A Complete Deduction System for Reasoning with
Temporary Assumptions

Pierre Ostier
Institut IMAG, Laboratoire Logiciels Systemes Réseaux,
B.P. 72,
F-38402 Saint Martin d’Heres - cedex, France,
e-mail : Pierre.Ostier@imag.fr

October 1, 1997

Abstract

When facing a failure of the current goal or reaching a depth limit, most goal
directed inference engines seriously lack capabilities to dynamically make assumptions
and to pursue deductions. This paper describes an inference system for first order
logic that includes those features. The novel contribution is to develop a set of sound
and complete rules that mimic human-like proofs and that is capable to give useful
information on missing hypotheses in case the search of a proof failed.

1 Introduction

The proposed system, called Hypotheses Domains based System (HDS), is based on the
concept of hypotheses domains. These domains associated with case analyses simulate
hypothetical reasoning. When a formula is not a theorem useful information on missing
hypotheses is provided by the system. But, in addition to this, HDS is also capable of
giving understandable proofs when there is no missing hypothesis.

The system, inspired from [4], meets all the requirements for a complete and sound
theorem prover. This paper concentrates on the definition of the inference system (Section
2). An example is given in section 3. The section 4 is devoted to a comparison with the
MPRF system of Plaisted.

2 Hypotheses Domains Inference System

The notations used are the classical ones [1].

The facts are formulas which express the user’s problem. The class of facts accepted
by HDS is a superclass of Horn clauses. They are formulas of the form Li...L, = L
where L is a positive literal and the L;’s are positive or negative literals. Notice that
double negation is not valid syntactically. Semantically, the notation L, ... L, = L has
the same meaning as Vz1,...,Vzr (L1 & ... & L, = L) where & denotes the conjunction,
and where {z1,...,z;} is the set of variables appearing in litterals L;.

A particular literal, F', is used to express falsity. It is a positive literal representing a
contradiction and it allows the user to express facts corresponding to clauses Ly V...V Ly,
where all the L;’s are negative. For example : ~AV - BV —(is rewritten as A B C' = F.

103

L denotes the opposite of L.

A node is a quadruple < S, L, Dy, D; > where S is a set of facts, L is a literal, Dy, is a set
of clauses called inherited hypotheses domain. Dy, called synthetized hypothesis is a clause
denoting the missing hypothesis. Semantically, the meaning of <S,L, Dy, L1V ... Ly, > is
S,Dy,Ly,...,L, = L. The facts in S are connected conjunctively. Dj, is a set of clauses
implicitly linked by conjunctions.

Let C; and Cy being two clauses. The notation C; \/ Co stands for the least clause (for
the subsumption) that is subsumed by C; and by Cs.

Let Dy, being a set of clauses and D, being a clause. D) = Dy, |J{D,} stands for the
least set of clauses such that D; is subsumed by Dj and such that every clause of Dy, is
subsumed by a clause of Dj,.

The definition of HDS is simple : only four inferences rules are necessary, expressing
two concepts, i.e., subgoaling decomposition and case analyses. The rules are presented
in Gentzen’s form [1]. To illustrate rule usage, the following set S of facts is used :
S={A B = (C;=- A = C}. Thegoal is C.

Subgoal decomposition rule (rule R1) :

For every fact Ly ... L, = L of S, the following rule holds :

S,Li,Dy, D ...<S, L, D;,D
<9, L1, Dp, 81> n< sy Liny hy Sn> (R].)

<SaLaDha U (Dsz)>

=1

For the above set of facts S, R1 becomes :

<S, A, {A}, 0> qquadseqgbSB{A}—B
<Sa 07 {A}a -B>

Therefore, D;, = O and Ds, = —B. Informally, (R1) states that if there is a fact
A B = C, the missing hypotheses in proving C is the union of the missing hypothe-
ses in proving A and in proving B. This rule corresponds to the classical subgoaling
decomposition.

Hypotheses domain analysis axiom (rule R2) :

R2
<S,L,DybU{LVLV...VL},L1V...VL,> (F2)

For the above set of facts S, the left hand side of the antecedent part of the example
is <S,A,{A},0>, obtainable by (R2) since A is known ; R2 becomes :

<S,A{A},O0>

Case analysis rule (rule R3) :

<S,L,Dh,D31> <S,L,Dh U{Dsl},Ds2>
<S, L, Dy, D52 >

For the above set of facts .S, rule R3 becomes :

<S,C{}, A> <S,C,{A},-B>
<Sa Ca{}a_'B>

104

Informally, the upper-left-hand side of the rule expresses that C' holds in the case = A
holds, and that we do not know the validity of C' when A holds. The upper-right-hand side
of the rule expresses the proof of C' in this case, that is when A holds. The final resulting
domain, namely =B, expresses the cases in which the validity of C' is not established.

Hypotheses domain extension axiom (rule R4) :

— R4
<S,L,Dp,L> (F4)

For the above set of facts .S, an instance of the R4 rule is

<S,B,{A},-B>

Note how both the rules and the contained operations (\/ and |J) are simple.

This system is proved consistent. It is also proved refutationally complete in the
following sens : If S is an inconsistent set of facts, then < S, F, {}, 0> is derivable.

The HDS system provides natural proofs for the conjunction of two reasons. The
first reason is that the two main rules (i.e. (R1) and (R3)), associated with a concept
of hypotheses domains easy to understand, mimic two human reasoning schemes : the
goal-to-subgoal reasoning and the case analysis reasoning. The second reason is that the
HDS rules respect the form of the user’s facts : no contrapositives are used.

