt) and (cong). A logic L is a ∆-core fuzzy logic if L expands MTL∆ and
satisfies (∆dt) and (cong).

An MTL-algebra is a structure A = (A,�,⇒,∧,∨,0A,1A) of type (2,2,2,2,0,0)
such that:

(1) The reduct (A,∧,∨,0A,1A) is a bounded lattice,

(2) The reduct (A,�,1A) is a commutative monoid,

(3) The operations � and⇒ form an adjoint pair:

for all x,y,z ∈ A, x� y≤ z iff x≤ y⇒ z.

(4) The prelinearity condition is satisfied:

for all x,y ∈ A, (x⇒ y)∨ (y⇒ x) = 1A.

Since MTL and all (∆-)core fuzzy logics are algebraizable in the sense of Blok and
Pigozzi [7], we simply say that for any (∆-)core fuzzy logic L , the class (variety) of
L -algebras coincides with the equivalent algebraic semantics for L . We refer to [14]
for a more complete treatment.

Basic examples of MTL-algebras are obtained by equipping the real unit interval
[0,1] with a left continuous t-norm ∗ : [0,1]× [0,1]→ [0,1] (cf. [52, 59]), its residuum
⇒∗ : [0,1]× [0,1]→ [0,1] and the usual lattice order of the reals. The main three exam-
ples of continuous t-norms are the Łukasiewicz t-norm (x ∗ y = max(x+ y− 1,0)), the
product t-norm (x ∗ y = x · y) and the Gödel t-norm (x ∗ y = min(x,y)). These structures
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([0,1],∗,⇒∗,min,max,0,1) are called real MTL-chains,3 and they will play a crucial
role in the rest of this paper. Of course, whenever we deal with particular expansions of
MTL, we must take care of the standard interpretation of the symbols that expand the
MTL-language. Recall that the standard interpretation of Baaz’s delta is the following:
for all x ∈ [0,1], ∆(x) = 1 if x = 1, and ∆(x) = 0 otherwise.

An evaluation of FmV into a real MTL-chain is a map e from the propositional
variables in V into [0,1] that extends to formulas by truth-functionality. An evaluation
e is a model for a formula ϕ if e(ϕ) = 1. An evaluation e is a model for a theory Γ, if
e(ψ) = 1, for every ψ ∈ Γ.

Let now L denote any (∆-)core fuzzy logic. Then we say that L enjoys:

• Real completeness (RC) if for every formula ϕ , `L ϕ iff for every evaluation e
into a real L -chain, e(ϕ) = 1.

• Finite strong real completeness (FSRC) if for every finite theory Γ∪{ϕ}, Γ `L ϕ

iff for every evaluation e into a real L -chain that is a model for Γ, e(ϕ) = 1.

• Strong real completeness (SRC) if for every theory Γ∪{ϕ}, Γ `L ϕ iff for every
evaluation e into a real L -chain that is a model for Γ, e(ϕ) = 1.

• Strong hyperreal completeness (SR∗C) if for every theory Γ∪{ϕ}, Γ `L ϕ iff
for every evaluation e into a ultraproduct of real L -chains that is a model for Γ,
e(ϕ) = 1.

Jenei and Montagna proved in [58] that MTL enjoys SRC. We refer to [14] for a com-
plete and in-depth study of such different notions of completeness for all the most promi-
nent (∆-)core fuzzy logics.

DEFINITION 3 A (∆-)core fuzzy logic L is said to be locally finite iff for every finite
set V0 of propositional variables, the Lindenbaum-Tarski algebra4 FmV0 of L generated
by the variables in V0 is a finite algebra.

2.2 Expansions with an involutive negation
As we pointed out above, in any (∆-)core fuzzy logic, we can define a negation con-
nective ¬, as ¬ϕ := ϕ →⊥. This negation, in its standard interpretation, behaves quite
differently depending on the chosen left-continuous t-norm and, in general, is not an
involution, i.e. it does not satisfy the equation ¬¬x = x.

A relevant expansion of a (∆-)core fuzzy logic L is obtained by adding an involutive
negation ∼ that does not depend on the chosen left-continuous t-norm [15, 30, 38]. In
particular, we recall that MTL∼ is the logic obtained by expanding MTL∆ with the unary
symbol ∼, together with the following axioms:

(∼1) ∼∼ϕ ↔ ϕ

(∼2) ∆(ϕ → ψ)→ (∼ψ →∼ϕ).

3In the literature of mathematical fuzzy logic, algebras over the real unit [0,1] are also called standard.
4We remind the reader that, whenever we fix a language LC, a set of variables V , and a logic L together

with its consequence relation `L , the Lindenbaum-Tarski algebra FmV is the quotient algebra of formulas
modulo the equi-derivability relation. We invite the reader to consult [12] for further details.
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MTL∼-algebras, the algebraic counterpart of MTL∼, are structures

(A,�,⇒,∧,∨,∼,∆,0A,1A)

of type (2,2,2,2,1,1,0,0) and are obviously defined. It is worth noticing that, as proved
in [38], extensions of MTL∼ preserve (finite) strong standard completeness.

MTL∼ extensions are particularly interesting because, in each of their standard al-
gebras, any operation ⊕ defined as: x⊕ y := ∼(∼x�∼y) is interpreted as a t-conorm,
thus making the system (�,⊕,∼) a De Morgan triple [40]. We will see later that these
structures allow to define a basic representation of possibility and necessity measures of
fuzzy events (see Section 3.2.1).

2.3 Expansions with rational truth constants
Other notable expansions of a ∆-core fuzzy logic L are obtained by expanding its lan-
guage with a set C of truth constants from [0,1]. More precisely, let ∗ be any left contin-
uous t-norm and [0,1]∗ be the corresponding real algebra ([0,1],∗,⇒∗,min,max,0,1).
Denote by L∗ the algebraizable (in the sense of [7]) core fuzzy logic whose equivalent
algebraic semantics is constituted by the variety HSP([0,1]∗), i.e. the variety generated
by the standard algebra [0,1]∗. The logic L∗,∆ denotes as usual the expansion of L∗ by
the Baaz connective ∆.

Let C be a countable subset of [0,1]∗. Then the logic L∗,∆(C) is the expansion of
L∗,∆ obtained by adding to its language the elements of C as constants and the following
book-keeping axioms, where, for every c ∈ C, we denote its associated constant by c
(notice that we still denote the top and bottom elements as 0 and 1):

(R1) c1 & c2↔ c1 ∗ c2,
(R2) c1→ c2↔ c1⇒∗ c2,
(R3) ∆c↔ ∆c.

For the logic L∗,∆(C), a different version of completeness has been introduced to
interpret canonically the constant symbols [28]. In particular, we say that L∗,∆(C) has
the canonical (finite) strong real-chain completeness iff L∗,∆(C) is (finitely) strong com-
plete w.r.t. the real algebra ([0,1],∗,⇒∗,min,max,{c}c∈C), so that evaluations interpret
every symbol c by the real number c (for all c ∈C). Then, we have:

THEOREM 4 ([28, 31]) Let ∗ ∈ CONT-fin5∪WNM-fin6, and let C ⊂ [0,1]∗ be a suit-
able countable subalgebra. Then:

(1) L∗,∆(C) has the canonical finite strong real completeness.

(2) L∗,∆(C) has the canonical strong real completeness iff ∗ ∈WNM-fin.

5By the Mostert-Shields theorem [52, Theorem 2.1.16] every continuous t-norms ∗ : [0,1]× [0,1]→ [0,1]
is an ordinal sum of the three basic t-norms: Gödel, product, and Łukasiewicz. CONT-fin denotes the class
of all those continuous t-norms that are ordinal sums with finitely many components.

6Every nilpotent minimum t-norm ∗ (cf. [29]) is uniquely characterized by its associated weak negation
n∗ : [0,1]→ [0,1]. The t-norm ∗ is said to have a finite partition if its associated weak negation n∗ is constant
over finitely many intervals. WNM-fin denotes the class of all those weak nilpotent minimum t-norms having
a finite partition. Notice that Gödel t-norm also belongs to this class.
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For a given left-continuous t-norm ∗ and an involutive negation n : [0,1]→ [0,1]
closed over the rational unit interval [0,1]Q, let L∗,n([0,1]Q) be the axiomatic extension
of MTL∼ that is complete with respect to the variety of MTL∼-algebras generated by the
real algebra ([0,1],∗,⇒∗,n,∆,0,1). Then, L∗,n([0,1]Q) is the expansion of L∗,n with
truth-constants from the rational unit interval, together with the book-keeping axioms
(R1)–(R3) plus the following one for the involutive negation:

(R4) ∼ c↔ n(c).

Adopting the same techniques used in [38, Theorem 5.6, Theorem 5.13], it is not
hard to show that the same conclusions of Theorem 4 can also be obtained for any
L∗,n([0,1]Q), whenever ∗ ∈ CONT-fin∪WNM-fin.

2.4 Łukasiewicz logics
Łukasiewicz logic Ł was introduced in [66], and has been widely studied by many au-
thors both from the syntactical and algebraic point of view (cf. [8, 13, 52]). As a core
fuzzy logic, Ł is obtained from MTL, by adding the following axioms:

(div) ϕ ∧ψ → (ϕ & (ϕ → ψ)),
(inv) ¬¬ϕ → ϕ .

Due to axiom (inv), the defined negation of Łukasiewicz logic is involutive. This
allows us to define a connective of strong disjunction as follows: ϕ⊕ψ is ¬(¬ϕ &¬ψ).

For each n ∈ N, the n-valued Łukasiewicz logic Łn is the schematic extension of Ł
with the axiom schemas:

(Łn1) (n−1)ϕ ↔ nϕ, (Łn2) (kϕk−1)n↔ nϕk,

for each integer k = 2, . . . ,n−2 that does not divide n−1, and where nϕ is an abbrevi-
ation for ϕ⊕·· ·⊕ϕ (n times).

The algebraic counterpart for Łukasiewicz logic is the class of MV-algebras [11, 13].
These structures were introduced by Chang [11] using a different presentation that is
equivalent to the one given as extensions of MTL-algebras. In its original language, an
MV-algebra is a structure A = 〈A,⊕,¬,0A〉 satisfying the following equations:

(MV1) x⊕ (y⊕ z) = (x⊕ y)⊕ z, (MV2) x⊕ y = y⊕ x,
(MV3) x⊕0A = x, (MV4) ¬¬x = x,
(MV5) x⊕¬0A = ¬0A, (MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y⊕ x)⊕ x.

