
Proof Generalization and Function Introduction

(extended abstract)

Nicolas Peltier

LEIBNIZ-IMAG

46, avenue F�elix Viallet, 38031 Grenoble Cedex, FRANCE

Nicolas.Peltier@imag.fr

1 Introduction and Overview of the Paper

In this work, we extend a former method for generalizing proofs in �rst-order logic and

we show how to combine it with some lemma generation techniques based on function

introduction [1]. The approach is presented in the context of the resolution method,

but its basic principles can be applied to others calculi, such as tableaux, the connection

method, or the sequent calculus. The main application of this proof generalization method

is analogical reasoning (see [5]): Proofs are �rst transformed into more general ones,

then stored into a database containing theorems and proofs. When a new conjecture is

presented, the system will look for more a general formula into the database, using a

specialized matching algorithm [5]. The generalization step is one of the most important

steps of analogy detection. It aims at extracting the relevant information from the proof,

in order to increase the number of conjectures that can be matched and to make the

matching step as easy as possible.

The �rst sections are devoted to a brief description of the proof generalization method.

First, we introduce a generalization ordering between unsatis�able sets of clauses. The

order relation is the same as in our previous work [4, 5]. Then, we give an algorithm for

transforming formulae into more general ones. The proposed algorithm is based on similar

ideas to, but strictly more powerful than, the original one presented in [4].

Then we combine the proposed method with the so-called function introduction rule

described in [1]. As proven in [1], this rule may decrease signi�cantly the length of a

proof and improves its readibility. It can be applied either during proof search, or as

a post-processing step, on an already obtained proof [9]. We show how to extend the

generalization algorithm in order to take into account the use of the function introduction

rule.

These results have important practical consequences for analogical reasoning: �rst,

we obtain a new generalization algorithm, strictly more powerful than the original one.

Secondly, shorter and more structured generalized proofs can been obtained, thanks to the

use of the function introduction rules [1, 9].

2 The generalization ordering

Generalizing proofs means transforming the proof of a theorem A into a new proof of

a more general theorem B. Therefore, before presenting our algorithm for generalizing

172

proofs, we �rst have to precisely de�ne what we mean by \more general formulae". What

do we mean by saying that a formula A is more general than another formula B ? A

�rst, obvious attempt could be to use a purely semantic approach, i.e. to replace \more

general" by \logically implies" but this would make this relation undecidable, hence far

to general for being usable in practice. Moreover, we contend that the logical values of

the formulae A;B are not su�cient criteria for de�ning this notion of generality. Indeed,

it is clear that the proofs of A and B must be related in some way, independently of their

semantic.

For example, let us consider the formulae A � 8k:�

k�1

i=0

2 � i + 1 = k

2

and B �

8k:9x:�

k�1

i=0

2 � i + 1 = x

2

. From a logical point of view, A and B are equivalent (in

Peano's arithmetic). However, it is clear, from an intuitive point of view, that the former

formula is more general than the latter. Indeed, B simply says that for all k, there exists

an x such that the sum of the k �rst odd integers is equal of x

2

, whereas A gives us the

value of x (which is equal to k). Any proof of A can be e�ectively transformed into a proof

of B (the converse being not true). Therefore A gives us more precise information, or

simply more information than B. Otherwise stated, for us \more general" means \giving

more information" which corresponds to the standard mathematical use.

Similarly, we do not say that a logical formula F

1

is more general than F

2

if the proofs

of F

1

and F

2

are not related in some way. For example, F

1

: 8y:B(y) _ > will not be said

to be more general than F

2

: 9x:A(x) _ 8y::A(y) despite the fact that F

1

j= F

2

, since the

(cut-free) proof of F

2

(which is a valid formula) is not related to the one of F

1

. Indeed, the

proofs of these two formulae have, from an intuitive point of view \nothing in commun".

Hence, we see the notion of generality, although included in the one of the logical

consequence, as more restrictive. A purely semantic approach is therefore not su�cient.

We have to use a syntactical approach. Intuitively, we will say that A is more general than

B i� any proof of A can be automatically transformed (in some e�cient way) into a proof

B. In order to de�ne it on a formal basis, we introduce the following de�nitions.

De�nition 1 A set of clauses S H-subsumes a set of clauses S

0

i� each ground instances

of a clause in S

0

is subsumed by a clause in S.

