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Abstract

New successes in dealing with set theories by means of state-of-the-art theorem-

provers may ensue from terse and concise axiomatizations, such as can be moulded in

the framework of the (fully equational) Tarski-Givant map calculus. In this paper we

carry out this task in detail, setting the ground for a number of experiments.

Key words: Set theory, relation algebras, �rst-order theorem-proving, algebraic logic.

1 Introduction

Like other mature �elds of mathematics, Set Theory deserves sustained e�orts that bring

to light richer and richer decidable fragments of it [5], general inference rules for reasoning

in it [23, 2], e�ective proof strategies based on its domain-knowledge, and so forth.

Advances in this specialized area of automated reasoning tend, in spite of their steadi-

ness, to be slow compared to the overall progress in the �eld. Many experiments with set

theories have hence been carried out with standard theorem-proving systems. Still today

such experiments pose considerable stress on state-of-the-art theorem provers, or demand

man to give much guidance to proof assistants; they therefore constitute ideal benchmarks.

Moreover, in view of the pervasiveness of Set Theory, they are likely |when successful in

something tough| to have a strong echo amidst computer scientists and mathematicians.

Even for those who are striving to develop something entirely ad hoc in the challenging

arena of set theories, it is important to assess what can today be achieved by unspecialized

proof methods and where the context-speci�c bottlenecks of Set Theory precisely reside.

In its most popular �rst-order version, namely the Zermelo-Fraenkel-Skolem axiomatic

system ZF, set theory (very much like Peano arithmetic) presents an immediate obstacle:

it does not admit a �nite axiomatization. This is why the von Neumann-G�odel-Bernays

theory GB of sets and classes is sometimes preferred to it as a basis for experimentation

[3, 22, 16]. Various authors (e.g., [10, 13, 14]) have been able to retain the traits of ZF,

by resorting to higher-order features of speci�c theorem-provers such as Isabelle.

In this paper we will pursue a minimalist approach, to propose a purely equational

formulation of both ZF and �nite set theory. Our approach heavily relies on [21], but we

go into much �ner detail with the axioms, ending in such a concise formulation as to o�er

a good starting point for experimentation (with Otter [9], say, or with a more markedly

equational theorem-prover). Our formulation of the axioms is based on the formalism

L

�

of [21], which is equational and devoid of variables, but somewhat out of standards.

�
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Luckily, L

�

can easily be emulated through a �rst-order system, simply by treating the

meta-variables that occur in the schematic formulation of its axioms (both the logical

ones and those endowed with a genuinely set-theoretic content) as if they were �rst-order

variables. In practice, this means treating ZF as if it were an extension of the theory of

relation algebras; we can express it through a �nite number of axioms, because variables

are not supposed to range over sets but over the dyadic relations on the universe of sets.

Taken in its entirety, Set Theory o�ers a panorama of alternatives (cf. [18], p.x); that

is, it consists of axiomatic systems not equivalent (and sometimes antithetic, cf. [11])

to one another. This is why we will not produce the axioms of just one theory and will

also touch the theme of `individuals' (ultimate entities entering in the formation of sets).

Future work will expand the material of this paper into a toolkit for assembling set theories

of all kinds|after we have singled out, through experiments, formulations of the axioms

that work decidedly better than others.

2 Syntax and semantics of L

�

L

�

is a ground equational language where one can state properties of dyadic relations

|maps, as we will call them| over an unspeci�ed, yet �xed, domain U of discourse. In

this paper, the map whose properties we intend to specify is the membership relation 2

over the class U of all sets. The language L

�

consists of map equalities Q=R, where Q

and R are map expressions:

De�nition. Map expressions are all terms of the following signature:

symbol : � 1l � 2 \ 4 �

�1

n [ y

degree : 0 0 0 0 2 2 2 1 1 2 2 2

priority : 5 3 6 7 2 2 4

(Of these, \;4;�;n;[; y will be used as left-associative in�x operators,

�1

as a post�x

operator, and as a line topping its argument.) 2

For an interpretation of L

�

, one must �x, along with a nonempty U , a subset 2

=

of

U

2

=

Def

U �U . Then each map expression P comes to designate a speci�c map P

=

(and,

accordingly, any equality Q=R between map expressions turns out to be either true or

false), on the basis of the following evaluation rules:

�

=

=

Def

;; 1l

=

=

Def

U

2

; �

=

=

Def

f[a; a] : a in Ug;

(Q\R)

=

=

Def

f [a; b] 2 Q

=

: [a; b] 2 R

=

g;

(Q4R)

=

=

Def

f [a; b] 2 U

2

: [a; b] 2 Q

=

if and only if [a; b] =2 R

=

g;

(Q�R)

=

=

Def

f [a; b] 2 U

2

: there are cs in U for which [a; c] 2 Q

=

and [c; b] 2 R

=

g;

(Q

�1

)

=

=

Def

f [b; a] : [a; b] 2 Q

=

g :

Of the operators and constants in the signature of L

�

, only a few deserve being re-

garded as primitive constructs; indeed, we choose to regard as derived constructs the ones

for which we gave no evaluation rule, as well as others that we will tacitly add to the

signature:

P �

Def

P41l

PnQ �

Def

P\Q

P[Q �

Def

PnQ

PyQ �

Def

P�Q

funPart(P ) �

Def

PnP��

etc:

The interpretation of L

�

obviously extends to the new constructs; e.g.,

(PyQ)

=

=

Def

f [a; b] 2 U

2

: for all c in U , either [a; c] 2 P

=

or [c; b] 2 Q

=

g;

funPart(P )

=

=

Def

f[a; b] 2 P

=

: [a; c] =2 P

=

for any c 6= bg;

so that funPart(P )=P will mean \P is a partial function", very much like Fun(P ) to be
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seen below.

Through abbreviating de�nitions, we can also de�ne shortening notation for map equal-

ities that follow certain patterns, e.g.,

Fun(P ) �

Def

P

�1

�Pn�=� Total(P ) �

Def

P�1l=1l

so that Total(P ) states that for all a in U there is at least one pair [a; b] in P

=

.

One often strives to specify the class C of interpretations that are of interest in some

application through a collection of equalities that must be true in every = of C. The

task we are undertaking here is of this nature; our aim is to capture through simple map

equalities the interpretations of 2 that comply with

� standard Zermelo-Fraenkel theory, on the one hand;

� a theory of �nite sets ultimately based on individuals, on the other hand.

In part, the game consists in expressing in L

�

common set-theoretic notions. To start

with something obvious,

62 �

Def

2, 3 �

Def

2

�1

, 63 �

Def

3;

"

0

"

1

� � � "

n

�

Def

"

0

� "

1

� � � � � "

n

, where each "

i

stands for one of 2; 62;3; 63; 1l.

To see something slightly more sophisticated:

Examples. With respect to an interpretation =, one says that a intersects b if a and

b have some element in common, i.e., there is a c for which c2

=

a and c2

=

b. A map

expression P such that P

=

= f [a; b] 2 U

2

: a intersects b g is 32.

Likewise, one can de�ne in L

�

the relation a includes b (i.e., `no element of b fails to

belong to a'), by the map expression 632. The expression 362[� translates the relation a

is strictly included in b, and so on.

Let a splits b mean that every element of a intersects b and that no two elements of a

intersect each other. These conditions translate into the map expression de�ned as follows:

splits �

Def

( 63y32 )\(3\3�(32\� ) )�1l.

2

Secondly, the reconstruction of set theory within L

�

consists in restating ordinary

axioms (and, subsequently, theorems), through map equalities.

Example. One of the many ways of stating the much-debated axiom of choice (under

adequately strong remaining axioms) is by claiming that when a splits some b, there is

a c which is also split by a and which does not strictly include any other set split by a.

Formally:

(Ch) Total( splits�1l[splits n splits�362[� ),

where the second and third occurrence of splits could be replaced by 63y32.