As we stated, MV-algebras are MTL-algebras satisfying (see [13, 52]):

x∧ y = x� (x⇒ y); (Divisibility)
(x⇒ 0A)⇒ 0A = x. (Involution)

Indeed, in the signature 〈⊕,¬,0A〉, the monoidal operation � can be defined as x� y :=
¬(¬x⊕¬y), while the residuum of� is definable as x⇒ y :=¬x⊕y. The top element is
defined as 1A :=¬0A, and the order relation is obtained by defining x≤ y iff x⇒ y = 1A,
while the lattice operations are given by x∧y := x� (¬x⊕y) and x∨y := (x�¬y)⊕y.
Moreover, we define the following useful abbreviation: for every natural n and x ∈ A, nx
will denote x⊕ n· · · ⊕x, and xn will denote x� n· · · �x.
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For each n ∈ N, an MVn-algebra is an MV-algebra that satisfies the equations:

(MV7) (n−1)x = nx (MV8) (kxk−1)n = nxk

for each integer k = 2, . . . ,n−2 not dividing n−1.
The class of MV-algebras (MVn) forms a variety MV (MVn) that clearly is the

equivalent algebraic semantics for Ł (Łn), in the sense of Blok and Pigozzi [7]. MV is
generated as a quasivariety by the standard MV-algebra [0,1]MV, i.e. the MV-algebra
over the real unit interval [0,1] with x⊕y = min(x+y,1) and ¬x = 1−x.7 EachMVn is
generated by the linearly ordered MV-algebra over the set Sn = {0,1/n, . . . ,(n−1)/n,1}
and whose operations are those of the MV-algebra over [0,1], restricted to Sn.

Interesting examples of MV-algebras are the so-called Łukasiewicz clans of func-
tions. Given a non-empty set X , consider the set of functions [0,1]X endowed with the
pointwise extensions of the operations of the standard MV-algebra [0,1]MV. Then a
(Łukasiewicz) clan over X is any subalgebra C ⊆ [0,1]X, i.e. a set such that

(1) if f ,g ∈ C then f ⊕g ∈ C ,

(2) if f ∈ C then ¬ f ∈ C ,

(3) 0 ∈ C ,

where 0 denotes the function constantly equal to 0. A clan T over X is called a
(Łukasiewicz) tribe when it is closed with respect to a countable (pointwise) applica-
tion of the ⊕ operation, i.e. if the following condition

if { fn | n ∈ N} ⊆T then
⊕

n∈N fn ∈T

holds. Similarly, one can define an Łn-clan of functions over some set X to be any
subalgebra C ⊆ (Sn)

X .
The fact that MV is the equivalent algebraic semantics for Łukasiewicz logic Ł

and is generated as a quasivariety by the standard MV-algebra [0,1]MV implies that
Łukasiewicz logic enjoys FSRC. However Ł does not have SRC (cf. [14, 52]). On
the other hand, for every n ∈ N, the logic Łn is strongly complete with respect to the
MV-algebra Sn (cf. [34]).

Rational Łukasiewicz logic RŁ is a conservative expansion of Łukasiewicz logic
introduced by Gerla in [42, 43], obtained by adding the set of unary connectives δn, one
for each n ∈ N, together with the following axioms:

(D1) nδnϕ ↔ ϕ, (D2) ¬δnϕ⊕¬(n−1)δnϕ .

The algebraic semantics for RŁ is given by the variety of DMV-algebras (divisible
MV-algebras), i.e. structures A = 〈A,⊕,¬,{δn}n∈N,0A〉 such that 〈A,⊕,¬,0A〉 is an
MV-algebra and the following equations hold for all x ∈ A and n ∈ N:

(δn1) n(δnx) = x, (δn2) δnx� (n−1)(δnx) = 0A.

7Notice that there exist uncountably many MV-algebras whose universe is the real unit interval [0,1], but
they are all isomorphic to each other, and, in particular, to the standard MV-algebra.
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An evaluation e of RŁ formulas into the real unit interval is just a Łukasiewicz logic
evaluation extended for the connectives δn as follows: e(δnϕ) = e(ϕ)/n.

Notice that in RŁ all rationals in [0,1] are definable (as truth constants) as:

- 1/n is definable as δn1 , and

- m/n is definable as m(δn1)

since for any evaluation e: e(δn1) = 1/n and e(m(δn1)) = (1/n)⊕ m· · · ⊕(1/n) = m/n.
As shown in [43], the variety of DMV-algebras is generated as a quasivariety by the

standard DMV-algebra [0,1]DMV (i.e. the expansion of [0,1]MV with the δn operations),
and consequently RŁ enjoys FSRC. However, since it is a conservative expansion of Ł,
RŁ does not have SRC.

We also introduce here a logic simpler than RŁ that we will make use of later in the
paper. For every n ∈N, we denote by Ł+

n the expansion of Łn obtained by expanding its
language with the truth constant 1/n together with the axioms:

(n1) n(1/n),
(n2) ¬(1/n & (n−1)1/n).

It is not difficult to see that the logic Ł+
n is strongly complete with respect to its related

algebraic semantics, i.e. the MV-algebra over Sn expanded with a truth constant 1/n
satisfying the two equations corresponding to axioms (n1) and (n2).

THEOREM 5 ([13]) The logics Ł and RŁ are not locally finite. For every n ∈ N, the
logics Łn and Ł+

n are locally finite.

3 Uncertainty measures over non-classical events
In this section we introduce the basic concepts regarding uncertainty measures over non-
classical events. We start by introducing the definition of those uncertainty measures
over Boolean algebras that we will later generalize for weaker structures. The modal
logics we will present in Section 4 will be based on these generalizations.

3.1 The classical case
Classical representations of uncertainty are based on a set of possible situations (or
worlds), sometimes called a sample space or a frame of discernment, which represents
all the possible outcomes. A typical example is the toss of a die. In this case, the
sample space is given by six different situations, each of them corresponding to a certain
outcome. An event can be simply regarded as a subset of the sample space corresponding
to the set of those situations in which the event is true. In the case of the toss of a die, for
instance, the event “the outcome will be an even number” corresponds to the set given
by {2,4,6}. Complex events can be seen as Boolean combinations of subsets of the
sample space. For instance, the event “the outcome will be an even number and it will
be strictly greater than 4” is nothing but the intersection of the sets {2,4,6} and {5,6}.
Measures of uncertainty are classically defined over the Boolean algebra generated by
subsets of a given sample space.
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An event can be also identified with the proposition whose meaning is the set of
situations that make it true. From a logical point of view, we can associate to a propo-
sition the set of classical evaluations in which the proposition is true. Each of those
evaluations, in fact, corresponds to a possible situation.

In what follows we will use the words “event” and “proposition” with the same
meaning, and they will refer to a set of situations, or equivalently to a set of classical
evaluations. Given that measures are defined over the Boolean algebra of subsets of a
sample space, we can consider measures as defined over the Boolean algebra of provably
equivalent classical propositions.

In general, measures of uncertainty aim at formalizing our degree of confidence in
the occurrence of an event by assigning a value from a partially ordered bounded scale.
In its more general sense, this is encoded by the concept of plausibility measure intro-
duced by Halpern (see [57]).8 Given a partially ordered set 〈L,≤,0,1〉, an L-valued
plausibility measure on a Boolean algebra B = (B,∧,∨,¬,0B,1B) of events is a map-
ping ρ : B→ L satisfying the following properties:

i. ρ(0B) = 0, and ρ(1B) = 1,

ii. for every x,y ∈ B with x≤ y, ρ(x)≤ ρ(y), where x≤ y denotes the order relation
between elements of B.

The first two conditions mean that the certain event 1B and the impossible event 0B have
measure 1 and 0, respectively.9 Indeed, the certain event is satisfied in every possible
situation, while the impossible event never occurs. The third condition corresponds to
monotonicity, i.e. if the situations in which an event can occur are included in those that
support another event, then the degree of uncertainty of the former is smaller than the
degree of uncertainty of the latter.

Uncertainty measures are usually defined as real valued functions where the partially
ordered scale is identified with the real unit interval [0,1]. Plausibility measures of this
kind are also known as fuzzy measures, and were first introduced by Sugeno in [87].
Thus, (classical) fuzzy measures are in fact plausibility measures assigning values from
[0,1] to elements of the Boolean algebra of events.

Besides such common properties, each class of fuzzy measures basically differs
from the others in how the measure of compound propositions or events is related to the
measure of their components. In other words, what specifies the behavior of a fuzzy
measure is how from assessments of uncertainty concerning different events we can de-
termine the measure of (some of) their combinations. In a certain sense, we can say that
classes of fuzzy measures are characterized by the satisfaction of some compositional
properties. However, it is well-known that a proper fuzzy measure µ cannot be fully
compositional.10

8We want to warn the reader not to confuse plausibility measures in the sense of [57] with plausibility
functions in the sense of Dempster-Shafer theory, cf. [84].

9From now on, when no danger of confusion is possible, we will omit the subscripts of the bottom and top
elements of the Boolean algebra 0B and 1B respectively, and we will simply write 0 and 1.

10In the sense that there do not exist functions f∧, f∨ : B×B→ L and f¬ : B→ L such that, for every x,y∈B,
µ(x∧ y) = f∧(µ(x),µ(y)), µ(x∨ y) = f∨(µ(x),µ(y)), µ(¬x) = f¬(µ(x)).
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THEOREM 6 ([25]) Let µ : B→ L be any L-valued fuzzy measure. If µ is fully compo-
sitional then it collapses into a two-valued function, i.e. for all x ∈ B, µ(x) ∈ {0,1}.

Typical examples of classes of fuzzy measures are probability measures, and possi-
bility and necessity measures.11

(Finitely additive) probability measures, first introduced from a measure-theoretic
perspective by Kolmogorov in [60], are fuzzy measures defined over a Boolean algebra
B that satisfy the law of finite additivity:

for every x,y ∈ B such that x∧ y = 0B, µ(x∨ y) = µ(x)+µ(y).

