
Similarity-Based Lemma Generation for Model Elimination

Marc Fuchs

�

1 Introduction

ATP systems based on model elimination (ME) [Lov78] or the connection tableau calcu-

lus [LMG94] have become more and more successful in the past. These provers traverse

a search space that contains deductions instead of clauses as in the case of resolution

procedures. The structure of the search space allows on the one hand for e�cient imple-

mentations using prolog-style abstract machine techniques. On the other hand, e�cient

search pruning techniques are possible. A problem regarding the use of ME is the fact

that ME proof procedures are among the weakest procedures when the length of existing

proofs is considered. Furthermore, ME involves a huge amount of redundancy because the

same subgoals have to be proven over and over again during the proof process.

The use of lemmas o�ers a solution to both of these problems. The aim of lemmaizing

is to store successful sub-deductions in form of lemmas and to support the calculus with

these bottom-up generated formulae. But although lemmas can help to decrease the proof

length they also increase the branching rate of the search space. Hence, an unbounded

generation of lemmas without using techniques for �ltering relevant lemmas does not seem

to be sensible. Actually, �lter mechanisms are in use that ignore the proof task at hand

(cp. [AS92, Sch94]). A method that seems to be more appropriate is the use of similarity

criteria between the proof goal and a possible lemma (lemma candidate) in order to �lter

lemmas. In the following we will present a model for similarity-based lemmaizing.

2 Connection Tableau Calculus

The connection tableau calculus (CTC) works on clausal tableaux and consists of three

inference rules. Let C be a given set of clauses to be refuted. The start rule allows for a

conventional tableau expansion applied to the trivial tableau which consists of only one

unlabeled node. Tableau expansion attaches a clause from C at the leaf node of a tableau

(see [Fit96]). Reduction allows for closing an open branch by unifying the literal at the leaf

with the complement of another literal on the same branch. Extension is a combination

of tableau expansion and immediately performing a reduction step.

In order to refute a clause set with CTC a closed tableau has to be enumerated starting

with the trivial tableau. Normally implicit enumeration procedures are employed perform-

ing consecutively iterative deepening search with backtracking (cp. [Sti88]). Iteratively,

larger �nite segments of the search tree T which is the tree of all possible derivations of

tableaux are explored. The segments are de�ned by so-called completeness bounds which

pose structural restrictions on the tableaux which are allowed in the current segment.

Prominent examples for such bounds are the depth and inference bound (see [LSBB92]).

The depth bound limits the maximal depth of nodes (the root node has depth 0) in a

tableau (ignoring leaf nodes) according to a �xed resource n 2 IN, i.e. only tableau with

depth smaller or equal to n are allowed. Analogously, the inference bound limits the

number of inferences allowed for the derivation of a tableau according to a resource value.

Iterative deepening, using a bound B, is performed by starting with a basic resource n

�

Fakult�at f�ur Informatik, 80290 M�unchen, fuchsm@informatik.tu-muenchen.de

63

and iteratively increasing n until a proof is found within the �nite initial segment of T

de�ned by B and n.

3 Bottom-Up Lemma Generation

One approach to enrich CTC is to employ lemmas. If a literal s is head of a closed sub-

tableau T and the literals l

1

; : : : ; l

n

are used to perform reduction steps from outside T then

the clause :s_:l

1

_ : : :_:l

n

may be derived as a new lemma. One can generate lemmas

dynamically during the proof run as in [AS92] or statically in a preprocessing phase as in

[Sch94]. In the rest of this paper we want to consider the last method where unit lemmas

are added to the clause set C to be refuted. Lemmas are generated by adding queries

:p(X

1

; : : : ;X

n

) (and p(X

1

; : : : ;X

n

) in the case of non-horn clauses) to C and enumerating

all solution substitutions �

1

; : : : ; �

m

which can be obtained in the segment of the search

tree de�ned by the depth bound and a �xed (small) resource n

D

. Subsumed facts from

f�

i

(p(X

1

; : : : ;X

n

)) : 1 � i � mg are deleted, resulting in a set L

0

. Then a top-down proof

run takes place using C [L

0

and a �xed bound (the depth bound in [Sch94]). With this

method always a reduction of the proof length can be obtained when using horn clauses

(see [Fuc97a]). More interesting is whether the process of �nding a proof can pro�t from

using lemmas (\macro operators") since the branching rate of the search tree increases.