De�nition 2 An (unsatis�able) set of clauses S will be said to be more general than

another set of clauses S

0

i� S

0

H-subsumes S. This relation will be denoted by S >

gen

S

0

in the following.

At �rst glance, it may seem strange that we obtain a \more general" set of clauses

by taking an instance of one of the clauses. However, one should remember that reso-

lution is a refutation procedure, thus considering the negation of the formula to prove,

(more precisely, the negation of the conclusion) instead of the formula itself. Therefore,

instanciating a clause corresponds in some sense to replace universal quanti�ers by exis-

tential quanti�ers in the negation of the formula, hence to replace existential quanti�ers

by universal quanti�ers, which is more likely to be closer to the usual intuitive meaning

of \generalisation". For instance the above set of clauses S corresponds to the formula

(before negation and skolemization) 8y:(P (y) _ 9x::P (x)), whereas the obtained set of

clauses after generalization corresponds to 8y:(:P (y) _ P (y)). The latter is obviously

more general than the former since an existential quanti�ed variable has been instanci-

ated: 8y:(P (y) _ 9x::P (x)) only says that there exists an x such that P (x), whereas the

the formula 8y:(:P (y) _ P (y)) gives explicitely the value of the variable x (here x = y).

173

Example 1 Let A � fA(b);:A(b) _ B;:B _ :C;Cg and B � f8x:A(x);8x::A(x) _

B;:B;Cg.

We have A >

gen

B.

Proposition 1 >

gen

is a pre-order.

Proposition 2 If A >

gen

B, then B j= A. Moreover, any refutation of A can be auto-

matically transformed (in polynomial time) into a refutation of B.

3 The generalization algorithm

The principle of the generalization algorithm is to use the information deduced from the

resolution proof of S in order to transform S into a more general set of clauses. The idea is

to weaken the conditions imposed on the clauses in S, is such a way that the \soundness"

of the derivation leading to an empty clause will be preserved. Before describing it on a

formal basis, we brie
y explain the principle of the generalization process on some very

simple examples.

Example 2 Let S be the set of clauses S = f8x:P (x);:P (a)g. The resolution proof is

obvious: 8x:P (x);:P (a) ! 2 (with x ! a). Here it is clear that the clause 8x:P (x)

is not needed for deriving a contradiction. What is needed here is only one particular

instance of this clause, namely the clause P (a). Hence S can be transformed into: S

0

=

fP (a);:P (a)g, which is more general than S.

Example 3 Let us consider once more the formulae A and B introduced in the Intro-

duction. After negation and skolemization, A and B can be respectively transformed into:

A

0

� �

k�1

i=0

2� i+ 1 6= k

2

and B

0

� 8x:�

k�1

i=0

2� i+ 1 6= x

2

(where k is a constant symbol).

If we consider the refutation of B

0

(in Peano's arithmetic) we see that the variable x is

only instanciated with one value: x! k. Hence, we replace x by k in B

0

, thus giving the

formula A

0

.

This example shows how the our formal de�nition of generality relates to the intuitive

description given in Introduction. Here the formula B can be automatically transformed

into the more general formula A, using the information deduced from its proof.

The main application of this notion of generality is the reuse of proofs. By Proposition

2, if S and S

0

are two sets of clauses such that S is unsatis�able and S >

gen

S

0

, then S

0

is unsatis�able and any refutation of S can be e�ciently transformed into a refutation of

S

0

(it su�ces to remove irrelevant subpart of the proof and then to use lifting).

Checking whether a given set of clauses S is more general than another clauses set S

0

only requires a H-subsumption test. However, for the particular application considered in

the present paper, we also need to extend this notion to higher-order clauses sets. Indeed,

the most simple notion of analogy, that has to be taken into account in this work, is simply

syntactic equality modulo a substitution of the functional or predicate symbols. Hence

the notion of generality must combine H-subsumption with higher-order matching.