Any probability measure µ over a finite Boolean algebra B is uniquely determined
by a corresponding probability distribution p on the (finite) set of atoms {ai}i∈I of B:
by defining p(ai) = µ({ai}), so that ∑i∈I p(ai) = 1, it holds that, for any x ∈B, µ(x) =
∑a j≤x p(a j).

Possibility measures (introduced by Zadeh in [90], and deeply studied by Dubois
and Prade [22, 24]) are a class of fuzzy measures satisfying the following law of com-
position w.r.t. the maximum t-conorm:

µ(x∨ y) = max(µ(x),µ(y)).

Similarly, necessity measures [22] are fuzzy measures satisfying the following law of
composition w.r.t. the minimum t-norm:

µ(x∧ y) = min(µ(x),µ(y)).

Possibility and necessity measures are dual in the sense that, given a possibility measure
Π (a necessity measure N), one can derive its dual necessity measure as follows:

N(x) = 1−Π(¬x) [Π(x) = 1−N(¬x)] .

Similarly to probability measures, any possibility measure Π over a finite Boolean
algebra B is uniquely determined by a possibility distribution π on the set of atoms
{ai}i∈I of B. Indeed, by defining π(ai) = Π({ai}), one has supi∈I π(ai) = 1, and
Π(u) = supa j≤u π(a j) for any u ∈ B. As for the dual necessity measure, we have
N(u) = infai 6≤u 1−π(ai).

3.2 Non-classical events
In the literature, there seems not to be a general definition of the notion of a fuzzy
measure defined over structures weaker than Boolean algebras. Generalized treatments
have just covered specific cases, as we will see below, such as probability and necessity
/ possibility measures. Since those treatments study measures over particular subclasses
of MTL-algebras, it seems natural to give a definition for those kinds of structures.

DEFINITION 7 Given an MTL-algebra A , a generalized fuzzy measure on A is a
mapping µ : A→ [0,1] such that µ(0A) = 0, µ(1A) = 1, and for x,y ∈ A, µ(x) ≤ µ(y)
whenever x≤ y.

11Notice that we do not discuss here the appropriateness of a class of measures w.r.t. uncertainty phenomena
and we do not compare them to each other. For such an analysis the reader is referred e.g. to papers by Smets
[85, 86], Halpern’s book [57] and the references therein.
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In what follows, we are going to study particular classes of generalized fuzzy mea-
sures that are extensions of those introduced for the Boolean case.

3.2.1 Possibility and necessity measures
In this section we give a definition of generalized possibility and necessity measures
over MTL-algebras (although we only make use of the underlying lattice structure).
Notice that, even if the real unit interval [0,1] is the most usual scale for all kinds of
uncertainty measures, any bounded totally ordered set can be actually used (possibly
equipped with suitable operations), especially in the case of non-additive measures of a
more qualitative nature like possibility and necessity measures.

DEFINITION 8 Let A be an MTL-algebra and let µ : A→ [0,1] be a generalized fuzzy
measure over A . Then:

• µ is called a basic possibility measure when for all x,y ∈ A

µ(x∨ y) = max(µ(x),µ(y)),

• µ is called a basic necessity measure when for all x,y ∈ A

µ(x∧ y) = min(µ(x),µ(y)).

For the case of A being a lattice of [0,1]-valued functions on a set X (i.e. a lattice
of fuzzy sets), say A = [0,1]X , several extensions of the notions of possibility and neces-
sity measures for fuzzy sets have been proposed in relation to different logical systems
extending the well-known Dubois-Lang-Prade’s Possibilistic logic to fuzzy events, see
e.g. [22, 21, 48, 4, 3, 5]. Actually, the different proposals in the literature arise from
two observations. First of all, contrary to the classical case, [0,1]-valued basic possi-
bility and necessity measures Π, N : [0,1]X → [0,1] are not univocally determined by a
possibility distribution π on the set X . The second observation is that, in the classical
case, the expressions of possibility and necessity measures of subsets of X in terms of a
possibility distribution on X can be equivalently rewritten as

Π( f ) = sup
x∈X

min(π(x), f (x)), N( f ) = inf
x∈X

max(1−π(x), f (x))

where f : X → {0,1} is two-valued function, which can be obviously identified with a
subset of X . Therefore, natural generalizations of these expressions when f : X → [0,1]
is a fuzzy subset of X are

Π( f ) = sup
x∈X

π(x)� f (x), N( f ) = inf
x∈X

π(x)⇒ f (x) (*)

where � is a t-norm and⇒ is some suitable fuzzy implication function.12 In particular,
the following implication functions have been discussed in the literature as instantiations
of the⇒ operation in (*):

12The minimal properties required for a binary operation ⇒ : [0,1]× [0,1]→ [0,1] to be considered as a
fuzzy counterpart of the classical {0,1}-valued implication truth-function are: 0⇒ 0 = 1, 1⇒ 0 = 0, ⇒ is
non-increasing in the first variable and non-decreasing in the second variable.
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(1) u⇒KD v = max(1−u,v) (Kleene-Dienes implication)

(2) u⇒RG v =
{

1, if u≤ v
1−u,otherwise (reciprocal of Gödel implication)

(3) u⇒Ł v = min(1,1−u+ v). (Łukasiewicz implication)

All these functions actually lead to proper extensions of the above definition of necessity
over classical sets or events in the sense that if f describes a crisp subset of X , i.e. f is a
function f : X →{0,1}, then (*) gives N( f ) = infx : f (x)=0 1−π(x).

Moreover, if Π and N are required to be dual with respect to the standard negation,
i.e. Π( f ) = 1−N(1− f ), then one is led to consider the fuzzy implication⇒ defined as
x⇒ y= (1−x)]y where ] is the t-conorm dual of�. These kinds of fuzzy implications
are commonly known as strong implications. Notice that⇒KD is the strong implication
for �= min and⇒Ł is the strong implication for the Łukasiewicz t-norm.

Interestingly enough, these two notions of generalized possibilistic measures can
be understood as a special kind of fuzzy integrals, called (generalized) Sugeno integrals
[87]. Indeed, given a fuzzy measure µ : 2X → [0,1], the Sugeno integral of a function
f : X → [0,1] with respect to µ is defined as∮

S
f dµ = max

i=1,...,n
min( f (xσ(i)),µ(Aσ(i)))

where σ is a permutation of the indices such that f (xσ(1))≥ f (xσ(2))≥ ·· · ≥ f (xσ(n)),
and Aσ(i) = {xσ(1), . . . ,xσ(i)}. When µ is a (classical) possibility measure on 2X induced
by a (normalized) possibility distribution π : X → [0,1], i.e. µ(A) = max{π(x) | x ∈ A}
for every A⊆X , then the above expression of the Sugeno integral becomes (see e.g. [10])∮

S
f dπ = max

x∈X
min(π(x), f (x)).

When the above minimum operation is replaced by an arbitrary t-norm �, we obtain the
so-called generalized Sugeno integral [87]∮

S,�
f dµ = max

i=1,...,n
f (xσ(i))�µ(Aσ(i)),

which, in the case of µ being the possibility measure on 2X defined by a possibility
distribution π , becomes ∮

S,�
f dπ = max

x∈X
π(x)� f (x).

The next theorem offers an axiomatic characterization of those measures for which
there exists a possibility distribution that allows a representation in terms of a general-
ized Sugeno integral. The formulation we provide here is very general and makes only
use of the structure of De Morgan triples13 over the real unit interval.

13A De Morgan triple (see e.g. [40]) is a structure on the real unit interval (�,],¬) where � is a t-norm, ]
a t-conorm, ¬ a strong negation function such that x] y = ¬(¬x�¬y) for all x,y ∈ [0,1].
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THEOREM 9 Let X be a finite set, let (�,],1− x) be a De Morgan triple, and let
N, Π : [0,1]X → [0,1] be a pair of dual basic necessity and possibility measures. Then,
N satisfies the following property for all r ∈ [0,1]

N(r ] f ) = r]N( f )

(or equivalently, Π(r� f ) = r�Π( f ))

if, and only if, there exists π : X → [0,1] such that Π( f ) = maxx∈X π(x)� f (x) and
N( f ) = 1−Π(1− f ) = minx∈X (1−π(x))] f (x).

Proof Suppose N is such that N(r] f ) = r]L N( f ) for every f ∈ [0,1]X and r ∈ [0,1].
It is easy to check that every f ∈ [0,1]X can be written as

f =
∧
x∈X

xc] f (x),

where xc : X → [0,1] is the characteristic function of the complement of the singleton
{x}, i.e. xc(y) = 1 if y 6= x and xc(x) = 0, and f (x) stands for the constant function of
value f (x).

Now, by applying the axioms of a basic necessity measure and the assumption that
N(r] f ) = r]N( f ), we obtain that

N( f ) = N

(∧
x∈X

xc] f (x)

)
= min

x∈X
N
(

xc] f (x)
)
= min

x∈X
N (xc)] f (x).

Finally, by putting π(x) = 1−N(xc), we finally get

N( f ) = min
x∈X

(1−π(x))] f (x),

which, of course, by duality implies that

Π( f ) = max
x∈X

π(x)� f (x)

The converse is easy. 2

This type of integral representation can be easily generalized when we replace the
real unit interval [0,1] as the scale for the measures by more general algebraic structures,
for instance by residuated lattices with involution. The details are out of the scope of
this paper.

3.2.2 Finitely additive measures
The classical notion of (finitely additive) probability measure on Boolean algebras was
generalized in [74] by the notion of state on MV-algebras.

DEFINITION 10 ([74]) By a state on an MV-algebra A = 〈A,⊕,¬,0A〉 we mean a
function s : A→ [0,1] satisfying:

(i) s(1A) = 1,

(ii) if u� v = 0A, then s(u⊕ v) = s(u)+ s(v).

The following proposition collects some properties that states enjoy.
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PROPOSITION 11 ([74]) Let s be a state on an MV-algebra A. Then the following hold
properties hold:

(iii) s(¬u) = 1− s(u),

(iv) if u≤ v, then s(u)≤ s(v),

(v) s(u⊕ v) = s(u)+ s(v)− s(u� v).

Moreover, a map s : A→ [0,1] is a state iff (i) and (v) hold.

