Syntax for Handy-LK
(short hlk-files)

Hendrik Spohr
December 7, 2006

IMPORTANT: This is a draft!
The grammar may change slightly in the future.

1 HLK Grammar

2 HLK File
(hlk-file) = ((hlk-statement) ; | (single-line-comment))*
(single-line-comment) ::= # ((any-character))* (new-line)
(hlk-statement) = (reference)
| (definition)
(reference) = reference (file)
(definition) = (type-definition)
| (variable-definition)
| (constant-definition)
| (function-definition)
| (predicate-definition)
| (aziom-definition)
| {equality-definition)
| (proof-definition)
3 Types
(type-definition) ::= define type (identifier-list)

[fresh variable starts with (identifier)]

4 Terms
(variable-definition)

(constant-definition)

(function-definition)

(atom-funcdef)

(funcdef-by-term)

(funcdef-by-formula)

(recursive-funcdef)

(func-prototype)

5 Predicates

(predicate-definition)

(atom-preddef)

(preddef-by-formula)

= define variable (identifier-list) of type (type)

define constant (identifier-list) of type (type)

(atom-funcdef)
(funcdef-by-term)
(funcdef-by-formula)
(

recursive-funcdef)

define [(notation-clause)] function (identifier-list)
of type (type-list) to (type) [(weight-clause)]
define function (func-prototype)

to (type) [(weight-clause))

define [(notation-clause)] function ((identifier) |
(func-prototype)) by (term) [(weight-clause)]

define [(notation-clause)] function (identifier)
through (formula) is defined by (formula)
[(weight-clause)]

define recursive function (identifier)
[¢ (variable-list))] to (type)
(at level (rec-level-term) by (term))+

(identifier) ((variable-list))
((variable) (identifier) (variable))

(atom-preddef)
(preddef-by-formula)
(recursive-preddef)

define [(notation-clause)] atom predicate
(identifier-list) | of type (type-list)]

define [(notation-clause)] predicate (identifier)
[¢ (variable-list))] by (formula)

(recursive-preddef)

(aziom-definition)

(equality-definition)

(weight-clause)

(notation-clause)

define recursive predicate (identifier)
[¢ (variable-list))]
(at level (rec-level-term) by (formula))+

define axiom (sequent) [named as (identifier) |

define equality for (variable) = (variable)
as (formula)

with weight (weight)

prefix
infix

6 Proof Definition

(proof-definition)

(proof-meta-decl)

(proof-body)

(proof-step)

(proof-end-step)

define proof (identifier) ({proof-meta-decl))*
(proof-body)

define recursive proof (identifier)
({proof-meta-decl))*

(at level (rec-level-term) (proof-body))+

with meta [(notation-clause)]

formula (identifier-list) [of type (type-list) | ;
with meta term (identifier-list) of type (type) ;
with meta [(notation-clause)]

term (identifier-list) of type (type-list) to (type)
[(weight-clause)] ;

proves (sequent) ;
((proof-step) ;)+
[(proof-end-step) ;]

with (unary-rule) (sequent)

with cut (formula)

[left | right | (proof-ref-clause)

with (binary-rule) (sequent)

[left | right | (proof-ref-clause)

with paramod by (equation) right (sequent)

with cut (formula)
left (proof-ref-clause)
right (proof-ref-clause)
with (binary-rule)
left (proof-ref-clause)

(unary-rule)

(binary-rule)

(proof-ref-clause)

(proof-arg-list)

(proof-ary)

right (proof-ref-clause)
continued (proof-ref-clause)
explicit axiom (sequent)

not left

not right

and left

or right

impl right

all left

all right

ex left

ex right

undef (identifier)
undef equality of type (type) , (type)
auto propositional

and right
or left
impl left
paramod

by proof (proof) [((proof-arg-list))]
auto propositional
explicit axiom (sequent)

(proof-arg)
(proof-arg) , (proof-arg-list)

(formula)
(term)

7 Sequent and Formulas

(sequent)

(formula-list)

(formula)

[(formula-list)] := [(formula-list)]

(formula)
(formula) , (formula-list)

(subformula)

(term) (infiz-predicate-symbol) (term)
(sub-formula) and (sub-formula)
(sub-formula) or (sub-formula)
(sub-formula) impl (sub-formula)

(sub-formula) ((formula))

not (sub-formula)

all (wvariable) (sub-formula)
ex (variable) (sub-formula)

(predicate) | ((term-list)) |

8 Terms
(term) = (sub-term)
| (sub-term) (infiz-function-symbol) (term)
(sub-term) = (variable)
| (constant)
| (function) ((term-list))
9 Symbols
(variable) = (identifier)
(variable-list) = (variable) (, (variable))*
(constant) = (identifier)

(infiz-function-symbol) ::= (identifier)

(function) = (identifier)
| (identifier) [{(recursion-expr)]

(infiz-predicate-symbol) ::= (identifier)

(predicate) == (identifier)
(identifier) [(recursion-expr)]

(recursion-variable) = (identifier)

10 Recursion Expressions

positive-integer)

(recursion-expr) = {
| (recursion-variable)
||

(

recursion-variable)
recursion-expr-op) (positive-integer)

(recursion-expr-op) n= = x|/

(rec-level-term) = (positive-integer)

| (recursion-variable)

| (recursion-variable) + (positive-integer)
| (recursion-variable) * (positive-integer)