In [5], we have developed an algorithm for checking whether a set of higher-order clauses

S

0

is more general than S. This algorithm is based on higher-order AC-uni�cation and

quanti�er elimination (using the quanti�er elimination rules in [3]). Before applying this

algorithm, it is interesting to apply the generalization algorithm on the \source problem" S

in order to increase the number of sets of clauses \less general" than S (see [4]). However,

174

the generalization algorithm presented in [4] had some limits: in particular, it is not

con
uent, i.e. we can obtain from the same problem S di�erent generalized formulae

S

1

; S

2

; : : : that cannot be compared using the generalization ordering. The main aim of

the present work is to give another, more powerful, generalization method based on the

same principle, but overcoming the drawbacks of the previous one. Instead of de�ning the

generalization algorithm by a set of rewriting rules as done in [4], we show how to compute

the \most general set of formulae" that can be obtained from a given proof. This set of

formulae is described by a set of constrained clauses (with second-order variables replacing

function and predicate symbols) and a second-order uni�cation problem, imposing some

conditions on these second order variables. The second-order uni�cation problem is simply

obtained by considering the conjunction of all the (second-order) uni�ers occurring in the

proof. Special kinds of predicate symbols, called domain predicates are added to the

clauses to encode particular instanciations of the variables occurring in these clauses. The

constrained clauses give us a very natural and easy way of formalizing this idea. We show

that this approach is strictly more powerful than our former one.

3.1 A constrained calculus: RAMC

We recall below some necessary notions from [2]. We assume the reader is familiar with

the usual notions in Automated Deduction (clause, formula, interpretation etc.).

De�nition 3 A constrained clause (or a c-clause for short) is a couple [[C : X]] where:

- C is a clause (in the standard sense).

- X is a equational formula (in the usual sense, see for example [3]).

If C is unit then [[C : X]] is called a c-literal. If C is empty and X is satis�able then

[[C : X]] is called an empty clause and denoted by vw.

The refutation rules are simply the standard inference rules (resolution and factoriza-

tion) adapted to c-clauses.

The binary c-resolution Let [[:P (t) _ c

0

1

: X]] and [[P (s) _ c

0

2

: Y]] be two c-clauses

c

1

and c

2

. The rule of binary c-resolution (abbreviated bc-resolution) on c

1

and c

2

upon

:P (t) and P (s) is de�ned as follows:

[[:P (t) _ c

0

1

: X]] [[P (s) _ c

0

2

: Y]]

[[c

0

1

_ c

0

2

: X ^ Y ^ t = s]]

The binary c-factorization The binary c-factorization (abbreviated bc-factorization)

of the c-clause c = [[P (t) _ P (s) _ c

0

: X]] upon P (t) and P (s) is de�ned as follows:

[[P (t) _ P (s) _ c

0

: X]]

[[P (s) _ c

0

: X ^ t = s]]

We also use the standard renaming rule.

C-resolution and c-factorisation (and renaming) are sound and refutationaly complete

[2]. A sequence of sets of c-clauses S

1

; : : : ; S

n

is said to be a derivation from S

1

i� for

all i � n � 1, S

i+1

= S

i

[fR

i

g where R

i

is obtained from c-clauses in S

i

by applying

the c-resolution, c-factorization or renaming rules. A derivation S

1

; : : : ; S

n

is said to be a

refutation of S

1

i� S

n

contains the empty c-clause.

175

3.2 Generalized c-clause

Generalized c-clause are simply c-clauses in which functional and predicate symbols are

replaced by second order variables. More formally:

De�nition 4 A generalized formula is a (higher-order) formula such that any bound vari-

able is of order 1, any free variables is of order at most 2 and any occurrence of a variable

X of order 2 occurs in �rst-order terms of the form X(t

1

; : : : ; t

n

). A generalized c-clause

is of the form 8x:[[C : X]] where C is a generalized clause, X is a generalized formula,

and x a n-tuple of �rst-order variables.

Remark 1 Clearly, the problem of checking whether a given generalized formulae is valid

or not (and in particular of checking whether a given c-clause is empty) is undecidable.

But this is not a problem because this test will be made only of some particular closed

instances of these formulae, for which the test is decidable.

The notion of satis�ability is de�ned as follows: A generalized formula F (resp. set

of generalized c-clauses S) is said to be satis�able i� there exists a ground (second-order)

substitution � on the free variables of F (resp. S) such that F� (resp. S�) is satis�able

1

.

Obviously all the notions introduced in Section 3.1, namely the c-resolution and c-

factorization rule, the notion of derivation, refutation etc. can be straightforwardly ex-

tended to generalized formulae using the same principle.