In [89], Zadeh introduced the following notion of probability on fuzzy sets. A fuzzy
subset of a (finite) set X can be considered just as a function f ∈ [0,1]X . Then, given a
probability distribution p : X → [0,1] on X , the probability of f is defined as

p∗( f ) = ∑
x∈X

f (x) · p(x),

where we have written p(x) for p({x}). Indeed, p∗ is an example of state over the tribe
[0,1]X . The restriction of p∗ over the Sn-valued fuzzy sets is also an example of state
over (Sn)

X .
The notion of state on a clan can be applied to define what a state on formulas is. Let

W and Wn be the set of [0,1]MV-evaluations and Sn-evaluations respectively over the set
of formulas Fm(V ) in the language of Łukasiewicz logic built from a set of propositional
variables V . For each X ⊆W , and each ϕ ∈ Fm(V ), let

ϕ
∗
X : X → [0,1]

be defined by ϕ∗X (w) = w(ϕ), where w is any [0,1]MV-evaluation in X . Analogously, for
any Y ⊆Wn, define

ϕ
∗
Y,n : Y → Sn.

Then, both FmX = {ϕ∗X | ϕ ∈ Fm(V )} and FmY = {ϕ∗Y,n | ϕ ∈ Fm(V )} are clans over W
and Wn respectively. Then any state s on FmX (resp. on FmY ) induces a state on formulas
s′ : Fm(V )→ [0,1] by putting s′(ϕ) = s(ϕ∗X ) (resp. = s′(ϕ∗Y )). Notice that s′(ϕ) = s′(ψ)
whenever ϕ ↔ ψ is provable in Ł or in Łn respectively.

Paris proved in [79, Appendix 2] that every state s on a finitely generated FmY can
be represented as an integral:

THEOREM 12 (Paris, [79]) Let V0 be a finite set of propositional variable, and let Y be
the subset of Wn of all the evaluations of V0 into Sn. Then for every state s on FmY , there
is a probability distribution p on Y such that, for every ϕ∗Y,n ∈ FmY ,

s(ϕ∗Y,n) = ∑
w∈Y

p(w) ·w(ϕ).

More general and sophisticated integral representation for states on MV-algebras were
independently proved by Kroupa [63], and Panti [77]: for every MV-algebra A , the
set of all states on A is in one-to-one correspondence with the class of regular Borel
probability measure on a compact Hausdorff space X. In particular for every state s on
A there is a regular Borel probability measure p on X such that s is the integral with
respect to p. A discussion about this topic is beyond the scope of this paper (see [63, 77]
for a detailed treatment).
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4 Fuzzy modal logics for some classes of generalized plausibility
measures

As seen in the previous section, generalized fuzzy measures assign to non-classical
events values from the real unit interval [0,1]. As also mentioned in the introduction,
the underlying idea of the fuzzy logic-based treatment of uncertainty is to introduce in
a given fuzzy logic a modal operator M, so that Mϕ denotes that ϕ is likely, (plausible,
probable, possible, etc.), where ϕ is a proposition denoting an event (classical or non-
classical). Then, taking advantage of the real semantics of (∆-)core fuzzy logics over
the unit real interval [0,1], particular truth-functions over [0,1] can be used to express
specific compositional properties of different classes of measures.

For instance, consider the class of generalized plausibility measures over an L -
algebra of events, for some (∆-)core fuzzy logic L . Recall that this class is characterized
by the normalization axioms, ρ(1) = 1 and ρ(0) = 0, and monotonicity: whenever x≤ y,
ρ(x) ≤ ρ(y). These properties can be easily captured within L itself over a language
expanded by a modal operator Pl by considering the axioms Pl> and ¬Pl⊥, together
with the inference rule: from ϕ→ψ infer Plϕ→Plψ . Indeed, for any evaluation e over
any real L -algebra, e(Plϕ → Plψ) = 1 iff e(Plϕ) ≤ e(Plψ). Therefore, we can say
that any (∆-)core fuzzy logic L is adequate for the class of generalized fuzzy measures
over L -algebras of events.

However, if we then want to rely on a certain logic to represent a particular subclass
of fuzzy measures, we need to take into account whether the operations needed in the
definition of the subclass can be defined in that logic.

To be more specific, consider a (∆-)core fuzzy logic L which is complete with
respect to a class C of real L -algebras. Then any formula ϕ(p1, . . . , pn) over proposi-
tional variables p1, . . . , pn in the language of L defines a function tA

ϕ : [0,1]n→ [0,1] for
every real algebra A ∈ C, by stipulating tA

ϕ (a1, . . . ,an) = e(ϕ), where e is the L -inter-
pretation such that e(p1) = a1, . . . ,e(pn) = an. Then we say that a certain function
f : [0,1]n→ [0,1] is definable in a (∆-)core fuzzy logic L if:

(1) there exists a class C of real algebras for which L is complete, and

(2) there exists an L -formula ϕ(p1, . . . , pn) such that, for all A ∈ C, tA
ϕ (a1, . . . ,an) =

f (a1, . . . ,an) for all a1, . . . ,an ∈ A.

For instance, the formulas p1∧ p2 and p1∨ p2 define over any class of real MTL-chains
the min and max functions respectively.

Informally speaking, we say that a (∆-)core fuzzy logic L is compatible with a
given subclass of fuzzy measures if the algebraic operations or relations playing a role
in the axiomatic postulates of the given class of measures can be expressed by means of
functions definable in L .

We give an example to clarify this notion of compatibility.

EXAMPLE 13 Consider the class of (finitely additive) probability measures on, say,
classical events. In this case not every (∆-)core fuzzy logic L is suitable to axiomatize a
logic to reason about probabilities. In fact, the operation of (bounded) sum is necessary
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to express the law of finite additivity, and this operation is not present in all real algebras
of all logics, but it is present, for instance, in the standard algebra [0,1]MV of Łukasiew-
icz logic Ł, and in the standard algebra of some of its expansions like Rational Łukasie-
wicz logic RŁ. These logics, therefore, allow to axiomatize a modal logic to reason about
probability (also remember that Ł has an involutive negation), by allowing to express
the additivity with the connective ⊕, whose standard interpretation is the truncated sum
(recall Section 2.4, and see Section 4.4): P(ϕ ∨ψ)↔ Pϕ ⊕Pψ , in case ` ¬(ϕ ∧ψ)
over Classical Logic. In contrast, it is easy to observe that, for instance, a probability
logic cannot be axiomatized over Gödel logic since the (truncated) addition cannot be
expressed by means of Gödel logic truth-functions.

In the rest of this section, we consider different fuzzy modal logics (in a restricted
sense that will be clarified in the following definitions) axiomatizing reasoning about
several classes of fuzzy measures. We introduce the fundamental syntactical and se-
mantical frameworks that we will specifically enrich in the following subsections to
deal with the distinguished classes of measures we have already recalled.

Unless stated otherwise, for the rest of this section we always consider L1 to be
a (∆-)core fuzzy logic used to represent events, and L2 to be a (∆-)core fuzzy logic
compatible with the specific class of measures we are going to reason about. As a matter
of notation, let us denote by M any class of fuzzy measures as those we axiomatized in
the first part of this section. We introduce the basic framework to formalize reasoning
about fuzzy measures in M. The syntactical apparatus built over L1 and L2 is denoted
by FM(L1,L2).

Syntax. The syntax of FM(L1,L2) comprises a countable set of propositional variables
V = {x1,x2, . . .}, connectives from L1 and L2

14 and the unary modality M. Formulas
belong to two classes:

EF: The class of formulas from L1. They are inductively defined as in Section 2, and
will be used to denote events. The class of those formulas will be denoted by E .

MF: The class of modal formulas is defined inductively: for every formula ϕ ∈ E , Mϕ

is an atomic modal formula, all truth-constants of L2 are also atomic modal for-
mulas, and, moreover, compound formulas are defined from the atomic ones and
using the connectives of L2. We will denote by MF the class of modal formulas.

Note that connectives appearing in the scope of the modal operator M are from L1,
while those outside are from L2.

Semantics.15 Let C1 be a class of L1-chains over a same universe U1 for which L1
is complete, and let A2 be real L2-chain and such that it is compatible with M. A
semantics with respect to C1 and A2 for the language FM(L1,L2) is defined as follows:
a real {C1,A2}-M model is a triple 〈W,e,ρ〉 where:

- W is a non-empty set whose elements are called nodes or possible words.
14We will not distinguish the connective symbols of both logics since it will become clear form the context.
15The semantical framework we adopt here is inspired by the approach of [82] in the general setting of

two-layered fuzzy modal logics. We thank Petr Cintula for bringing this work to our knowledge.
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- e : E ×W →U1, where U1 is the common universe of the chains in C1, is a map
such that, for every fixed w ∈W , the map e(·,w) : E → U1 is an evaluation of
non-modal formulas over a particular algebra Aw ∈ C1

- ρ : FmW (V )→ [0,1] is an M-fuzzy measure, where FmW (V ) is defined as follows.
For every formula ϕ ∈ E , define the map fϕ : W →U1 such that, for every w∈W ,
fϕ(w) = e(ϕ,w). Then FmW (V ) is the L1-algebra of all the functions defined in
this way, with the pointwise application of the operations in the Aw’s.

Let M = 〈W,e,ρ〉 be a {C1,A2}-M model, let w be a fixed node in W, and let φ be a
formula of FM(L1,L2). Then, the truth value of φ in M at the node w (we will denote
this value by ‖φ‖M,w ∈ [0,1]) is inductively defined as follows:

- If φ is a formula in E , then ‖φ‖M,w = e(φ ,w).

- If φ is an atomic modal formula of the form Mψ , then ‖Mψ‖M,w = ρ( fψ).

- If φ is a compound modal formula, then ‖φ‖M,w is computed by truth functionality
and using the operations of A2.

Notice that when φ is modal, its truth value ‖φ‖M,w does not depend on the chosen world
w, hence in these cases we will simplify the notation by dropping the subscript w, and
we will write ‖φ‖M . M will be called a model for φ when ‖φ‖M = 1, and will be called
a model for a modal theory Γ (i.e. Γ⊆MF ) when it is a model for each formula in Γ.

In the remaining part of this section, it will be useful to consider {C1,A2}-M models
〈W,e,ρ〉, where the measure ρ takes values in an L2-chain A2 whose domain coincides
with a non trivial ultrapower ∗[0,1] of [0,1]. Those models will be called hyperreal.
Evaluations into a hyperreal {C1,A2}-M model are defined accordingly.

