object ExistsRightBlock
- Source
- ExistsRightBlock.scala
- Alphabetic
- By Inheritance
- ExistsRightBlock
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def apply(subProof: LKProof, main: Formula, terms: Seq[Expr]): LKProof
Applies the ExistsRight-rule n times.
Applies the ExistsRight-rule n times. This method expects a formula main with a quantifier block, and a proof s1 which has a fully instantiated version of main on the right side of its bottommost sequent.
The rule:
(π) Γ :- Δ, A[x1\term1,...,xN\termN] ---------------------------------- (∀_l x n) Γ :- Δ, ∃ x1,..,xN.A
- subProof
The top proof with (Γ :- Δ, A[x1\term1,...,xN\termN]) as the bottommost sequent.
- main
A formula of the form (∃ x1,...,xN.A).
- terms
The list of terms with which to instantiate main. The caller of this method has to ensure the correctness of these terms, and, specifically, that A[x1\term1,...,xN\termN] indeed occurs at the bottom of the proof π.
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @IntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def withSequentConnector(subProof: LKProof, main: Formula, terms: Seq[Expr]): (LKProof, SequentConnector)
Applies the ExistsRight-rule n times.
Applies the ExistsRight-rule n times. This method expects a formula main with a quantifier block, and a proof s1 which has a fully instantiated version of main on the right side of its bottommost sequent.
The rule:
(π) Γ :- Δ, A[x1\term1,...,xN\termN] ---------------------------------- (∀_l x n) Γ :- Δ, ∃ x1,..,xN.A
- subProof
The top proof with (Γ :- Δ, A[x1\term1,...,xN\termN]) as the bottommost sequent.
- main
A formula of the form (∃ x1,...,xN.A).
- terms
The list of terms with which to instantiate main. The caller of this method has to ensure the correctness of these terms, and, specifically, that A[x1\term1,...,xN\termN] indeed occurs at the bottom of the proof π.
- returns
A pair consisting of an LKProof and an SequentConnector.
This is the API documentation for GAPT.
The main package is gapt.