
Theorem proving strategies: a search-oriented taxonomy

�

(Position paper)

Maria Paola Bonacina

y

Department of Computer Science

The University of Iowa

There are many ways of classifying theorem-proving strategies. In proof theory, one

may question whether the strategy is analytic (i.e., it only generates formulae that are

subformulae of the given problem H � ', where H is the set of assumptions and ' the

conjecture) or generative (i.e., not analytic). From the point of view of the language and

its expressive power, one may be interested in whether the strategy works with equations,

clauses, or sentences. From the point of view of the logic and its applicability, one may

consider whether the strategy works for propositional logic, Horn logic, �rst-order logic,

or higher-order logics. This talk presents a taxonomy of strategies, for fully-automated,

general-purpose, �rst-order theorem proving, based on how they search [1].

Motivations for being interested in such a classi�cation come from a variety of re-

search problems, from parallelization of theorem proving (parallelism a�ects the control of

theorem proving, and therefore its search aspect), to machine-independent evaluation of

theorem-proving strategies (an analysis of strategies needs to analyze the search processes

they may generate), and the engineering of theorem provers (theorem-proving methods

are often speci�ed in terms of inference rules only, and a signi�cant amount of knowledge

about search in theorem proving remains hidden in the code of the implementations, partly

because of the lack of formal tools to discuss search in theorem proving).

The primary classi�cation key in this taxonomy is to distinguish between those strate-

gies that work on a set of objects (e.g., clauses) and develop implicitly many proof at-

tempts, and those strategies that work on one object at a time (e.g., a goal clause, or a

tableau) and develop one proof attempt at a time, backtracking when the current proof

attempt cannot be completed into a proof. The strategies in the �rst group, on the other

hand, never backtrack, because whatever they do may further one of the proof attempts.

The strategies in the �rst group are called in this taxonomy ordering-based strategies:

exactly because they work with a set of objects, they use a well-founded ordering to or-

der the objects, and possibly delete objects that are greater than and entailed by others.

Thus, these strategies work by generating objects, expanding the set, and deleting ob-

jects, contracting the set. Also, since the set may grow very large, they employ indexing

techniques to retrieve objects, and eager-contraction search plans to control the growth.

The family of ordering-based strategies can be subdivided further into expansion-oriented

strategies, contraction-based strategies, including in turn target-oriented strategies, and se-

mantic or supported strategies. The strategies resulting from the merging of the resolution-

�

Research supported in part by the National Science Foundation with grant CCR-97-01508.

y

Dept. of Computer Science, MacLean Hall 15, University of Iowa, Iowa City, IA 52242-1419, U.S.A.,

bonacina@cs.uiowa.edu

256

paramodulation paradigm with the term-rewriting and Knuth-Bendix paradigm belong to

these classes.

The strategies in the second family are called subgoal-reduction strategies, because if

one considers the single object they work on as the goal, each step consists in reducing the

goal to subgoals. Since they do not generate a set of objects, subgoal-reduction strategies

do not use an ordering to sort it, neither do they use an object to delete another one.

Because they need backtracking, a typical choice of search plan is depth-�rst search with

iterative deepening. This family comprises linear and linear-input clausal strategies, and

tableaux-based strategies. Model elimination, linear resolution, and problem reduction

format methods, which also may have semantic variants, belong to these classes.

theorem-proving strategies

ordering-based strategies subgoal-reduction strategies

expansion-oriented

linear-input strategies

 strategies
contraction-based

 strategies

target-oriented strategies

semantic or
supported
strategies

linear
clausal

strategies

tableaux-based
strategies

Figure 1: Classes of strategies

Central to this taxonomy is a formal notion of search plan. The availability of a sound

and complete inference system guarantees the existence of a proof, but it remains the

problem of how to generate one, and this is precisely the task of the search plan. Given

the initial state of a refutational proof attempt containing H and :', the application of

an inference rule to this state produces a new state. Thus, the problem can be seen as a

search problem, with the inference rules as transformation rules, or production rules, states

containing partial proofs, successful states containing complete proofs, and a search plan

{ or computation rule in terminology in
uenced by logic programming { to control the

search. For instance, for a clausal ordering-based strategy, the states are sets or multisets

of clauses, and a successful state contains the empty clause, while for a tableau-based

strategy, the states are tableaux, and a successful state is a closed tableau.

If I denotes the given inference system, and States denotes the set of all possible

states, a search plan � is made of at least three components:

� A rule-selecting function �:States

�

! I, which selects the next rule to be applied

based on the history of the search so far;

� A premise-selecting function �:States

�

! P(L

�

), which selects the elements of the

current state the inference rule should be applied to;

� A termination-detecting function !:States! Bool, which returns true if the given

state is successful, false otherwise.