3.3 Generalization

The generalization method is divided into two steps. The �rst part consists in an analysis

of the proof in order to �nd its relevant features. These features are expressed by a second-

order uni�cation problem. With our constraint-based calculus, it su�ces to consider the

constraint X of the empty clause [[2 : X]] obtained at the end of the derivation. The

second step consists in transforming the uni�cation problem into a simpler form using a

set of rewriting rules. These rules do not preserve equivalence hence the obtained problem

may have less solutions than the initial one. However, they are sound in the sense that

any solution of the obtained problems validates the initial one. This step is not necessary

from a theoretical point of view, but allows to simplify the matching process.

These two steps are not clearly distinguished in [4], where the simpli�cation of the

uni�cation problem was implicitely performed during its computation. We believe that

this new presentation makes our method much clearer. In the present paper, we focus

mainly on the �rst step, which is the crucial one for proof generalization.

We now give a formal description of the generalization process. A c-clause C is said

to be a generalization of a clause C

0

i� C is obtained from C

0

by replacing each instance

of a variable or of a function or predicate symbol by free variables.

Example. P

1

(F (A

1

); A

2

) _ 8x

1

; x

2

:P

2

(x

1

; x

2

) is the generalization of p(f(a); a) _

8x:p(x; x).

Let � be a function from �rst-order formulae into generalized formula replacing any

occurrence of functional, predicate symbols and variables by new, distinct variables of the

same type.

1

By de�nition of the notion of generalized formula F� must be a �rst-order formula (after simpli�cation

using �-reduction).

176

De�nition 5 Let S be a set of c-clauses, and � a derivation from S. The �-generalization

of � is the sequence �

0

= fS

0

1

; : : : ; S

0

n

g obtained as follows.

� Base case. S

0

1

= fD

C

(x

1

; : : : ; x

n

) _ �(C)=C 2 S

1

g, where D

C

are new predicate

symbols (called domain predicates) and fx

1

; : : : ; x

n

g = Var(C). Intuitively D

C

ex-

presses the conditions on the variables of C.

� Inductive case.

{ If S

i+1

is obtained from S

i

by applying the c-resolution rule on [[P (t) _R

1

: X]],

[[:P (s) _R

2

: Y]], then S

0

i+1

is de�ned as follows. By construction, there exists

in S

0

i

two c-clauses [[D

1

_ P

0

1

_R

0

1

: X

0

]] and [[D

2

_ :P

0

2

_R

0

2

: Y

0

]] such that

[[P

0

1

_R

0

1

: X

0

]] and [[:P

0

2

_R

0

2

: Y

0

]] are generalization of [[P (t) _R

1

: X]] and

[[:P (s) _R

2

: Y]] respectively.

S

0

i+1

= S

0

i

[f[[D

1

_D

2

_R

0

1

_R

0

2

: X

0

^ Y

0

^ P

0

1

= P

0

2

]]g .

{ The construction is similar if S

i+1

is obtained by factorization or renaming.

Let S be a set of c-clauses and � = (S

1

; : : : ; S

n

) a refutation of S (S = S

1

). Let

�

0

= (S

0

1

; : : : ; S

0

n

) be the �-generalization of �. By construction, there exists a c-clause

[[D : X]] 2 S

0

n

where D contains only domain predicates.

Then, the �-c-generalization of S w.r.t. � (denoted by G

(�;�)

(S)) is the pair (S

0

1

;X

0

),

where X

0

= X ^

V

k

i=1

D

i

= ?, where fD

1

; : : : ;D

k

g are the literals of D.

Example 4 Let S = f:p(x); p(a) _ p(b)g and � = (S; S [fp(b)g; S [fp(b);:p(x

0

)g; S [

fp(b);:p(x

0

);2g). The �-c-generalization of S w.r.t. � is the pair

(f8x:D(x) _ :P

1

(x); P

2

(A) _ P

3

(B)g;X)

, where X � 9x

1

; x

2

:(P

1

(x

1

) = P

2

(A) ^ P

2

(x

2

) = P

3

(B) ^D(x

1

) = ? ^D(x

2

) = ?)g.

The following theorem express of soundness of the generalization process.

Theorem 1 Let S be a set of c-clauses and � a refutation of S. Let (S

0

;X) = G

(�;�)

(S).

For any ground solution � of X�, S

0

� is unsatis�able. Moreover the refutation of S can

be e�cently transformed into a refutation of S

0

�.