REMARK 14 (1) To simplify the reading, and without danger of confusion, we will
henceforth avoid mentioning the class of chains C1 and the algebra A2 when referring
to the models introduced above. We will simply say that a triple 〈W,e,ρ〉 is a (real
or hyperreal) M-model. The class C1 and the algebra A2 will be always clear by the
context.

(2) In the following subsections, we will axiomatize particular classes of fuzzy mea-
sures. Case by case we will adopt a notation consistent with the class of measures we
will deal with. Therefore, we will denote by PL the class of generalized plausibility
measures, by Π the class of possibility measures, and so forth. For example, we will de-
note by FPL(L1,L2) the logic for generalized plausibility and, also referring to what
we stressed in (1), we will call its models the plausibilistic models. Clearly the same
notation (mutatis mutandis) will be also adopted for all the particular classes of fuzzy
measures we are going to treat.

4.1 A modal logic for generalized plausibility measures
In this section we take M to be the class of generalized plausibility measures, denoted
as PL, and let L1,L2 be two core fuzzy logics. Recall that any core fuzzy logic is com-
patible with PL. The logic that allows to reason about generalized plausibility measures
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of over L1-events over the logic L2 will be called FPL(L1,L2), and its axioms and
rules are the following:

Ax1 All axioms and rules of L1 restricted to formulas in E .

Ax2 All axioms and rules of L2 restricted to modal formulas.

Ax3 Axiom for the modality Pl:

Pl ¬Pl(⊥),

M The rule of monotonicity for Pl: from ϕ → ψ , deduce Pl(ϕ)→ Pl(ψ).
(where ϕ,ψ ∈ E )

N The rule of necessitation for Pl: from ϕ , deduce Pl(ϕ). (where ϕ ∈ E )

Notice that nested modalities are not allowed, nor are formulas which contain modal
formulas but also non-modal formulas that are not under the scope of any modality.
That is to say that, for example, if ϕ,ψ ∈ E , then neither Pl(Pl(ϕ)) nor ψ → Pl(ϕ) is a
well-founded formula in our language.

The notion of proof in FPL(L1,L2) is defined as usual, and we denote by `FPL

the relation of logical consequence. A theory is a set of formulas, and a modal theory is
a set of modal formulas. For any theory Γ, and for every formula φ , we write Γ `FPL φ

to denote that φ follows from Γ in FPL(L1,L2).

PROPOSITION 15 The logic FPL(L1,L2) proves the following:

(1) The modality Pl is normalized, that is `FPL Pl(⊥)↔⊥, and `FPL Pl(>)↔>
(where, as usual, >= ¬⊥).

(2) The rule of substitution of equivalents: τ ↔ γ `FPL Pl(τ)↔ Pl(γ).

Proof (1) Since in L2 the negation can be defined as ¬φ = φ → ⊥, the axiom Pl
actually states that Pl(⊥)→ ⊥. Moreover, ⊥ → Pl(⊥) trivially holds, and therefore
`FPL Pl(⊥)↔⊥. Finally, since `FPL Pl(>), then `FPL Pl(>)↔>.

(2) As usual τ↔ γ can be split in τ→ γ and γ→ τ . Now, from τ→ γ , and using (1),
τ → γ `FPL Pl(τ)→ Pl(γ). Similarly γ → τ `FPL Pl(γ)→ Pl(τ). 2

As for the semantics, given a class C1 of real L1-algebras for which L1 is com-
plete and a real L2-algebra A2 compatible with a generalized plausibility measure ρ , a
{C1,A2}-PL model, for short a plausibilistic model, will be a triple M = 〈W,e,ρ〉 with
the same definition and notation used above for the general case (see Remark 14).

REMARK 16 The compatibility assumption of the algebra A2 with respect to the mea-
sure ρ is what guarantees that the logic FPL(L1,L2), and in particular its genuine
modal axiom(s) and rule(s), is sound with respect to the class of plausibilistic models.
The same observation applies to the other modal logics we will consider in the next
subsections.
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DEFINITION 17 Let Γ∪{Φ} be a modal theory of FPL(L1,L2). Then we say that
the logic FPL(L1,L2) is:

- Finitely strongly complete with respect to real plausibilistic models (real-FSC) if
whenever Γ is finite, and Γ 6`FPL Φ, there is a real plausibilistic model M for Γ

such that ‖Φ‖M < 1.

- Strongly complete with respect to real plausibilistic models (real-SC) if for every
Γ such that Γ 6`FPL Φ, there is a real plausibilistic model M for Γ such that
‖Φ‖M < 1.

- Strongly complete with respect to hyperreal plausibilistic models (hyperreal-SC)
if for every Γ such that Γ 6`FPL Φ, there is a hyperreal plausibilistic model M for
Γ such that ‖Φ‖M < 1.

Now we introduce a general way to prove (finite, strong) completeness for FPL(L1,L2)
with respect to the class of real and hyperreal plausibility models. The same methods
will be then applied in the following sections when we will study those extensions of
FPL(L1,L2) that allow to deal with more specific uncertainty measures.

First, we define a translation mapping from the modal language of FPL(L1,L2)
into the propositional language of L2. This translation works as follows: for every
atomic modal formula Pl(ϕ), we introduce a new variable pϕ in the language of L2.
Then, we inductively define the translation • as follows:

- (Pl(ϕ))• = pϕ .

- ⊥• =⊥.

- (?(Φ1, . . . ,Φn))
• = ?((Φ1)

•, . . . ,(Φn)
•) for every n-ary connective ? of L2.

For any modal theory Γ of FPL(L1,L2), in accordance with •, we define

Γ
• = {Ψ• |Ψ ∈ Γ}

FPL• = {Θ• |Θ is an instance of Pl}∪{pϕ | `L1 ϕ}∪{pϕ → pψ | `L1 ϕ → ψ}.

LEMMA 18 Let Γ∪{Φ} be a modal theory of FPL(L1,L2). Then

Γ `FPL Φ iff Γ
•∪FPL• `L2 Φ

•.

Proof (⇒) An FPL(L1,L2)-proof Ψ1, . . . ,Ψn of Φ in Γ is made into an L2-proof
of Φ• in Γ•∪FP• by deleting all L1-formulas and taking, for each modal formula Ψi,
the L2 formula Ψ•i .

(⇐) Conversely, each L2-proof of Φ• has the form Ψ•1, . . . ,Ψ
•
n, where Ψi are modal

formulas. Therefore the previous proof is converted into an FPL(L1,L2)-proof of Φ in
Γ, by adding for each Ψi of the form pϕ (ϕ being an L1-theorem) a proof in L1 of ϕ ,
and then applying a step of necessitation (N) in order to get Pl(ϕ), and for each Ψ j of
the form pϕ → pψ a proof in L1 of ϕ→ψ , and then applying a step of the monotonicity
rule (M) in order to get Pl(ϕ)→ Pl(ψ). 2
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Now, assume Γ∪{Φ} to be a finite modal theory over FPL(L1,L2), and let V0 be the
following set of propositional variables:

V0 = {vi | vi occurs in some ϕ, P(ϕ) is a subformula of Ψ,Ψ ∈ Γ∪{Φ}},

i.e. V0 is the set of all the propositional variables occurring in all the L1-formulas oc-
curring in some modal formula of Γ∪{Φ}. Clearly V0 is finite.

We can identify FL1(V0) with the Lindenbaum-Tarski algebra of L1 of formulas
generated in the restricted language having V0 as set of variables. Therefore, for every
[ϕ] ∈FL1(V0) we choose a representative of the class [ϕ], that we will denote by ϕ2.
Then, consider the following further translation map:

- For every modal formula Φ, let Φ2 be the formula resulting from the substitution
of each propositional variable pϕ occurring in Φ• by pϕ2 ,

- (?(Φ1, . . . ,Φn))
2 = ?((Φ1)

2, . . . ,(Φn)
2) for every n-ary connective ? of L2.

In accordance with that translation, we define Γ2 and FPL2 as:

Γ2 = {Ψ2 |Ψ• ∈ Γ•}

FPL2 = {ϒ2 | ϒ• ∈ FPL•}.

LEMMA 19 Γ•∪FPL• `L2 Φ• iff Γ2∪FPL2 `L2 Φ2.

Proof (⇐) Let Γ2 ∪FPL2 `L2 Φ2. Then, in order to prove the claim we have to
show that Γ•∪FPL• `L2 Φ• for each Φ such that its 2-translation is Φ2. For instance,
if Φ = Pl(ψ) then Φ2 = pψ2 = pγ2 for each γ ∈ [ψ], therefore, if Γ2∪FPL2 `L2 pϕ2

we have to show that Γ•∪FPL• `L2 pγ for each γ ∈ [ϕ].
First, we notice that the following fact immediately follows from Proposition 15(2):

Claim 1 Let ϕ,ψ be L1-formulas. If `L1 ϕ ↔ψ , then FPL(L1,L2) `Pl(ϕ)↔Pl(ψ)
(and in particular FPL• `L2 pϕ ↔ pψ ).

Let us now turn back to the proof of Lemma 19. Let Φ be a modal formula of
FPL(L1,L2) and let Pl(ϕ1), . . . ,Pl(ϕk) be all the atomic modal formulas occurring
in Φ. If Γ2 ∪ FPL2 `L2 Φ2, then, it easily follows from the above claim that Γ• ∪
FPL• `L2 Φ• where Φ• is any L2-formula obtained by replacing each occurrence of
a propositional variable pϕi with another pψi such that ψi ∈ [ϕi]. In fact, if ψi ∈ [ϕi],
then `L1 ψi ↔ ϕi and therefore, from Claim 1, FPL• `L2 pψi ↔ pϕi . Thus pϕi can
be substituted with pψi without loss of generality in the proof. Therefore, in particular
Γ•∪FPL• `L2 Φ• and this direction is complete.

(⇒) In order to prove the other direction let us assume Γ• ∪ FPL• `L2 Φ• and let
Ψ•1, . . . ,Ψ

•
k be an L2-proof of Φ• in Γ• ∪FPL•. For each 1 ≤ j ≤ k replace Ψ•j with

Ψ2
j , the representative of its equivalence class in FL1(V0). Clearly Ψ2

1 , . . . ,Ψ
2
k is an

L2-proof of (a formula logically equivalent to) Φ2. In fact, if Ψ•k = Φ•, then Ψ2
k ↔Φ2.