To relate the original version of this axiom in [24] with ours,

1

notice that a set a splits

some b if and only if a consists of pairwise disjoint sets (and, accordingly, a splits

S

a).

Moreover, an inclusion-minimal c split by a must have a singleton intersection with each d

in a (otherwise, of two elements in c\ d, either one could be removed from c); conversely,

if c is included in

S

a and has a singleton intersection with each d in a, then none of its

elements e can be removed (else c n feg would no longer intersect the d in a to which e

belongs). 2

In the third place, we are to prove theorems about sets by equational reasoning, moving

from the equational speci�cation of the set axioms. To discuss this point we must refer to

an inferential apparatus for L

�

; we hence delay this discussion to much later (cf. Sec.7).

1

For 19 alternative versions of this axiom, cf. [15], p.309.
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3 Extensionality, subset, sum-set, and power-set axioms

Two derived constructs, @ and r, will be of great help in stating the properties of mem-

bership simply:

@(P ) �

Def

P�62, r(P ) �

Def

@(P )nP�2.

Plainly, a@(Q )

=

b and ar(R )

=

b will hold in an interpretation = if and only if, respectively,

� all those c in U for which aQ

=

c holds, are `elements' of b (in the sense that c2

=

b);

� the elements of b are precisely those c in U for which aR

=

c holds.

Our �rst axiom, extensionality, states that sets are the same whose elements are

the same:

(E) r(3 )=�.

A useful strenghtening of this axiom is the scheme Fun(r(P ) ), where P ranges over

all map expressions.

Two rather elementary postulates, the power-set axiom and the sum-set axiom,

state that for any set a there is a set whose elements comprise all sets included in a, and

there is one whose elements comprise all elements of elements of a:

(Pow) Total( @( 632 ) ),

(Un) Total( @(33 ) ).

A customary strenghtening of the sum-set axiom is the transitive embedding axiom,

stating that every a belongs to a set b which is transitively closed w.r.t. membership, in

the sense speci�ed by trans here below:

(T) Total(2�trans ), where trans �

Def

�\@(33 ).

The subset axioms enable one to extract from any given a the set b consisting of

those elements of a that meet a condition speci�ed by means of a predicate expression

P . In this form, still overly na��ve, this `separation' principle could be stated as simply as:

Total(r(3\P ) ). This would su�ce (taking � as P ) to ensure the existence of a null set,

devoid of elements. We need the following more general form of separation (whence the

previous one is obtained by taking � as Q):

(S) Total(r( funPart(Q )�3\P ) ).

Example. Plainly, funPart(3 )

=

is the map holding between c and d in U i� c = fdg, i.e.

d is the sole element of c; moreover funPart(3�funPart(3 ) )

=

is the map holding between

a and d i� there is exactly one singleton c in a and d is the element of that particular c.

Thus, the instance Total(r( funPart(3�funPart(3 ) )�3\63 ) ) of (S) states that to every

set a there corresponds a set b which is null unless there is exactly one singleton c = fdg in

a, and which in the latter case consists of all elements of d that do not belong to a. 2

4 Pairing and �niteness axioms

A list �

0

; �

1

; : : : ; �

n

of maps are said to be conjugated quasi-projection if they are

(partial) functions and they are, collectively, surjective, in the sense that for any list

a

0

; : : : ; a

n

of entities in U there is a b in U such that �

i

(b) = a

i

for i = 0; 1; : : : ; n. We

assume in what follows that �

0

;�

1

are map expressions designating a pair of conjugated

quasi-projections. It is immaterial whether they are added as primitive constants to L

�

,

or they are map expressions suitably chosen so as to re
ect one of the various notions of

ordered pair available around, and subject to axioms that are adequate to ensure that the

desired conditions, namely
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(Pair) �

�1

0

��

1

=1l, Fun(�

0

), Fun(�

1

), 23=1l,

hold (cf. [21], pp.127{135). Notice that the clause (Pair)

4

of this pairing axiom will

become super
uous when the replacement axiom scheme will enter into play (cf. [8],

pp.9{10).