A set of c-clauses S

0

is said to be an instance of G

(�;�)

(S) i� there exists � such that

S� >

gen

S

0

and X� � >. The pair G

(�;�)

(S) is in some sense the \most general formula"

that can be obtained from �, because each set of c-clauses S

0

having the \same proof

structure" as � must be an instance of G

(�;�)

(S).

3.4 The analogy detection step

Let S be a set of c-clauses and � a refutation of S. Let (S

0

;X) = G

(�;�)

(S). Let S

T

a

new set of c-clauses (the target formula). We want to use our generalization algorithm for

�nding the refutation of S

T

from the refutation �.

According to Theorem 1, it su�ces to use the matching algorithm in order to check

whether the proposed conjecture is an instance of the initial formulae S

0

and to check that

the constraint part of the conclusion is satis�able (which is decidable, since it is a �rst-

order formulae). More precisely, we have to �nd a substitution � such that S� >

gen

S

T

and X� � >. This can be done using speci�c algorithms based on higher-order uni�cation

modulo AC and quanti�er elimination. This part will not be explained in the present paper

(see [6, 5] for details).

177

4 Combining the generalization algorithm with function in-

troduction

4.1 The function introduction rule

The function introduction rule has been de�ned in [1], and further investigated in [7, 8].

The aim of the rule is to introduce new functional symbols in the clauses set. These

functional symbols are introduced by using a distribution of quanti�ers rule followed by a

skolemization step. In [1], it is shown that adding this rule to the resolution calculus can

signi�cantly shorten the obtained proofs.

Let us give an example. Consider the following clause C = 8x; y:A(x; y) _ B(x; y).

Obviously the formula 8x:(8y:A(x; y)) _ (9y:B(x; y)) is a logical consequence of C. After

skolemization we get 8x; y:A(x; y)_B(x; f(x)). This new clause can be added to the initial

set of clauses.

What is interest of using function introduction ? Simply that the obtained set may be

far easier to prove than the original one. Indeed, applying function introduction reduces

the number of clauses that are shared by two given literal (here A(x; y) and B(x; f(x))

share only one variable, whereas A(x; y) and B(x; y) share two variables). This can allow

in same case to apply splitting rule. Moreover, it is shown in [1] that this can also result

in a non-elementary shortening of the proof. We recall below the de�nition of the function

introduction rule (see [1] for details).

De�nition 6 Let 8x

1

; : : : ; x

m

:C be a clause. If C

1

; C

2

6= ; and C � C

1

_ C

2

then

F

�

(8x

1

; : : : ; x

m

:C = 8x

1

; : : : ; x

j

(8y

1

; : : : ; y

k

:C

1

) _ 8z

1

; : : : ; z

l

:C

2

), where fx

1

; : : : ; x

j

g =

Var(C

1

)\Var(C

2

), fy

1

; : : : ; y

k

g = Var(C

1

)nVar(C

2

) and fz

1

; : : : ; z

l

g = Var(C

2

)nVar(C

1

)

is a reduced f-form of C. For a clause set C = fC

1

; : : : ; C

n

g, let F

�

(C) =

V

n

i=1

:F

�

(C

i

).

Let C be a set of clauses and C 2 C. Let F

�

(C) � 8x

1

; : : : ; x

m

:(F

1

_ F

2

)

be a reduced f-form of C and let fu

1

; : : : ; u

k

g � fx

1

; : : : ; x

m

g and fv

1

; : : : ; v

l

g =

fx

1

; : : : ; x

m

gnfu

1

; : : : ; u

k

g. Then the clause form of F

�

(C)^8v

1

; : : : ; v

l

:Q

1

u

1

: : : Q

k

u

k

:F

1

_

Q

d

1

u

1

: : : Q

d

k

u

k

F

2

where Q

i

2 f8;9g for i = 1; 2; : : : ; n and Q

d

i

dual to Q

i

, is called an F -

extension of C.

We say the terms t

u

1

; : : : ; t

u

k

used for replacing the variables u

1

; : : : ; u

k

in the Skolem-

ization step are Skolem term corresponding to u

1

; : : : ; u

k

.

4.2 Combining F -extension with generalization of proofs

F -extension is a powerful way of reducing proof size. It can be applied during proof

search, as an inference rule. However it can also be used after proof search in order to

impose structure on resolution proofs and therefore the improve the readibility of the proof

[9]. Applying the function introduction rule allows to eliminate some redundant (in some

sense) subpart of the proof which both decreases the size of the proof and improves it

readibility. Therefore a very natural question arises: can the F -extension be combined

with our generalization algorithm ? In the following, we give an positive answer to this

problem.