Let us �rst consider the case that the depth bound B

D

is used for the �nal top-down

proof run. Let n be the resource which is at least needed to obtain a proof when using no

lemmas. We assume that the resource which is at least needed when using lemmas from

L

0

can be reduced from n to n�n

D

+1. This is always possible in the case of horn clauses.

Let T

1

or T

2

be the smallest segments (w.r.t. B

D

) of the search trees which are de�ned by

C[L

0

or C, respectively, that include a proof. In T

1

, despite the use of lemmas, there are no

new solutions of subgoals compared with T

2

because a lemma application cannot help to

introduce solutions that cannot already be obtained in T

2

by expanding the lemma proofs.

Note further that when employing local failure caching (cp. [LMG94]) no duplication of

segments of the search space (by duplicated solutions of subgoals) is incorporated into T

1

which is in opposite to classical macro operator learning (cp. [Min90, Fuc97a]). Instead,

inferences possible in T

2

are spared , e.g. because of the subsumption test when generating

lemmas (see also [Fuc97a]).

Furthermore, the number of inferences needed to explore a small search space in the

preprocessing phase is normally much smaller than the number of inferences saved. In

addition, the use of lemmas leads to a restructuring of the order in which solutions of

subgoals are obtained. This may help to save the possibly large search amount for proving

a useful lemma and speed up the search dramatically. When using the inference bound

similar e�ects occur. But it may be that new solution substitutions are introduced to T

1

that are not possible in T

2

(cp. [Fuc97a]).

A dramatic improvement for the search process can be obtained by using only some

relevant lemmas, i.e. lemmas needed in a proof. Then, one can pro�t from a resource

reduction and does not pay this bene�t for a large increase of the branching rate. Thus,

mechanisms to �lter relevant lemmas will be developed in the following.

4 Similarity-Based Lemma Selection

In this section we want to introduce general principles for similarity-based lemma selection.

We introduce our notion of similarity and we deal with principles for a priori estimating

this similarity. Then, we introduce some concrete distance measures for selecting lemmas.

4.1 General Principles for Measuring Similarity

We want to make the notion of relevance of a lemma set for a proof goal (a posteriori

similarity) more precise. Let C be a set of clauses, S 2 C be a start clause for refuting C,

64

and L

0

be a set of lemma candidates. Let L � L

0

be a set of unit clauses. We say S and

L are similar (Sim

T

(S;L) holds) w.r.t. a search tree T if there is a closed tableau T in T

that can be reached with start clause S and that contains as tableau clauses only instances

of clauses from C [L. Furthermore, at least one l 2 L is used for closing a branch. Not

every set L, similar to S w.r.t. the search tree de�ned by C[L

0

, may be useful for refuting

C when employing a bound B. An important quality criterion is the resource value n which

is at least needed in order to obtain a closed tableau T . There should be no subset of L

0

,

di�erent from L, that can help to refute C with smaller resources. Furthermore, L should

have minimal size, i.e. no lemma can be deleted in order to refute C with resource n. We

call such lemma sets most similar to S w.r.t. B.

Conventional tableau enumeration procedures allow for �nding a subset of L

0

most

similar to S. The following method (lemma delaying tableau enumeration) is a sound and

complete test for Sim

T

m

(S;L) where T

m

is the �nite search tree de�ned by C [L

0

, start

clause S, a completeness bound B, and the resource n

m

which is at least needed to refute

C [L

0

: We enumerate the set O of all tableaux in T

C

m

de�ned by C, S, B, and n

m

. Then

we check whether or not the open subgoals (front clause) of a tableau T 2 O can be solved

by extension with some facts of L such that the resulting tableau is in T

m

.

With the help of similarity measures we want to estimate a priori whether L � L

0

is

most similar to S. We compute such measures based on a fast simulation of the deduction

process. We want to enumerate only a subset of the set of front clauses belonging to

the tableaux from O and compute some uni�cation distances between the generated front

clauses and the lemma set L. In order to simplify this we restrict ourselves to local tests

and try to estimate the usefulness of a lemma in order to contribute to a refutation of

C in T

m

(normally together with other lemmas). Instead of generating front clauses we

only enumerate front literals and choose lemmas based on distances to front literals. If

we want to employ local tests, however, it is not su�cient to generate front clauses that

are units (front literals) in T

C

m

and then perform uni�cation tests. Front literals have to

be generated in an \expanded" search tree T

C

m;e

. This search tree contains in addition

to T

C

m

the tableaux which can be obtained from tableaux of T

C

m

by expanding some sub-

proofs of applicable lemmas from L

0

. The usefulness of a fact l 2 L

0

can be determined

by generating all front literals in T

C

m;e

and performing a uni�cation test between these

literals and the complement of l. By generating a subset of the front literals and then

measuring a (uni�cation) distance between the front literals and the complement of l (� l)

the usefulness of l can be estimated. The aim of this local method is to select with small

costs a rather small lemma set similar to S w.r.t. T

m

.