Examples. A use of the �

b

s is that they enable one to represent set-theoretic functions

by means of entities f of U such that no two elements b; c of f for which �

=

0

yields a value

have �

=

0

(b) = �

=

0

(c). Symbolically, we can de�ne the class of these single-valued sets as

sval �

Def

� \ ��2, where � �

Def

3�(�

0

��

�1

0

\� ).

Cantor's classical theorem that the power-set of a set has more elements than the set

itself can be phrased (cf. [2], p.410) as follows: for every set a and for every function

f , there is a subset b of a which is not `hit' by the function f (restricted to the set a in

question).

2

A rendering of this theorem in L

�

could be Total( 632\3�funPart(P ) ), but

this would not faithfully re
ect the idea that the theorem concerns set-theoretic functions

rather than functions, funPart(P ), of L

�

. The typical use of �

0

and �

1

is illustrated by

a more faithful translation, which exploits the possibility to encode the pair a; f by an

entity c with �

=

0

(c) = a and �

=

1

(c) = f :

Total(�

0

�632\(�

0

�3��

�1

0

\�

1

�(�\3 ) )��

1

) (� as before).

The latter states that to every c there corresponds a b such that

� if it exists, �

=

0

(c) includes b;

� if �

=

0

(c) = a and �

=

1

(c) = f both exist, then b 6= �

=

1

(d) for any d in f such that

�

=

0

(d) = e exists and belongs to a and no d

0

in f other than d ful�lls �

=

0

(d

0

) = e. 2

A standard technique used to derive statements of the form Total(r(R ) ), which

are often very useful, is by breaking r(R ) into an equivalent expression of the form

(P��

�1

0

\�

�1

1

)�r(�

0

�3\�

1

�Q ), where Total(P ) is easier to prove. Exploiting the

same graph representation of map expressions utilized in [4], this situation can be depicted

as follows:

m

8

�

�

1

v -

r(�

0

�3\�

1

�Q )

n

9

v

�

�

�

�

�3

P

Q

Q

Q

Q

Q

Qk

�

0

| {z }

r(R )

The desired totality of r(R ) will then follow, in view of (Pair)

1

and of (S), (Pair)

2

.

For example, by means of the instantiation P 7! 2�trans, Q 7! � of this proof scheme, we

obtain Total(r( � ) ), where r( � ) designates the singleton operation a 7! fag on U ; then,

by taking P 7! ( (�

0

[�

0

�1l )�2\(�

1

[�

1

�1l )�r( � )�2 )�@(33 ), Q 7! �

0

�3[�

1

, we

obtain the totality of r(�

0

�3[�

1

), which designates the adjunction operation [a; b] 7!

a [ fbg. Similarly, one gets the totality of r( 632 ), r(33 ), r(�

0

[�

1

), of any r(R )

such that both RnQ=� and Total( @(Q ) ) are known for some Q, etc. Even the full (S)

could be derived with this approach from its restrained version Total(r(�

0

�3\�

1

�P ) ).

Under the set axioms (E), (Pow), (S), (Pair) introduced so far, it is reasonable to

characterize a set a as being �nite if and only if every set b of which a is an element has an

element which is minimal w.r.t. inclusion (cf. [20], p.49). Intuitively speaking, in fact, the

set formed by all in�nite cs in the power-set }( a ) of a has no minimal elements when a is

2

This was one of the �rst major theorems whose proof was automatically found by a theorem prover,

cf. [1]. This achievement originally took place in the framework of typed lambda-calculus.
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in�nite, because every such c remains in�nite after a single-element removal. Conversely,

if a belongs to some b which has no minimal elements, then the intersection of b with }( a )

has no minimal elements either, and hence a is in�nite. In conclusion, to instruct a theory

concerned exclusively with �nite sets, one can adopt the following finiteness axiom:

(F) �nite=�, where �nite �

Def

�\( 1l�(2\( ( �[632 )y62 ) )y63 ).

5 Bringing individuals into set theory:

Foundation and plenitude axioms

Taken together with the foundation axiom to be seen below, the axioms (E), (Pow),

(T), (S), (Pair), and (F) discussed above constitute a full-blown theory of �nite sets.