The new generalization algorithm

The main di�culty involved by the F -extension rule is that the condition on the premisses

of the rule are not uni�cation problems as for the previous rules (resolution and factor-

ization). Therefore, the techniques used in Section 3.3 for generalizing the refutation are

178

no more su�cient. This problem will be solved by adding some further conditions on

the domain predicates, insuring that the condition on the variables expressed by these

predicate satis�es some properties allowing to apply the F -extension rule. More precisely,

we modify the generalization algorithm as follows.

� We add 3 new inference rules. The �rst one is F -extension, and the other ones are

constraint simpli�cation rules aiming at transforming c-clauses into standard clauses.

They have to be applied prior to the F -extension rule.

Decomposition.

[[C : F (t) = G(s) ^ X]]

[[C : t = s ^ X ^ F = G]]

Replacement.

8x:[[C : x = t ^ X]]

8x:[[Cfx! tg : Xfx! tg]]

� Construction of the generalized derivation. Applications of the Decomposition

and Replacement rules are generalized as usual. The F -extension rule is generalized

as follows.

Let C be a set of clauses and C 2 C. Let

C � 8x

1

; : : : ; x

m

:(8y:F

1

_8z:F

2

)!

F -extension

8v

1

; : : : ; v

l

:Q

1

u

1

: : : Q

k

u

k

:8y:F

1

_Q

d

1

u

1

: : : Q

d

k

u

k

8z:F

2

be an application of the F -extension rule (see De�nition 6 for notations).

Let e = (t

1

; : : : ; t

n

) be a tuple and I � [1::n]. We denote by e

jI

the subsequence of

e containing only elements of indice i 2 I.

By construction, there exists a clause 8x

1

; : : : ; x

m

; y; z:D _ F

0

1

_ F

0

2

of C in the set

of c-clauses, where F

0

1

; F

0

2

are generalization of F

1

; F

2

, respectively. We deduce:

8v

1

; : : : ; v

l

:Q

1

u

1

: : : Q

k

u

k

:D

0

_8y:F

0

1

_D

1

_D

0

1

_Q

d

1

u

1

: : : Q

d

k

u

k

8z:F

2

_D

2

_D

0

2

, with

the constraints:

V

j

i=1

:d

i

= �x

1

; : : : ; x

n

i

:d

0

i

(x

j

=j 2 e

0

i

) _ d

00

i

(x

j

=j 2 e

00

i

) where:

{ D

0

is the set of literals in D containing only variables in fx

1

; : : : ; x

m

g;

{ D

1

is the set of literals in D containing only variables in y;

{ D

2

is the set of literals in D containing only variables in z;

{ d

1

; : : : ; d

j

are the domain predicates occurring in D n (D

1

[D

2

[D

0

). e

0

i

are the

indices of the argument of d

i

containing only variables in fx

1

; : : : ; x

m

g[y, e

00

i

are

the indices of the argument of d

i

containing only variables of fx

1

; : : : ; x

m

g [z.

{ D

0

1

=

W

d

i

(t)2D;1�i�n

d

0

i

(t

je

0

i

).

{ D

0

2

=

W

d

i

(t)2D;1�i�n

d

00

i

(t

je

00

i

).

Adding these new constraints on d

1

; : : : ; d

j

insures that the generalized clause is

decomposable, which makes the application of the F -extension rule possible.

Clearly, the obtained formula must be skolemized in order to eliminated existential

quanti�ers. For doing that, it su�ces to generalized to skolemized normal form i.e.

to replace each existential variable x in the generalized formula by a term of the

form X(x

1

; : : : ; x

n

) (where x

1

; : : : ; x

n

is the set of free variables in the existential

subformula). Moreover, we also have to add the 8F on top of the constraints of the

obtained generalizedd derivation (in order to insure that the functional variables in

the derivation cannot be instanciated by skolem functions).