Moreover, for each 1≤ i < k one of the following holds:

(i) Ψ2
i is (logically equivalent to) an axiom of L2,

(ii) Ψ2
i ∈ Γ2∪FPL2,
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(iii) If Ψ•t is obtained by modus ponens from Ψ•s → Ψ•t and Ψ•s , then we claim that
Ψ2

t is obtained by modus ponens from Ψ2
s →Ψ2

t and Ψ2
s . In fact we have just to

note that (Ψs→Ψt)
2 = Ψ2

s →Ψ2
t and thus the claim easily follows.

Moreover, since modus ponens is the only inference rule of L2 we have nothing to add,
and our claim is settled. 2

Now, we are ready to state and prove our completeness theorem.

THEOREM 20 Let L1 be a logic for events, and let L2 be a logic compatible with
plausibility measures. Then the following hold:

(1) If L1 is locally finite, and L2 enjoys the FSRC, then FPL(L1,L2) is real-FSC.

(2) If L2 has theSRC, then FPL(L1,L2) is real-SC.

(3) If L2 has the FSRC, then FPL(L1,L2) is hyperreal-SC.

Proof (1) Assume L1 to be locally finite and complete with respect to a class
C1 = {Li}i∈I of L1-chains over a same universe U1. Let Γ∪{Φ} be a modal theory
of FPL(L1,L2) such that Γ 6`FPL Φ. Then, by Definition 3, and by definition of 2, it
follows that Γ2 ∪FPL2 is a finite theory of L2. Moreover, by Lemma 19, Γ 6`FPL Φ

iff Γ2 ∪ FPL2 6`L2 Φ2. Since L2 enjoys FSRC, there is an evaluation v into a real
L2-algebra A2 which is a model for Γ2∪FPL2, but v(Φ2)< 1.

Now consider the model M = 〈W,e,ρ〉 (cf. [82]), where:

- W = ∪i∈IWi where Wi is the set of all evaluations on the algebra Li.

- e : V ×W →U1 is defined as follows: for every w ∈Wi, and every p ∈V ,

e(p,w) =
{

w(p) if p ∈V0,
0 otherwise.

- ρ : FmW (V0)→ [0,1] is defined as: for all fϕ ∈ FmW (V0),

ρ( fϕ) = v(Pl(ϕ)2).

Claim 2 The model M = 〈W,e,ρ〉 is a plausibilistic model.

Proof (of the Claim 2) We only need to prove that ρ is a plausibility measure. Then,
recalling that ⊥2 = ⊥, we have >2 = >, and so ρ( f⊥) = v(⊥2) = v(⊥) = 0. Anal-
ogously ρ( f>) = 1. To prove monotonicity, assume that fϕ ≤ fψ in FmW (V0). Now,
fϕ ≤ fψ means that for every chain Li and every evaluation w on Li, w(ϕ)≤ w(ψ), and
by completeness of L1 with respect to C1, `L1 ϕ → ψ . By the monotonicity rule M,
`FPL Plϕ→ Plψ . Hence >= (Plϕ→ Plψ)2 = (Plϕ)2→ (Plψ)2 ∈ FPL2. Since v
is a model of FPL2, we have v(Pl(ϕ)2→ Pl(ψ)2) = 1. But v(Pl(ϕ)2→ Pl(ψ)2) = 1
iff v(Pl(ϕ)2)≤ v(Pl(ψ)2) iff ρ( fϕ)≤ ρ( fψ). Therefore M is a plausibilistic model as
required. 2

Let Ψ be any modal formula of FPL(L1,L2). By induction on Ψ, it is now easy to
show that ‖Ψ‖M = v(Ψ2), hence M is a plausibilistic model that satisfies every formula
of Γ, and such that ‖Φ‖M < 1 as required.
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(2) Let now Γ∪{Φ} be any arbitrary modal theory of FPL(L1,L2), and in particular
assume Γ to be infinite. Therefore, independently from the fact that L1 is locally finite
or not, the L2 propositional theory Γ2 ∪ FPL2 is infinite. Assume Γ 6`FPL Φ: from
Lemma 19, Γ2∪FPL2 6`L2 Φ2. Since L2, by hypothesis, has strong real completeness,
there exists, again, an evaluation v into a real L2-algebra such that v is a model of
Γ2∪FPL2, and v(Φ2)< 1.

Then, the same plausibilistic model M we defined in the proof of (1) is appropriate
for our purposes. Then, (2) is proved as well.16

(3) Assume now Γ to be any arbitrary modal theory of FPL(L1,L2). Assume that
Γ 6`FPL Φ: so Γ2∪FPL2 6`L2 Φ2 by Lemma 19. By Definition 3, Γ2∪FPL2 is not a
finite theory of L2, but since L2 has FSRC, then by [34, Theorem 3.2], L2 has SR∗C.
Consequently, there is an evaluation v into a non-trivial ultraproduct of real L2-chains
satisfying all the formulas in Γ2∪FPL2, and v(Φ2)< 1.

Again, the same strategy used in the proof of the claims (1) and (2) shows that
the model M = 〈W,e,ρ〉, defined as in the proof of (1), evaluates into 1 all the modal
formulas of Γ, and ‖Φ‖M < 1. Notice that in this peculiar case, for every fϕ ∈ FmW (V0),
ρ( fϕ) = v(Pl(ϕ)2) ∈ ∗[0,1], and M is in fact a hyperreal plausibilistic model. 2

4.2 Logics for generalized possibility and necessity
As we discussed in Section 3.2.1, possibility and necessity measures can be general-
ized to be defined on any lattice-ordered structure. Now, we show the logical coun-
terpart of these measure-theoretical approaches introducing schematic extensions of
FPL(L1,L2) so as to capture these more peculiar mappings.

Since the formalisms we introduce are intended to deal with necessity and possibil-
ity measures, we are going to consider as L1, and L2 only those ∆-core fuzzy logics
that are extensions of MTL∼. This will allow us to treat not only necessity but possibil-
ity measures as well, since they are definable as Π(ϕ) := ∼N(∼ϕ). With an abuse of
notation, we denote by N (necessity) the modal operator of FPL(L1,L2).

The logic FN(L1,L2) is the schematic extension of FPL(L1,L2) given by the
basic axiom schema

FN N(ϕ ∧ψ)↔ N(ϕ)∧N(ψ).

Necessity models for FN(L1,L2) are particular plausibilistic models. Indeed, they are
triples of the form 〈W,e,N〉, where W and e are defined as in the case of plausibilistic
models, and where N : Fm(L1)W → [0,1] is a necessity measure. Whenever N ranges
over a non-trivial ultrapower ∗[0,1] of the unit interval [0,1] we speak about hyperreal
necessity model.

THEOREM 21 Let L1 be a logic for events, and let L2 be a logic compatible with
necessity measures. Then the following hold:

(1) If L1 is locally finite, and L2 has the FSRC, then FN(L1,L2) is real-FSC.

16In fact, in this case where L2 is assumed to have the SRC, the same result could have been obtained
directly from the first translation •, i.e. without the further second translation 2.
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(2) If L2 has the SRC, then FN(L1,L2) is real-SC.

(3) If L2 has the FSRC, then FN(L1,L2) is hyperreal-SC.

Proof The claims can be easily proved by following the same lines of Lemmas 18 and
19, and Theorem 20. Indeed, using easy adaptations of Lemmas 18 and 19, one has to
show that, given a modal theory Γ and a modal formula Φ, Γ `FN Φ iff Γ•∪FN• `L2 Φ•

iff Γ2∪FN2 `L2 Φ2. The only point here is that when building the theory FN• one has
to additionally consider countably many instances of the axiom FN. Then one has to
show that the plausibilistic model M = 〈W,e,N〉 arising from the adaptation of the proof
of Theorem 20, is indeed a necessity model. Adopting the same notation of the proof of
Theorem 20, call v the L2-model of Γ2∪FN2, and call M = 〈W,e,N〉 the plausibilistic
model, where for every fϕ ∈ FmW (V0), we define N( fϕ) = v(N(ϕ)2). Then, since
FN(L1,L2) is the basic schematic extension of FPL(L1,L2) by the schema FN, for
every fϕ , fψ ∈ FmW (V0),

N( fϕ ∧ fψ) = N( fϕ∧ψ) = v(N(ϕ ∧ψ)2) and v((N(ϕ)2∧N(ψ)2)↔ N(ϕ ∧ψ)2) = 1

because (N(ϕ)2 ∧N(ψ)2)↔ N(ϕ ∧ψ)2 ∈ FN2 and v is a model of FN2, and hence
N( fϕ ∧ fψ) = N( fϕ)∧N( fψ). Therefore N is a necessity and the claim is settled. 2

4.3 Logics for representable generalized possibility and necessity
For every t-norm ∗ ∈ CONT-fin∪WNM-fin, let L1 = L2 = L∗([0,1]Q), as defined in
Section 2.2. The logic FNQ(L1,L2) is the basic schematic extension of FN(L1,L2)
given by the axiom schema

QN N(r]ϕ)↔ r]N(ϕ) for every r ∈ [0,1]∩Q,

and where ϕ ]ψ stands for ∼(∼ϕ &∼ψ) in L∗([0,1]Q).
Notice that the logic FΠQ(L1,L2), where necessity measures are replaced by pos-

sibility measures, is in fact the same as FNQ(L1,L2), since the involutive negations of
L1 and L2 allow the definition of possibility from necessity by duality. Therefore, we
only focus on FNQ(L1,L2).

Homogeneous necessity models are necessity models 〈W,e,NQ〉 where

NQ : FmW (V )→ [0,1]

further satisfies: NQ(r]ϕ) = r]NQ(ϕ). Whenever the homogeneous necessity mea-
sure takes values in a non-trivial ultrapower ∗[0,1] of the real unit interval, we speak,
as usual, of hyperreal homogeneous necessity models. Unlike all the previously studied
cases, it is now possible to introduce a stronger class of models. This is the class of
strong necessity models of the form MQ = 〈W,e,π〉 where W and e are defined as above,
and where π : W → [0,1] is a normalized possibility distribution, i.e. supw∈W π(w) = 1.
Evaluations in a strong necessity model are defined as usual, except for atomic modal
formulas N(ψ) that are now evaluated as follows:

‖N(ψ)‖MQ = inf
w∈W

(
‖ψ‖MQ,w]π(w)

)
.
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THEOREM 22 Let L1 = L2 = L∗([0,1]Q) for a t-norm ∗ ∈ CONT-fin∪WNM-fin.
Then the following hold:

(1) If L1 is locally finite and L2 has FSRC, then the logic FNQ(L1,L2) is real-FSC
with respect to the class of homogeneous necessity models, and the class of strong
necessity models.