However, they do not say anything about individuals (or `urelements', cf. [7]), entities

that common sense places at the bottom of the formation of sets. These are not essential

for theoretical development, but useful to model practical situations. To avoid a revision

of (E) |necessary, if we wanted to treat individuals as entities devoid of elements but

di�erent from the null set| let us agree that individuals are self-singletons a = fag

(cf. [18], pp.30{32). Moreover, to bring plenty of individuals into U (at least as many

individuals as there are sets, hence in�nitely many individuals), we require that there are

individuals outside the sum-set of any set. Here comes the plenitude axiom:

(Ur) Total(33�ur ), where ur �

Def

�\r( � ).

To develop a theory of pure sets, one will postulate `lack' of individuals, by adopting

the axiom ur=� instead of plenitude.

When individuals are lacking, the foundation (or `regularity') axiom ensures that the

membership relation 2

=

is well-founded on U , and can be stated as follows: when some b

belongs to a, there is a c also belonging to a that does not intersect a. On the surface, this

statement has the same structure as the version of the axiom of choice seen at the end of

Sec.2; in L

�

it can hence be rendered by Total(31l[3n32 ). To reconcile this statement

with individuals, we can recast it as

(R) Total( ( 63[1l�ur )y�[3n3�( �nur )�2n1l�ur ),

which means: unless every b in a is an individual, there is a c in a such that every element

of a \ c is an individual and c itself is not an individual .

As is well-known (cf. [8], p.35), foundation helps one in making the de�nitions of basic

mathematical notions very simple. In our framework, we propose to adopt the following

de�nition of the class of natural numbers:

3

nat �

Def

� \ (3�(r(3[� ) n � )y( � [2 ) \31l ),

which means: a is a natural number if for every b in a[ fag other than the null set, there

is a c in a such that b = c [ fcg and b 6= c.

6 An in�nity axiom, and the replacement axioms

Similarly, under the foundation axiom, the de�nition of ordinal numbers becomes

ord �

Def

( transn3�ur�1l )\( 63y(2[�[3 )y62 ),

where trans is the same as in (T), hence transn�=� holds, and hence (thanks to (R))

63y(2[�[3 )y62 requires that an ordinal be totally ordered by membership.

3

From this simple start one can rapidly reach the de�nition of important data structures, e.g., ordered

and oriented �nite trees.
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The existence of in�nite sets is often postulated by claiming that ordnnat is not empty:

1l�( ordnnat )�1l=1l, or equivalently Total( 1l�( ordnnat ) ). The following more essential

formulation of the infinity axiom, based on [12] and presupposing (R), seems preferable

to us:

4

(I) Total( 1l�( @(33 )\@(33 )

�1

n2n3n�n3�243�2 ) ).

What (I) means is: There are distinct sets a

0

; a

1

such that the sum-set of either one is

included in the other, neither one belongs to the other, and for any pair c

0

; c

1

with c

0

in

a

0

and c

1

in a

1

, either c

0

belongs to c

1

or c

1

belongs to c

0

.

5 6

Of course this axiom is

antithetic to the axiom (F) seen earlier: one can adopt either one, but only one of the

two.

In a theory with in�nite sets, the replacement axiom scheme plays a fundamental

rôle. Two simple-minded versions of it are:

Total(@(3�funPart(Q ) ) ), Total( @(3�r(Q )�3 ) ).

Both of these state |under di�erent conditions on a certain map P| that to every c

there corresponds a (superset of a) set of the form P [c] =

Def

fu : vP

=

u for some v2

=

cg.

The former applies when P (= funPart(Q )) designates a function, the latter when r(P )

(with P = r(Q )�3) designates a total map. [19] adopts a formulation of replacement

closer in spirit to the latter, but it is the former that we generalize in what follows.

Parameter-less replacement, like a parameter-less subset axiom scheme, would be of

little use. Given an entity d of U , we can think that �

=

0

(d) represents the domain to

which one wants to restrict a function, and �

=

1

(d) represents a list of parameters. To

state replacement simply, it is convenient to add to the conditions on the �

i

s a new one.