179

Example 5 We consider the following derivation:

1 p(f(x; x)) _ q(x) (given)

2 :p(f(x

0

; y

0

)) _ r(x

0

) (given)

3 :q(c

1

) _ :q(c

2

) (given)

4 :r(z) (given)

5 [[q(x) _ r(x

0

) : f(x; x) = f(x

0

; y

0

)]] (resolution 1, 2)

6 [[q(x) _ r(x

0

) : x = x

0

^ x = y

0

]] (decomposition 5)

7 [[q(x) _ r(x) : >]] (replacement)

8 [[q(x) _ r(c) : >]] (F -extension)

9 [[:q(c

2

) _ r(c) : x = c

1

]] (resolution)

10 [[q(x

00

) _ r(c) : >]] (renamming)

11 [[r(c) _ r(c) : x = c

1

^ x

00

= c

2

]] (resolution)

12 [[r(c) : x = c

1

^ x

00

= c

2

]] (factorization)

13 [[2 : x = c

1

^ x

00

= c

2

^ z = c]] (resolution)

The �rst part of the refutation (before the F -extension step) is generalized as follows

(F

1

; F

2

; C

1

; C

2

denotes function variables (of arity 2; 2; 0; 0 respectively), D

1

;D

2

;D

3

;D

4

denotes the domain predicates).

1 8x

1

; x

2

; x

3

:D

1

(x

1

; x

2

; x

3

) _ p(F

1

(x

1

; x

2

)) _ q(x

3

) (given)

2 8x

0

1

; x

0

2

; y

0

1

:D

2

(x

0

1

; x

0

2

; y

0

1

) _ :p(F

2

(x

0

1

; y

0

1

)) _ r(x

0

2

) (given)

3 :q(C

1

) _ :q(C

2

) (given)

4 8z

1

:D

4

(z

1

) _ :r(z) (given)

5 8x

1

; x

2

; x

3

; x

0

1

; x

0

2

; y

0

1

:[[D

1

(x

1

; x

2

; x

3

) _D

2

(x

0

1

; x

0

2

; y

0

1

) _ q(x

3

) _ r(x

0

2

) : F

1

(x

1

; x

2

) = F

2

(x

0

1

; y

0

1

)]]

6 8x

1

; x

2

; x

3

; x

0

1

; x

0

2

; y

0

1

:[[D

1

(x

1

; x

2

; x

3

) _D

2

(x

0

1

; x

0

2

; y

0

1

) _ q(x

3

) _ r(x

0

2

) : F

1

= F

2

^ x

1

= x

0

1

^ x

2

= y

0

1

]]

7 8x

1

; x

2

; x

3

; x

0

2

:[[D

1

(x

1

; x

2

; x

3

) _D

2

(x

1

; x

0

2

; x

2

) _ q(x

3

) _ r(x

0

2

) : F

1

= F

2

]]

Now we have to generalize the F -extension step. We have to make sure that the clause

is decomposable. Here is it clearly the case, since the tuples of variables y and z (with

the above notation, see the de�nition of the F -extension rule) are empty. Hence, the F -

extension rule is applicable on the generalized formula, and we simply obtain the following

generalized c-clause:

8x

1

; x

2

; x

3

; x

0

2

:[[D

1

(x

1

; x

2

; x

3

) _D

2

(x

1

; x

0

2

; x

2

) _ q(x

3

) _ r(C) : F

1

= F

2

]]

Due to space restrictions, we do not give the generalized of the rest of the derivation.

The obtained generalized refutation is the couple (S

0

;X) where S

0

is the set of generalized

clauses 1� 4

and

X � 8C:9x

1

; x

2

; x

0

3

; x

3

; x

0

2

:(D

1

(x

1

; x

2

; x

0

3

) _ D

2

(x

1

; x

0

2

; x

2

) _ D

1

(x

1

; x

2

; x

3

) _

D

2

(x

1

; x

0

2

; x

2

) _D

4

(z

1

)) = ? ^ F

1

= F

2

^ x

3

= C

1

^ x

0

3

= C

2

^ z

1

= C.

In the following example, we show what happen if y and z are not empty.

Example 6 Now, we replace in the previous example the �rst two clauses by p(f(x; x))_

q(x; u) and p(f(x

0

; y

0

)) _ q(x

0

; v) respectively. Clause 7 becomes: [[q(x; u) _ r(x; v) : >]].

By applying F -extension rule we obtain: [[q(x; u) _ r(c; v) : >]]. Hence the generalized

clause 7 becomes:

8x

1

; x

2

; x

3

; x

0

2

; u

1

; v

1

:[[D

1

(x

1

; x

2

; x

3

; u

1

) _D

2

(x

1

; x

0

2

; x

2

; v

1

) _ q(x

3

; u

1

) _ r(x

0

2

; v

1

) : F

1

= F

2

]]

Here, we have to impose further conditions on the domain predicates D

1

;D

2

, since

their arguments contain simultaneously variables from u

1

; v

1

and from x

1

; x

2

; x

3

; x

0

2

.

