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1 Introduction

From an informal (but abstract) point of view we consider reasoning as the activity of ex-

tracting information or completing partial information (of course information is taken

here as a basic concept). We see automated reasoning as an activity combining de-

duction with veri�cation and producing consequences and non-consequences in an auto-

mated/interactive way. Of course the respective extent of each of this components varies

in di�erent situations.

The present work is an application of this uni�ed view to the particular case of model

building.

The possibility of systematic model building in �rst-order logic exists at least since

the introduction of the tableaux method (Hintikka, Beth, Smullyan,. . . ), approximately

40 years ago. Some striking results in interactive model building have been obtained less

than 20 years ago. But it is only since less than 10 years that results on model building

are regularly published.

To the best of our knowledge, McCarthy was the �rst to point out that deducing and

verifying are two extremes of the general activity of deducing-verifying. Consequence rela-

tions have been extensively studied. A particular case of consequence relations deserves to

be mentioned here, i.e. anticonsequence relations. These relations study the propositions

that can be rejected on the ground of other rejected propositions.

In order to give a uni�ed treatment of the search for refutations and models we have

investigated relations between accepted formulae and formulae that surely are not con-

sequences of them. We naturally suggest to call them non-consequence relations. Given

a consequence relation a corresponding non-consequence relation is any relation in its

complement. Due to the undecidability of �rst-order logic all non-consequence relation

de�ned by means of rules can be extended. The ideas underlying our approach to model

building can be summarized as follows. Let us consider a conjecture in the form of a

�nite set of �rst-order clauses (the restriction to clauses is not necessary but convenient

for presentation). Possible Herbrand models of the conjecture can be captured by �nitely

expressing sets of ground consequences (using inference rules - consequence relations) or

by recognizing conditions that will avoid inference rules to be applicable. The latter allow
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to identify literals that surely cannot be deduced from the conjecture (disinference rules-

non-consequence relations). These non-deductible literals are immediately available, so to

speak, to conceive a partial model of the conjecture.

The present work is exclusively on model building and disregard search for refutations.

It introduces an extension of a non-consequence relation in the form of a veri�cation

process of a proposed (and automatically modi�able) information. A 'strategy' (we use

this term loosely, but this is not important here) necessary to preserve satis�ability is also

de�ned.

There are two main technical results in the paper: one stating that the proposed rule

and strategy strictly increase the power of our former method and the other characterizing

the class of models that can be captured by the new method. Its capabilities with respect

to other approaches are brie
y mentioned. The method has been implemented and allowed

us to build models for some set of clauses for which, as far as we know, no other method

works.

The former method and its limits

Since 1990, we develop a method for building models of �rst-order formulae [2]. It is

based on the use of equational constraints that are used to represent and build Herbrand

models of �rst-order formulae. This method captures the standard attitude of a human

being faced to a conjecture: trying simultaneously to prove or to disprove (by giving a

counter-example) it. The method is called Ramc (Refutation AndModel Construction).

In contrast to other methods, Ramc is not restricted to a particular class of formulae and,

similarly to Ferm�uller and Leitsch's [3], can built in�nite models as well as �nite ones.

In our method, models are naturally represented by equational formulae interpreted in

the empty theory. A partial interpretation (i.e. an interpretation not necessarily de�ned

everywhere) is said to be an eq-interpretation if it can be represented by an equational

formula. More precisely, the interpretation of a n-ary predicate P (i.e. the set of n-tuplets

of ground terms such that P (t

1

; : : : ; t

n

) is true) is expressed by an equational formula

X

P

with n free variables x

1

; : : : ; x

n

. We call this kind of interpretations (models) eq-

interpretations (eq-models). This formalism is more expressive than, for example, the one

in [3]. Moreover we can build eq-models for interesting formulae of �rst order logic.

In the following, we will identify satis�able sets of unit c-clauses and partial

Herbrand eq-interpretations (it is easy to justify this assertion).

The method Ramc uses constrained clauses i.e. couples [[clause : constraint]]. A

constrained clause denotes the set of its ground instances. Constraints code the condi-

tions necessary either to the application or the impossibility of application of the inference

rules and denote the range of the variables of the clauses. Roughly speaking the method

associates to each inference rule its so called "disinference" counterpart and introduces

some essentially new rules. The method appeared to be very general and to have many

interesting applications in Automated Deduction, Arti�cial Intelligence and Computer

Science (for building models of equational clauses, for extending semantic strategies, de-

ciding sub-classes of �rst-order logic, extending the power of logic programs interpreters

and correcting programs . . . (see for ex. [1]).

From the theoretical point of view the original method is basically limited for two

reasons. The �rst one is the limit of the expressive power of eq-models. We have proposed

elsewhere to extend it by using tree automata and term schematization techniques (see

[5]).

The second limitation of the method is that the inference and disinference rules cannot

generate all eq-interpretations. Let us call S the following set of c-clauses.
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fP (x; y) _ :P (succ(x); succ(y)), :P (x; y) _ P (succ(x); succ(y)), :P (0; succ(x)),

:P (succ(x); 0), P (0; 0)g

It is easy to see that a model of S is obtained by interpreting P as the equality on

the Herbrand universe. S has only one Herbrand model M: P (x; y) is true i� x = y. M

is a eq-interpretation, however no �nite representation of M can be generated by using

inference or disinference rules.