Speci�cally, we impose that distinct entities never encode the same pair:

7

(Pair)

5

�

0

��

�1

0

\�

1

��

�1

1

n�=�.

The simplest formulation of replacement we could �nd in L

�

, so far, is:

(Repl) Total(@( (�

0

�3��

�1

0

\�

1

��

�1

1

)�funPart(Q ) ) ) .

This means: To every pair d there corresponds a set comprising the images, under the

functional part of Q, of all pairs e that ful�ll the conditions �

=

0

(e)2

=

�

=

0

(d), �

=

1

(e) =

�

=

1

(d).

Example. To see that (Pair)

4

can be derived from (Pair)

1;2;3

, (T), (S), and (Repl),

one can argue as follows. Thanks to (S), a null set f g exists: 1l2�1l=1l. Then, by virtue

of (T), a set to which this null set belongs exists too: 1l2�2�1l=1l. Again through (T),

we obtain a set c to which both of the preceding sets belong: 1l2�(2\22 )�1l=1l. The

latter c can be combined with any given a to form a pair d ful�lling both �

=

0

(d) = c and

�

=

1

(d) = a, by (Pair)

1

. Two uses of (Repl), referring to the single-valued maps

Q

`

�

Def

�

0

�31l\ �

`

4 �

0

�31l\ �

1�`

with ` = 0 and ` = 1 respectively, will complete the job. Indeed, the �rst use of (Repl)

will form from d a set c

a

comprising a and f g as elements, while the second will form

4

Here, like in the case of (Ur) (which could have been stated more simply as Total(3�ur )), our

preference goes to a formulation whose import is as little dependent as possible from the remaining axioms.

5

Notice that when c belongs to a

`

(` = 0; 1), then c �

6=

a

1�`

; hence there is a c

0

in a

1�`

n c, so that c

belongs to c

0

. Then c

0

�

6=

a

`

, and so on. Starting w.l.o.g. with c

0

in a

0

, one �nds distinct sets c

0

; c

1

; c

2

; : : :

with c

`+2�i

in a

`

for ` = 0; 1 and i = 0; 1; 2; : : : :

6

For the sake of completeness, let us mention here that for a statement not relying on (R), the following

cumbersome expression should be subtracted from the argument of Total in (I):

(3��

�1

0

\3��

�1

1

)�(�

0

�2��

�1

0

\�

1

�2��

�1

1

\�

1

�3��

�1

0

\�

0

�2��

�1

1

)�(�

0

�2\�

1

�2 ).

7

Notice that (Pair)

2;3;4;5

can be superseded (retaining (Pair)

1

) by the de�nitions

�

0

�

Def

funPart(3�funPart(3 ) ), �

1

�

Def

33\( (33[�

0

)y� )\( 63y31l ).
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from a pair d

a

with components c

a

and b a set c

ab

comprising a and b as elements, for any

given b.

Notice that either use of (Repl) in the above argument has exploited a single param-

eter, which was a and b respectively. 2

7 Setting up experiments on a theorem-prover

A map calculus, i.e, an inferential apparatus for L

�

is de�ned in [21], pp.45{47, along

the following lines:

� A certain number of equality schemes are chosen as logical axioms. Each scheme com-

prises in�nitely many map equalities P=Q such that P

=

= Q

=

holds in every interpre-

tation =; syntactically it di�ers from an ordinary map equality in that meta-variables,

which stand for arbitrary map expressions, may occur in it.

� Inference rules are singled out for deriving new map equalities V=W from two equalities

P=Q, R=S (either assumed or derived earlier). Of course V

=

= W

=

must hold in

any interpretation = ful�lling both P

=

= Q

=

and R

=

= S

=

. The smallest collection

�

�

(E) of map equalities that comprises a given collection E (of proper axioms) together

with all instances of the logical axioms, and which is closed w.r.t. application of the

inference rules, is regarded as the theory generated by E.