(2) If L2 has FSRC, then the logic FNQ(L1,L2) is hyperreal-SC with respect to the
class of homogeneous necessity models.

Proof An inspection of the proof of Theorem 20 and a similar technique used in the
proof of Theorem 21, applied to QN, shows the first part of (1) and (2).

Take, now, a finite modal theory Γ∪{Φ} such that Γ 6`FNQ Φ, and let M = 〈W,e,NQ〉
be the homogeneous necessity model satisfying all the formulas in Γ, and ‖Φ‖M < 1.

NQ is a homogeneous necessity measure on FmW (V0) and W coincides with the
class of all L1-evaluations. Moreover, both 〈W,∗,],∼〉 and 〈[0,1],∗,],∼〉 are De Mor-
gan triples, and, being M a model for QN, we have that NQ(r ] f )↔ r ] NQ( f ) for
every r ∈ [0,1]∩Q and every f ∈ FmW (V0). Then, Theorem 9(1) ensures the existence
of a normalized possibility distribution π on W such that, for every fϕ ∈ FmW (V0),

NQ( fϕ) =
∧

w∈W

∼π(w)] e(w,ϕ).

Thus MQ = 〈W,e,π〉 is a strong necessity model that satisfies Γ, but ‖Φ‖MQ < 1. 2

REMARK 23 An alternative modal-style treatment of (representable) possibility and
necessity measure on many-valued events can be found in [20], where the authors rely
on G∆(Q) (i.e. Gödel logic with ∆ and truth constants from the rationals in [0,1]) as a
logic for modal formulas. In fact, the only necessary ingredients to correctly axiomatize
representable necessity and possibility modal formulas are the rational truth constants
and the lattice operations. These requirements are fulfilled by G∆(Q) (i.e. in the present
notation G∆(Q) is compatible with necessity and possibility over many-valued events).

4.4 Logics for generalized probability
Now, we describe a logical treatment of probability measures. To keep the notation
uniform, we denote by P the modal operator that interprets probability measures on
fuzzy-events.

In what follows L1 stands for either Łk, or Ł, and L2 is any expansion of Łukasiew-
icz logic Ł. The logic FP(L1,L2) is the schematic extension of FPL(L1,L2) obtained
by the following axioms:

P1 P(¬ϕ)↔¬P(ϕ).

P2 P(ϕ⊕ψ)↔ [(P(ϕ)→ P(ϕ & ψ))→ P(ψ)].

The notion of proof in FP(L1,L2) will be denoted by `FP. Obviously the properties of
normalization, and monotonicity we proved in Proposition 15, still hold for FP(L1,L2).
In addition FP(L1,L2) satisfies the following:
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PROPOSITION 24 The modality P is finitely additive, that is, for every τ,γ ∈E it holds:
τ & γ →⊥`FP P(τ⊕ γ)↔ (P(τ)⊕P(γ)).

Proof Recall from Proposition 15, that P(⊥)↔⊥ holds in FP(L1,L2). Now, since
τ &γ→⊥, we have τ &γ↔⊥, and by the rule of substitution of the equivalents (Propo-
sition 15(2)), P(τ & γ)↔ ⊥. Therefore by P2, we get τ & γ → ⊥ `FP P(τ ⊕ γ)↔
[(P(τ)→⊥)→ P(ψ)], and so τ & γ →⊥`FP P(τ⊕ γ)↔ (¬P(τ)→ P(ψ)). 2

Models for FP(L1,L2) are special cases of plausibilistic models: a (weak) probabilistic
model is a triple M = 〈W,e,s〉, where W and e are defined as in the case of plausibilistic
models, and s : Fm(L )W → [0,1] is a state. The evaluation of a formulas into a model
M is defined as in the previous cases.

A probabilistic model is a hyperreal probabilistic model, whenever the measure s
takes values from a non-trivial ultrapower ∗[0,1] of the unit interval [0,1].

In analogy to the case of representable necessity and possibility measures, also for
the case of probability, we can introduce the notion of strong probabilistic model. In-
deed, strong probabilistic models are a triples 〈W,e, p〉 where W and e are as in the case
of weak probabilistic models, and p : W → [0,1] is such that W0 = {w ∈W | p(w)> 0}
is countable, and ∑w∈W0

p(w) = 1. Evaluations of (modal) formulas are defined as usual,
with the exception of atomic modal formulas that are defined as follows: for every
P(ψ) ∈MF ,

‖P(ψ)‖M = ∑
w∈W

p(w) · ‖ψ‖M,w.

The following is, again, a direct consequence of Theorem 20.

THEOREM 25 For every k ∈ N, the logic FP(Łk,Ł) is real-FSC with respect to both
the class of probabilistic models and the class of strong probabilistic models. Moreover,
the logic FP(Ł,Ł) is hyperreal-SC.

Proof Again, one starts by adapting Lemmas 18 and 19, by showing that, given a modal
theory Γ and a modal formula Φ, Γ`FP Φ iff Γ•∪FP• `Ł Φ• iff Γ2∪FP2 `Ł Φ2, taking
into account now that when building the theory FP• one has to additionally consider
instances of the axiom P1 and P2. Then, the only necessary modification with respect
to the proof of Theorem 20 regards the fact that we have to ensure that the measure
s : FmW (V0)→ [0,1] of M = 〈W,e,s〉, defined as s( fϕ) = v(P(ϕ)2) = v(pϕ2), is a state.
Following similar proofs in [52, Th. 8.4.9] and [35, Th. 4.2], it is easy to check that

s( fϕ ⊕ fψ) = s( fϕ)+ s( fψ)− s( fϕ & fψ).

Therefore s is a state from Proposition 11.
To conclude our proof consider a finite modal theory Γ∪{Φ} and assume Γ 6`FP Φ.

From what we proved above, there is a probabilistic model M = 〈W,e,s〉 that is a model
for Γ, and ‖Φ‖M < 1. Adopting the same notation of Theorem 12, call Y the (finite)
set of all the evaluations from V0 into Sk. Then the state s is defined on the MV-algebra
FmY , hence, from Theorem 12, there exists a probability distribution p on Y such that
for every fϕ ∈ FmY , s( fϕ) = ∑w∈Y p(w) ·w(ϕ).
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Now, we define M′ = 〈Wk,e, p̂〉 where Wk is the set of all the evaluations of variables
in V into Sk, for every w ∈Wn and every variable q, e(q,w) = w(q) and p̂ : Wn→ [0,1]
satisfies:

p̂(w) =
{

p(w) if w ∈ Y,
0 otherwise.

Then M′ is a strong probabilistic Łukasiewicz model, and it can be easily proved that
for every modal formula Ψ of FP(Łk,Ł), ‖Ψ‖M′ = ‖Ψ‖M . Therefore M′ is a model of
Γ, and ‖Φ‖M′ < 1 as required. 2

5 Expansions with rational truth constants
In this section, we rely on basic schematic extensions of FPL(L1,RŁ). Notice that the
class MF of modal formulas of FPL(L1,RŁ) is taken as closed under the operators
δn, for every n∈N, and therefore, for every modal formula Φ, δnΦ is modal as well. We
stress this fact because we adopt now the same notation we introduced in Section 2.4, and
therefore, for every rational number r = m/n ∈ [0,1] with n,m being natural numbers,
we write r or even m/n instead of mδn(>).

We are going to study here plausibility measures from the general point of view,
and so we consider only the modality Pl. The other cases involving (representable)
necessity and possibility, and probability measures are similar and hence omitted. A
complete treatment for those classes of measures can be found in [36, 35].

The logic FPL(L1,RŁ) is significantly more expressive than a logic FPL(L1,L2)
where L2 does not allow to define rational values. In fact it is now possible to deal with
formulas like, for instance, Pl(ϕ)↔ 1

2 and Pl(ψ)→ 1
3 whose intended interpretation is

that the plausibility of ϕ is 1
2 and the plausibility of ψ is at most 1

3 , respectively.
Using Theorem 20, it is not difficult to prove that FPL(L1,RŁ) is sound and

(finitely) strongly complete with respect to the class of plausibilistic models. In fact
RŁ has finite strong real completeness (see [43]). On the other hand, when we expand a
logic by means of rational truth values, it is possible to define the notions of provability
degree and truth degree of a formula ψ over an arbitrary theory Γ. For FPL(L1,RŁ)
they are defined as follows:

DEFINITION 26 Let Γ be an FPL(L1,RŁ) modal theory and let Φ be a modal for-
mula. Then, the provability degree of Φ over Γ is defined as

|Φ|Γ = sup{r ∈ [0,1]∩Q : Γ `FPL r→Φ},

and the truth degree of Φ over Γ is defined as

‖Φ‖Γ = inf{‖Φ‖M |M is a plausibilistic model of Γ}.

We say that FPL(L1,RŁ) is Pavelka-style complete, or that FPL(L1,RŁ) enjoys the
Pavelka-style completeness theorem iff for every modal theory Γ∪{Φ},

|Φ|Γ = ‖Φ‖Γ.
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Now we are going to show that FPL(L1,RŁ) is Pavelka-style complete. Just as a re-
mark notice that, with respect to this kind of completeness, we are allowed to relax the
hypothesis about the cardinality of the modal theory we are working with. In fact Γ is
assumed to be an arbitrary (countable) theory, not necessarily finite. This is due to the
fact that RŁ is indeed strongly Pavelka-style complete (cf. [43, Theorem 5.2.10]).

THEOREM 27 Let Γ be a modal theory of FPL(L ,RŁ), and let φ be a modal formula
of FPL(L ,RŁ). Then, the truth degree of φ in Γ equals the provability degree of φ in Γ:

‖φ‖Γ = |φ |Γ.

Proof We are simply going to sketch the proof of Pavelka-style completeness for
FPL(L ,RŁ). The argument used is, in fact, routine, and more details can be found
in [52, Theorem 8.4.9] for the case of Boolean events, and probability measure (but the
same argument easily holds for our more general case).