257

If the current state is not successful, � selects rule f and � selects premises

1

: : :

n

, the

next step will consist of applying f to

1

: : :

n

. The sequence of states thus generated

forms the derivation by I controlled by � from the given input. A derivation is successful

if it terminates in a successful state.

It is important to appreciate that given an initial state with H and :', there are many

derivations that an inference system I can generate from the initial state. In this sense,

an inference system is non-deterministic. If I is coupled with a search plan �, there is one

and only one derivation generated by I and � from the initial state. The combination of

inference system and search plan forms a deterministic procedure called a theorem-proving

strategy. While the inference system is required to be sound and refutationally complete,

a search plan is expected to be fair: if there are proofs, or, equivalently, if there are

successful states in the search space, one will be generated eventually.

By suitably specializing its components, this notion of search plan is shown to apply

to all classes of strategies under consideration, including both ordering-based and subgoal-

reduction strategies. Furthermore, it is applied to cover the concrete search plans of the

ordering-based strategies implemented by the Argonne provers Otter and EQP. For all

classes, the form of derivation is speci�ed, and it is shown how inference system and

search plan cooperate to generate it.

For ordering-based strategies, the modelling of the search space is developed beyond its

description as a search space of states, summarized above. At a lower level of abstraction,

the search space is modelled as a search graph of clauses, made dynamic by contraction. To

see the relationship between these two levels of observation one can think of a magnifying

lense: if one looks inside any state of the search space of states with a magnifying lense, one

sees the underlying search graph of clauses. For the purposes of this taxonomy, this more

detailed model helps to understand what it means that these strategies develop implicitly

multiple partial proofs simultaneously, and, if the strategy succeeds, the proof that has

been completed is extracted from the generated search space.

For subgoal-reduction strategies, the study of re�nements include approaches to com-

bine forward and backward reasoning, ways to import the notion of contraction from

ordering-based strategies, and pruning techniques, as summarized in Table 1. The dis-

tinction between clausal and tableaux model elimination in this table is mostly one of

terminology, since almost everything that can be done in one can be done in the other.

Combination of forward Contraction Pruning

and backward reasoning

Model lemmatization lemma subsumption identical ancestor

elimination C-reduction pruning

success caching cache subsumption failure caching

Prolog tabling/memoing cut

Datalog magic sets

Tableaux regressive merging tableau subsumption irregularity

folding up anti-lemmas

UR-resolution subsumption

hyperlinking tautology deletion

purity deletion

Table 1: Re�nements of subgoal-reduction strategies

258

At each stage of the derivation, subgoal-reduction strategies keep in memory (active

search space) the current proof attempt (e.g., the current tableau), whereas ordering-based

strategies keep in memory all generated clauses not deleted by contraction (see Table 2).

On the other hand, because a subgoal-reduction strategy searches by backtracking, its

generated search space is equal to the union of all the partial proofs it has attempted.

In terms of proof, tableau-based strategies generate explicitly one proof attempt at a

time, backtrack to modify it, and succeed when it is completed. Ordering-based strategies

build their proof attempts implicitly, and when an empty clause is generated, extract the

completed proof from the generated search space. If a relatively small active search space

may be an advantage of subgoal-reduction strategies, ordering-based strategies may take

advantage of contraction, which deletes existing redundant clauses, and also prevents their

descendants in the search space from being generated.

Ordering-based Subgoal-reduction

Data set of objects one goal-object at a time

Proof attempts built many implicitly one at a time

Backtracking no yes

Contraction yes no

Generated search space all generated clauses all tried tableaux

Active search space all kept clauses current tableau

Generated proof ancestor-graph of empty clause closed tableau

Table 2: Two main classes of strategies.

All classi�cations contain some elements of arbitrariness. One may think that all

ordering-based strategies are forward-reasoning strategies (i.e., strategies that reason from

the assumptions), whereas all subgoal-reduction strategies are backward-reasoning strate-

gies (i.e., strategies that reason from the goal), but this is not necessarily the case; for

example, an ordering-based strategy with goal clauses in the set of support reasons back-

ward, and a subgoal-reduction strategy with an assumption as top clause reasons forward.

Similarly, it is not necessarily the case that subgoal-reduction strategies work with tableaux

and ordering-based strategies work with clauses, although this is true in many cases. No

classi�cation can be complete, but connections are established with those strategies which

may �t less obviously in this scheme, such as those based on hyperlinking, and with strate-

gies that may use similar principles for other purposes, such as model building.

The full paper [1] provides the reader with a bibliography of one hundred and forty

two entries: since it would have been impossible to include it in this summary and any

selection would have been arbitrary, the interested reader is referred to the full paper

which is available by contacting the author.

References

[1] Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In Manuela Veloso,

Mike Wooldridge (general), and Michael Fisher (logic reasoning knowledge represen-

tation area), editors, Arti�cial Intelligence Today, volume 1500. Springer Verlag, to

appear.

259