A variant of this formalism, which di�ers in the choice of the logical axioms (because

\ and 4 seem preferable to [ and as primitive constructs), has been proposed in [6].

We omit the details here, although we think that the choice of the logical axioms can

critically a�ect the performance of automatic deduction within our theories. Ideally, only

minor changes in the formulation E of the set axioms should be necessary if the logical

axioms are properly chosen. Similarly, in the automation of GB, one has to bestow some

care to the treatment of Boolean constructs (cf. [16], pp.107{109).

To follow [21] orthodoxly, we should treat L

�

as an autonomous formalism, on a par

with �rst-order predicate calculus. This, however, would pose us two problems: we should

develop from scratch a theorem-prover for L

�

, and we should cope with the in�nitely

many instances of (S) and of (Repl). Luckily, this is unnecessary if we treat as �rst-order

variables the meta-variables that occur in the logical axioms or in (S), (Repl) (as well as

in induction schemes, should any enter into play either as additional axioms or as theses to

be proved). Within the framework of �rst-order logic, the logical axioms lose their status

and become just axioms on relation algebras, conceptually forming a chapter of axiomatic

set theory interesting per se, richer than Boolean algebra and more fundamental and stable

than the rest of the axiomatic system.

Attempts (some of which rather challenging) that one might carry out with any �rst-

order theorem prover have the following 
avor:

� Under the axioms (E), (Pow), (T), (S), (Pair)

1;2;3;4

; (R), ur=�, and (F), prove (Un),

(Repl), (Ch), Fun(r(P ) ), and trans��n1l2n3=�,

8

as theorems.

� Under (E), (Un), (S), (Pair), (R), and (Ur), prove that2�(2 � � �2 )\�=ur, nat\ur=�,

ord\ur=�, 2�ordnord�1l=�, �y6241l�ord�2[1l�(2\( (34� )y62 ) )=1l,

9

etc.

8

The last of these states that the null set belongs to every transitively closed non-null set.

9

The last two of these state that elements of ordinals are ordinals and that every non-null set of ordinals

has a minimum w.r.t. 2.
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� Under (E), (Pow), (Un), (S), (Pair)

1;2;3;5

; and (Repl), prove (Pair)

4

, Cantor's

theorem, and the totality of r( � ), r( � ), r( 632 ), r(33 ), r(3[� ), r(�

0

[�

1

),

r(�

0

�3[�

1

), r( funPart(Q )�3[setPart(P ) ) where setPart(P ) �

Def

P\@(P )�1l,

etc.

We count on the opportunity to soon start a systematic series of experiments of this

nature, for which we are inclined to using Otter. The latter is not speci�cally oriented

to equational logic, and it is conceivable that a system based on term rewriting might �t

our needs better. However, we plan to perform extensive experimentation with theories of

number and sets speci�ed in L

�

, and we are eager to compare the results of our experiments

with the work of others. Otter is attractive in this respect, because it has been the system

underlying experiments of the kind we have in mind, as reported in [16, 17]. Moreover,

the fact that Otter encompasses full �rst-order logic paves the way to combined reasoning

tactics that, e.g., perform resolution of 1l � P � 1l=1l against P=�.

8 Conclusions

The language L

�

may look distasteful to reading, but it ought to be clear that techniques

for moving back and forth between �rst-order logic and map logic exist and are partly

implemented (cf. [21, 4, 6]); moreover they can be ameliorated, and can easily be extended

to meet the speci�c needs of set theories. Thanks to these, the automatic crunching of

set axioms of the kind discussed in this paper can be hidden inside the back-end of an

automated reasoner.

Anyhow, we think that it is worthwhile to riddle through experiments our expectation

that a basic machine reasoning layer designed for L

�

may signi�cantly raise the degree of

automatizability of set-theoretic proofs. This expectation relies on the merely equational

character of L

�

and on the good properties of the map constructs; moreover, when the

calculus of L

�

gets emulated by means of �rst-order predicate calculus, we see an advantage

in the �niteness of the axiomatization of ZF.
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