According to the previous de�nition, we obtain the following conditions D

1

=

�z

1

; z

2

; z

3

; z

4

:(D

0

1

(z

1

; z

2

; z

3

) _D

00

1

(z

4

)) and D

2

= �z

1

; z

2

; z

3

; z

4

:(D

0

2

(z

1

; z

2

; z

3

) _D

00

2

(z

4

))

180

where D

0

1

;D

00

1

;D

0

2

;D

00

2

are new variables. These conditions insure that the clause is

decomposable which makes the application of the F -extension possible. Without these

condition, the quanti�ers 8z

1

and 8v

1

could not be shifted on the literals q(x

3

; u

1

) and

r(x

0

2

; v

1

) because z

1

and v

1

would occur in literals containing variables from x

1

; x

2

; x

3

; x

0

2

.

We obtain the clause

8x

1

; x

2

; x

3

; x

0

2

; u

1

; v

1

:D

0

1

(x

1

; x

2

; x

3

) _D

2

(x

1

; x

0

2

; x

2

) _D

00

1

(u

1

) _ q(x

3

; u

1

) _D

00

2

(v

1

) _ r(x

0

2

; v

1

)

with the constraints:

D

1

= �z

1

; z

2

; z

3

; z

4

:(D

0

1

(z

1

; z

2

; z

3

)_D

00

1

(z

4

))^D

2

= �z

1

; z

2

; z

3

; z

4

:(D

0

2

(z

1

; z

2

; z

3

)_D

00

2

(z

4

))^F

1

=

F

2

For any refutation � of S, we denote by G

ext

(�;�)

(S) the pair (S

0

;X) obtained from � by

using the extended generalization algorithm. Then the following theorem (\analogous" to

Theorem 1) holds:

Theorem 2 Let S be a set of c-clauses and � a refutation of S. Let (S

0

;X) = G

ext

(�;�)

(S).

For any ground solution � of X�, S

0

� is unsatis�able. Moreover the refutation of S can

be e�cently transformed into a refutation of S

0

�.

These results allow to combine F -extension with proof generalization. In particular,

the lemma generation technique presented in [9] can be applied before proof generalization

in order to get a shorter and more structured proof. However, it must be emphasized that

this process is not monotonic, i.e. we can get a generalized proof that is not more general

than the one that would have been obtained without using the F -extension rule. But this

is compensated by the advantages of function introduction for structuring proofs.

References

[1] M. Baaz and A. Leitsch. Complexity of resolution proofs and function introduction. Annals of

Pure and Applied Logic, 20:181{215, 1992.

[2] R. Caferra and N. Zabel. A method for simultaneous search for refutations and models by

equational constraint solving. Journal of Symbolic Computation, 13:613{641, 1992.

[3] H. Comon and P. Lescanne. Equational problems and disuni�cation. Journal of Symbolic

Computation, 7:371{475, 1989.

[4] G. D�efourneaux, C. Bourely, and N. Peltier. Semantic generalizations for proving and disproving

conjectures by analogy. Journal of Automated Reasoning, 20(1 & 2), 1998. Special issue of

JELIA's best papers.

[5] G. D�efourneaux and N. Peltier. Analogy and abduction in automated reasoning. In M. E.

Pollack, editor, Proceedings of IJCAI'97, Nagoya, Japan, August 23{29 1997.

[6] G. D�efourneaux and N. Peltier. Partial matching for analogy discovery in proofs and counter-

examples. In W. McCune, editor, Proceedings of CADE 14. Springer, July 1997. LNAI 1249.

[7] U. Egly. Shortening proofs by quanti�er introduction. In Proceedings of LPAR 92, pages

148{159. Springer, 1992. LNAI 624.

[8] U. Egly. On di�erent concepts of function introduction. In Computational Logic and Proof

Theory, KGC 93, pages 172{183. Springer, LNCS 713, 1993.

[9] K. H�orwein. Structuring resolution proofs by introducing new lemmata (or how to improve the

readability of atp-generated proofs). Journal of Automated Reasoning, 19:173{203, 1997.

181