Let Γ∪ {Φ} be an arbitrary modal theory of FPL(L ,RŁ). Adopting the same
notation of the above section, from Lemma 18, and Lemma 19, Γ `FPL Φ iff Γ2 ∪
FPL2 `RŁ Φ2. Moreover, since the connectives of RŁ are all continuous, it is easy to
show that

(1) |Φ|Γ = |Φ2|Γ2∪FPL2 .

We know from [43, Theorem 5.2.10], that RŁ is Pavelka-style complete, hence

(2) |Φ2|Γ2∪FPL2 = ‖Φ2‖Γ2∪FPL2 .

A routine verification (see for instance the proof of Theorem 20) shows that from the
map ‖ ·‖Γ2∪FPL2 evaluating the truth degree of formulas of the form ϕ2 into [0,1], one
can easily define a plausibilistic model capturing the same truth values of ‖ ·‖Γ2∪FPL2 .
Therefore

(3) ‖Φ2‖Γ2∪FPL2 = ‖Φ‖Γ.

Consequently, from (1), (2), and (3), we obtain |Φ|Γ = ‖Φ‖Γ. 2

6 On the coherence problem
Take a finite set of events φ1, . . . ,φk ∈ E , and a map a : φi 7→ αi ∈ [0,1].

Can the map a be extended to an uncertainly measure on the algebra gen-
erated by the formulas φ1, . . . ,φk?

This problem generalizes a well-known and deeply-studied classical one. In fact, if we
ask the above question in terms of classical events, and probability measures, then the
above problem is known in the literature as de Finetti coherence problem [17, 18, 19].

We are now going to introduce a way to treat and characterize the above coherence
criterion to deal with many-valued (and in general non-Boolean) events, and measures
different from the additive ones.17

17De Finetti’s coherence criterion has been recently studied for states and MV-algebras in [65, 75].
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DEFINITION 28 Let φ1, . . . ,φk be formulas in the language of L and let M be a class
of generalized plausibility measures. Then a map a : {φ1, . . . ,φk}→ [0,1] is said to be:

(i) A rational assignment, provided that for every i = 1, . . . ,k, a(φi) is a rational
number.

(ii) M-Coherent if there is an uncertainty measure µ ∈M on the Lindenbaum-Tarski
algebra FmV generated by the variables occurring in φ1, . . . ,φk, such that, for all
i = 1, . . . ,n, a(φi) = µ([φi]).

Consider a finite set of L -formulas φ1, . . . ,φk, and a rational assignment

a : φ 7→ ni

mi
, (for i = 1, . . . ,k),

where ni and mi are co-prime positive integers and such that ni ≤ mi. Then, e.g. the
following formulas are definable in the language of FM(L ,RŁ):

(4) M(φi)↔ ni/mi.

The following theorem characterizes M-coherent rational assignments in terms of con-
sistency of the formulas defined in (4). Since the proof of the following theorem is
similar for every class M of measures, we will concentrate on generalized plausibility
measures, and we will omit the other cases (like necessity and probability).

THEOREM 29 Let φ1, . . . ,φk be formulas in L , and let

a : φi 7→
ni

mi

be a rational assignment. Then the following are equivalent:

(i) a is PL-coherent,

(ii) the modal theory Γ= {Pl(φi)↔ ni/mi | i= 1, . . . ,k} is consistent in FPL(L1,RŁ)
(i.e. Γ 6`FPL ⊥).

Proof (i)⇒ (ii). Let a be PL-coherent, and let ρ : FL1(V0)→ [0,1] be a plausibil-
ity measure on the Lindenbaum-Tarski algebra of L1 defined from the set of variables
V0 occurring in φ1, . . . ,φk, extending a. Then, let W be defined as in the proof of The-
orem 20 and consider the model M = 〈W,e, ρ̂〉 where for every variable p and every
w ∈W , e(p,w) = w(p), and where ρ̂ : FmW (V )→ [0,1] is the plausibility measure such
that for all fϕ ∈ FmW (V ), ρ̂( fϕ) = ρ([ϕ]). Then M is a plausibilistic model for Γ. In
fact, for every i = 1, . . . ,k,

‖Pl(φi)↔ ni/mi‖M = 1 iff
‖Pl(φi)‖M ↔‖ni/mi‖M = 1 iff

‖Pl(φi)‖M = ni/mi iff
ρ̂( fφi) = ρ([φi]) = ni/mi.

Therefore Γ has a model, and so Γ 6`FPL ⊥.
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(ii)⇒ (i). Assume, conversely, that Γ 6`FPL ⊥. Then, there exists a plausibilistic model
M = 〈W,e,ρ〉 such that ‖φ‖M = 1 for each φ ∈Γ. Consider the map ρ̂ : FmW (V )→ [0,1]
defined as follows: for every [ψ] ∈FL1(V ),

ρ̂([ψ]) = ‖Pl(ψ)‖M = ρ( fψ).

Then ρ̂ is a generalized plausibility measure. In fact:

(i) ρ̂([>]) = ‖Pl(>)‖M = ‖>‖M = 1, and analogously ρ̂([⊥]) = 0.

(ii) Assume that [ϕ]≤ [ψ]. Then [ϕ→ψ] = [>], and hence, by the monotonicity rule
one has ‖Pl(ϕ)→ Pl(ψ)‖M = 1 as well. But, this is equivalent to ‖Pl(ϕ)‖M ≤
‖Pl(ψ)‖M , i.e. ρ̂([ϕ])≤ ρ̂([ψ]). Then ρ̂ is monotone.

Moreover, for every i = 1, . . . ,k, ρ̂([φi]) = ‖Pl(φi)‖M = ni/mi. In fact, by definition of
Γ, Pl(φi)↔ ni/mi ∈ Γ, hence ‖Pl(φi)↔ ni/mi‖M = 1, i.e. ‖Pl(φi)‖M = ni/mi. Conse-
quently, ρ̂ is a plausibility measure on FL1(V ) that extends a. Therefore, the claim is
proved. 2

7 Conclusions and further readings
The monographs [57, 78] are standard references for a wide overview on classical un-
certainty measures and reasoning under uncertainty. It is also worth mentioning the
book [76] (consisting of two volumes) that offers a survey on measure theory with its
many different branches, from the classical one to additive and non-additive measures
on many-valued and quantum structures, along with many other related topics.

Normalized and additive maps on MV-algebras have been introduced by Kôpka
and Chovanec in [61], and then by Mundici under the name of MV-algebraic states
(or simply states) in [74]. More specifically, the notion of a state on MV-algebras is
intimately connected with that of a state on an Abelian `-group that can be found in
Goodearl [49]. We also refer to the paper [26] for a comprehensive survey on the topic
of states on MV-algebras and applications.

States have been also studied in a different framework than that of MV-algebras.
The literature about this general approach includes several papers. In particular, we
mention the work by Aguzzoli, Gerla and Marra [2] where they studied states on Gödel
algebras, the paper [1] by Aguzzoli and Gerla where states were studied in the more
general setting of Nilpotent Minimum algebras (cf. [29]). Dvurečenskij and Rachůnek
studied in [27] probabilistic-style measures in bounded commutative and residuated
`-monoids. We also mention the work by Riečan on probability on BL-algebras, and
IF-events [80, 81], and the paper by Mertanen and Turunen [72] dealing with states on
semi-divisible residuated lattices.

Extensions of de Finetti’s coherence criterion to deal with states on MV-algebras
are studied in [79] for the case of events being (equivalence classes of) formulas of
finitely valued Łukasiewicz logic. A first approach to the case of infinite valued Łuka-
siewicz logic was made by Gerla in [41], and subsequently characterized completely by
Mundici [75]. In [65], Kühr and Mundici solved the problem of extending de Finetti’s
criterion to deal with formulas of any [0,1]-valued algebraic logic having connectives
whose interpretation is given by continuous functions.
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The problem of checking the coherence (in the sense of de Finetti) of a partial prob-
abilistic assignment was shown to be NP-complete in [78]. This result was applied in
[56] by Hájek and Tulipani to show that the satisfiability problem for a modal proba-
bilistic logic for classical events is still NP-complete. The computational complexity
of de Finetti’s criterion for Łukasiewicz finitely valued events was studied by Hájek in
[53], and a final NP-completeness result for the coherence problem of infinitely-valued
Łukasiewicz events was proved by Bova and Flaminio in [9].

To conclude, we recall some fundamental papers on the topic of generalized mea-
sure on fuzzy events. In [73], Montagna studied de Finetti coherence criterion for con-
ditional events in the sense of conditional states introduced by Kroupa in [62]. In [32],
Fedel, Kreimel, Montagna and Roth characterized a coherent rationality criterion for
non-reversible games on (divisible) MV-algebras by means of upper and lower proba-
bilities. A multimodal based logical approach to upper and lower probability on MV-
algebras was introduced in [33]. In [64, 37], the authors have begun a study of belief
functions on particular classes of semisimple MV-algebras.
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Logica 90(1):25–41, 2008.
[3] T. Alsinet. Logic Programming with Fuzzy Unification and Imprecise Constants: Possibilistic Semantics

and Automated Deduction. Monografies de l’Institut d’Investigació en Intel·ligència Artificial, Consejo
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[56] P. Hájek and S. Tulipani. Complexity of fuzzy probabilistic logics. Fundamenta Informaticae,

45:207–213, 2001.
[57] J.Y. Halpern. Reasoning about Uncertainty. The MIT Press, Cambridge Massachusetts, 2003.
[58] S. Jenei and F. Montagna. A proof of standard completeness for Esteva and Godo’s logic MTL. Studia

Logica 70:183–192, 2002.
[59] E.P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer Academy Publishers, 2000.
[60] A.N. Kolmogorov. Foundations of the Theory of Probability. Chelsea Publishing Company, New York,

1960.
[61] F. Kôpka and F. Chovanec. D-posets. Mathematica Slovaca 44:21–34, 1994.
[62] T. Kroupa. Conditional probability on MV-algebras. Fuzzy Sets and Systems, 149:369–381, 2005.
[63] T. Kroupa. Every state on semisimple MV-algebra is integral. Fuzzy Sets and Systems 157:2771–2782,

2006.
[64] T. Kroupa. Belief Functions on Formulas in Łukasiewicz Logic. In Proc. of 8th Workshop on Uncer-

tainty Processing WUPES’09. 2009.
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