4.2 Similarity Measures

In this section we want to clarify how to generate front literals, how to measure uni�cation

distances and how to select lemmas based on the distance values to front literals.

The aim of the generation of front literals is to get a good \coverage" of the search

space T

C

m;e

. For each useful lemma a structural similar front literal should be given. This

is no easy task since a priori not even the value n

m

is given and thus the form of T

C

m;e

is

unknown. We handle this problem by employing breadth-�rst search. We enumerate all

front literals occurring in tableaux which can be reached with at most k (2 IN) inference

steps. Thus, we can follow each inference chain needed to obtain a front literal f

l

(in

T

C

m;e

) that is uni�able with a lemma l until a certain depth. If we are able to generate a

front literal f where inferences are performed similar to those needed to �nd f

l

then it is

quite probable that f and l are structurally similar (as described shortly). We used an

inference value k which de�nes a compromise between computation e�ort and precision of

65

the simulation and produced up to 500 front literals. Note that this method was in our

experiments sound in the sense that the set of the generated front literals has always been

a subset of the set of front literals F occurring in tableaux from T

C

m;e

.

Now, we want to estimate, based on the structural di�erences between front literals

and a fact l 2 L

0

, whether or not, when allowing for more inferences when generating front

literals, a front literal f

l

2 F can be produced that can be closed with l. Due to the lack

of inference resources instead of f

l

only a front literal f may be generated which di�ers

from f

l

as follows: Either, it is possible that all inferences that have to be performed to

literals on the path from S to f

l

of the tableau T

f

l

(whose front literal is f

l

) can also

be performed when creating f . Thus, some of the subgoals occurring in T

f

l

have been

solved, when generating f , by a sub-proof somewhat di�erent to the sub-proof in T

f

l

.

Since the subgoals are variable-connected \uni�cation failures" arise in f that prevent

� f and l from being uni�able. Or, it may be that inferences which have to be performed

to literals on the path from S to f

l

cannot be performed when producing a front literal

f . Then, f and l may even di�er in the symbol at the top-level position. Now, we want

to distinguish two cases: It may be that in order to close f

l

with l no instantiations are

needed or only instantiations with terms of a small size. Otherwise, it may be necessary

that instantiations with terms of larger size take place.

If no instantiations of f

l

and l are needed a complete similarity test consists of a test

of structural equality between front literals from F and l. As described above this has to

be weakened to a structural similarity test. A common method in order to allow for such

a similarity test of structures is to employ features. A feature is a function ' mapping

literals to natural numbers. Usually, a set of features '

1

; : : : ; '

n

is used and a literal u

is represented by its feature value vector ('

1

(u); : : : ; '

n

(u)). We consider a lemma to be

useful if a front literal has similar feature values. The features we have used concentrate

on simple syntactical properties (cp. [Fuc97a, Fuc97b]). We de�ne a distance d

F

(u; v) of

two literals as the Euclidean distance d

E

of the feature value vectors of � u and v.

If instantiations are needed in order to use lemmas normally the previous method will

not allow for good estimations. Therefore, in [Fuc97a] an instantiating method based on

an inference system for uni�cation has been developed. An instantiation (substitution) is

computed by pseudo-unifying two literals (terms) based on an inference system UD which

ignores certain uni�cation failures during the uni�cation process. A de�nition of UD and

remarks for controlling UD can be found in [Fuc97a]. After instantiating two terms d

F

can be employed. In summary, we obtain the measure d

S

by d

S

(u; v) = d

F

(�

v

u

(u); �

v

u

(v))g

where �

v

u

is the substitution obtained with UD for � u and v.

In order to select lemmas we employ the following method which is very
exible w.r.t.

the number of selected lemmas: We generate for each clause which should serve as start

clause front literals and choose for each front literal the lemma most similar to the literal

w.r.t. a given distance measure (d

F

or d

S

). If for a lot of front literals the same lemma

seems to be well suited (able to conclude a proof) a small subset of L

0

will be chosen.