3 Examples

We provide two example. The first one shows how (R3) can be used to do case-analysis
reasoning. The second one shows that(R3) can also be used to produce missing hypotheses.
example 1.
Let us consider the set of facts :S={ =T(a) , P(z)T(z)=Q(x) |,
-P(z) = R(z) , Q(z)=U(z) , R(z)= U(x)} where a is a constant.
The following is a derivation of <S,U(a),{},0> :

SP@.0~Per M Sraars B gy <SP P@LO

(R1)
,Q(a),{},~P(a) ,R(a),{-P(a)},0
“Z00) TP (R1) St Pl (B

<S,U(a),{},O0>

(R2)

(R3)

Rule (R3) is used in the above derivation to do case analysis reasoning. But this rule
can be use to do hypothetical reasoning, such as in the example below.

example 2.

Now, let us consider S" constructed from S by removing = T'(a). The following is a
derivation of <S8, U(z),{}, ~T(z)> :

ST P@L=PEs Y ST ST =P =PV T @ LTS)
<S’,Q(:c),{},—|P(z)\/—|T(:b)> (R) (R].) <S’,R(:c),{—1P(z)\/—1T(:ﬂ)},—1T(:ﬂ)> (Rl) (R].)
<S",U(x),{},~P(x)v-T(z)> <S",U(z),{~P(z)V-T(z)},~T(z)>

<501 T@)> (£3)

This proof expresses that “when 7'(z) holds, U(z) holds”.

105

4 Comparison with Modified Problem Reduction Format

Many researchers have dealt with negation in logic programming. Their work has appeared
in InH-Prolog [3], Selected Linear Without contrapositive Variants [5], Prolog Technology
Theorem Prover [7], and Modified Problem Reduction Format (MPRF) [6] are related
to our work. MPRF appears to be the most closely related system to ours in terms of
deduction principles, and we chose to compare the two systems.

MPRF and our inference system are similar by the fact they both have an explicit
case analysis rule. MPRF system is made efficient without the loss of completeness by
distinguishing negative literals from positive ones: the case analysis rule is only applied
to negative literals. The approach of building a set of necessary literals to achieve a proof
is potentially present in MPRF system, but is not exploited.

A first difference between the present work and MPRF is that the latter is not able to
extract missing hypotheses from a set of facts, as our system does.

A second difference is that Dy, is a set of clauses (a conjunction of disjunctions). This
is a more general and structured information than the MPRF sets of literals, thus making
proofs more “natural”. For example, if S is the set of hypotheses {= A - B = F |
-C-D = F , AC = F}, <S F{},BV D> can be established, meaning that
“=B A =D” is an hypothesis to be added to S to make S unsatisfiable. This problem
cannot be formulated in Plaisted’s system.

The proof in HDS is :

D D'

<S,F,{},{BVv D}> (£3)
where D is
Zmagos B EegmeE (B4)
<S,F,{},{AV B}>
and D' is

(R4 S A.JAVB.CVDI.{BE (*? Z5.C{AVBE.CVDL{DE (2

<S,F,{AVB,CVD},{BVD}>

<S,-C,{AVB},{C}> (14) <S,-D,{AVB},{D}>

)
<S,F,{AVB},{CVD}> (R1)

)
(R1)

<S,F,{AVv B}, {BVD}>

Note, in D', how < S, F,{AV B,CV D},{BV D} > is derived. Semantically, this goal
correspond to the proof of falsity in the case AV B and C'V D hold. The proof uses
two rule (R2) applications that use hypotheses originating from two different proofs. The
resulting hypootheses B and D are then composed together to constitute B V D.

Plaisted’s system does not provide such an answer because it is not able to “factorize”
case analyses in such a manner.

5 Conclusion

The proposed approach allows the definition of a simple and explainable inference system
for first order logic that is based only on two concepts : subgoaling decomposition rule
and explicit case analysis rule. A set of additional hypotheses is associated to each goal
(the Dy, hypotheses domain). Those temporary hypotheses can be used to solve the goal.

106

(R3)

It results in the building of an hypothesis (the D hypothesis). This hypothesis represent
the cases on which the attempt to prove the goal failed. The syntactic operations on the
hypotheses domains are simple and easy to implement. The proposed inference system
has the advantage of providing natural proofs and information on missing hypotheses
when a proof fails. The soundness and refutational completeness of this system have been
established.

A prototype using those inference rules has been written in Prolog and tested in the
application domain of elementary geometry. A model (a numerical representation of a
geometry construction) is used to guide the search proof. Our approach will be included
in a multi-paradigm geometric constraint solver.

References

[1] Fitting M., First-Order Logic and Automated Theorem proving, Texts and Mono-
graphs in Computer Science, Springer-Verlag, 1990.

[2] Loveland Donald W., A Simplified Format for the Model Elimination Procedure,
Journal of the ACM, 16.3, p. 349-363, 1969.

[3] Loveland Donald W., Near-Horn Prolog and Beyond, Journal of Automated Reason-
ing 4, p. 69-100, 1988.

[4] Ouabdesselam F., Reasoning with Negation and Explaining Various Types of An-
swers, Cognitiva 85, Paris, 1985.

[5] Pereira Luis Moniz, Caires Luis & Alferes José, SLWV - A Theorem Prover for Logic
Programming, ELP’92, LNCS 660, Bologna, 1992.

[6] Plaisted David A., Non-Horn Clause Logic Programming Without Contrapositives,
Journal of Automated Reasoning 4, p. 287-325, 1988.

[7] Stickel Mark E., A Prolog Technology Theorem Prover : Implementation by an Ex-
tended Prolog Compiler, Journal of Automated Reasoning 4, p. 353-380, 1988.

107