Otherwise, if there is a high uncertainty which lemmas are well suited, a higher number

of lemmas will be chosen which may prevent useful lemmas from being ignored.

5 Experiments

We have performed experiments with the CTC based prover Setheo [LSBB92] and the

lemma generator Delta [Sch94]. We experimented in three domains of the TPTP library,

namely in the BOO, COL, and GRP domain. We employed Setheo, an un�ltered combi-

nation of Setheo andDelta (Setheo/Delta), a version where �ltering was done accord-

ing to conventional criteria as used in [Sch94] (Setheo/Conv, see also [Fuc97a]), and our

66

Setheo Setheo Setheo Setheo Setheo Setheo

Problem Setheo

Delta Conv Sim

Problem Setheo

Delta Conv Sim

BOO003-1 35 19 1 3 COL003-2 | 481 238 705

BOO003-2 344 | 377 2 COL042-2 | 983 | 58

BOO004-2 497 | 628 2 COL042-3 | | | 907

BOO005-2 629 | 110 21 COL042-4 | | | 520

BOO006-2 387 | 42 25 COL060-2 532 264 | 11

BOO006-4 141 503 5 8 COL060-3 509 252 | 8

BOO012-2 | | | 131 COL063-5 541 267 | 37

BOO012-4 | | | 408 COL063-6 539 262 | 15

BOO013-1 8 | | 3 COL064-2 567 279 | 22

BOO013-3 485 44 | 2 COL064-3 566 275 | 23

Table 1: Experimental Results

similarity-based version Setheo/Sim. In the BOO and GRP domain non-instantiating

methods were su�cient whereas in the COL domain the measure d

S

was used. We used

the depth bound and iterative deepening. Lemmas were generated with resource n

D

= 2.

We depict some problems from the BOO and COL domain in table 1. We show

the run times in seconds on a Sun Ultra II. The entry `|' denotes that no proof could

be found within 1000 seconds. Considering our results we can observe that Setheo/Sim

signi�cantly improves on the other versions. We can solve new problems as well as decrease

the run times of a lot of problems from a region of more than 5 minutes to a value smaller

than 1 minute. Note that the run times include the time for lemma generation and

selection. Similar results could be obtained all over the domains in a stable way. A

deeper analysis and further information can be found in [Fuc97a].

6 Conclusions and Future Work

Lemmaizing techniques have the potential to signi�cantly improve the performance of an

automated theorem proving system. We discussed static lemma generation and investi-

gated the potential of lemmaizing for proof length and resource reduction. In order to

solve the problem of introducing relevant lemmas, we developed e�cient techniques based

on similarity criteria between a proof goal and a set of lemma candidates. The future work

will deal with the improvement of our similarity measures. It remains to be investigated

whether a more intelligent generation of front clauses can improve the reliability of our

similarity test. Furthermore, techniques from the area of machine learning may allow for

an improvement of the similarity measures d

S

and d

F

.

References

[AS92] O.L. Astrachan and M.E. Stickel. Caching and Lemmaizing in Model Elimination Theorem Provers.

In Proceedings of CADE-11, pages 224{238, Saratoga Springs, USA, 1992. Springer LNAI 607.

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.

[Fuc97a] M. Fuchs. Principles of Similarity-Based Lemmaizing. AR-Report, AR-97-02, TU M�unchen.

[Fuc97b] M. Fuchs. Flexible Proof-Replay with Heuristics. In Proc. EPIA-97 (to appear), 1997.

[LMG94] R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into Connection Tableau

Calculi. Journal of Automated Reasoning, (13):297{337, 1994.

[Lov78] D.W. Loveland. Automated Theorem Proving: a Logical Basis. North-Holland, 1978.

[LSBB92] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance Theorem Prover.

Journal of Automated Reasoning, 8(2):183{212, 1992.

[Min90] S. Minton. Quantitative Results Concerning the Utility of Explanation-Based Learning. Arti�cial

Intelligence, (42):363{391, 1990. Elsevier Science Publishers.

[Sch94] J. Schumann. Delta - a bottom-up preprocessor for top-down theorem provers. system abstract. In

Proceedings of CADE-12. Springer, 1994.

[Sti88] M.E. Stickel. A prolog technology theorem prover: Implementation by an extended prolog compiler.

Journal of Automated Reasoning, 4:353{380, 1988.

67