In this paper we overcome this limitation by using Ramc to guide (by generating

consequences or non-consequences, by detecting counter-models, simplifying clauses, . . . )

the enumeration of the set of eq-interpretations. We prove that by combining Ramc with

a new-rule (mb-splitting) any eq-interpretation can eventually be reached.

2 The new method

Informal presentation

The method we propose borrows the approach and dis-inference rules from our former

one called Ramc. It can also be seen as having similarities with the well known Davis and

Putnam's procedure. The way the method works is very simple.

� Firstly, it simpli�es the set of c-clauses at hand S by using particular cases of Ramc's

rules (see [2]). More precisely by using Simplify (see below).

� Secondly, the problem of �nding a model of a set of c-clauses S is divided into two

other independent subproblems: to �nd models of S [ fPg and S [ f:Pg.

This is not sound in general if P is not ground (since there can exists a model of S

in which some instances of P are true and other are false). Hence we must control

the application of this rule in order to preserve the soundness of our method

Simpli�cation rules

We only recall the Ramc rule the most deeply related to the new rule (for the others

see [2]).

The GPL

1

rule

A literal L is said to be pure in a set of c-clauses S i� its complementary (i.e. :L)

does not appear in clauses of S. Our method exploits in one of its key rules the notion of

pure literal in a set of clauses. It is clear that a pure literal in a set of clauses is a model

of the clause to which it belongs (it can be evaluated to > independently of the rest of the

interpretation). Therefore a natural idea in order to build a model of a set of clauses S

is to try to generate for each clause a pure literal in it. The way our method realizes this

idea is by setting conditions (coded in the constraints), restricting the domain of variables

in the arguments of a literal P (t) in order to avoid uni�cation with the arguments of all

literals :P (s) in clauses of S. This generated literal is added to S. Obviously, if L is pure

in S then S [ L is satis�able i� S is satis�able.

[[P (t) _ R : X ]] S

[[P (t) : X

pure

]]

where X

pure

=

V

[[:P (s)_r :Y]]2S

(8y::Y _ s 6= t)^X and where y are all the variables in

var([[:P (s) _ r : Y ]]).

1

Standing for Generating Pure Literal.
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We call Simplify the procedure applying the set of rules funitc� resolution; unitc�

disresolution; unitc� dissubsumption;GPLg [2].

The mb-splitting rule

As mentioned in the Introduction a non-consequence relation can be always extended.

The idea on which is based the new rule is trivial: "a set of ground literals will be

evaluated to true or to false in a model of a given set of clauses" The way the mb-splitting

(standing for model building splitting) rule does it is by proposing c-literals (i.e. sets of

ground literals) as candidates for a possible model and verifying afterwards that they are

e�ectively useful in building a model for the given set of clauses. The problems are of

course:

� When this rule must be used in the model building process ?

� Which ground terms must instantiate the predicates ?

� If the guess is not a good one, how to modify it ?

A possible partial answer to these questions is given by the strategy below.

The class of models that the method is able to build can be increased by using such a

splitting rule. We add a rule substituting the set of c-clauses at hand by 2 extended sets

S

1

and S

2

. S

1

and S

2

are obtained from S by adding respectively two unit c-clauses of

the form [[P (t) : X ]] and [[:P (t) : X ]]. The mb-splitting rule can be depicted as follows.

S

S [ f[[P (t) : X ]]g S [ f[[:P (t) : X ]]g

where P (t) is a atomic formula.

Obviously, the mb-splitting rule does not preserve the satis�ability of the sets of

c-clauses. Indeed if [[P (t) : X ]] is not ground there may exist models M of S such that

neither [[P (t) : X ]] nor [[:P (t) : X ]] is true in M. In this case, S can be satis�able and

S [ f[[P (t) : X ]]g; S [ f[[:P (t) : X ]]g unsatis�able. Therefore the application of the rule

must be carefully controlled. The strategy guides the choice of the literals on which the

rule is applied.

Remark 1 The mb-splitting and Gpl rules are deeply related in their aims and e�ects

and strongly di�erent in the principles they are based on. Gpl's goal is to generate new

literals in the model by computing the conditions ensuring that a literal is pure in a set of

(constrained) clauses, hence that the adding of this literals will preserve the satis�ability

of the whole set of c-clauses. The mb-splitting rule asserts that either a literal or its

complementary will be evaluated to true in a model. The point is that what is asserted

by mb-splitting is not necessarily computable by GPL (neither by the other

rules of Ramc). This short description loosely explain why the splitting rule increases

the model building capabilities of Ramc.

The strategy

The proposed strategy is based on the following principle: choose a �nite partition of

the Herbrand base and use the mb-splitting rule for enumerating eq-interpretations that

are compatible with this partition (i.e. sets of c-clauses in which each member contains each

equivalence class denoted by a c-literal L, or the one denoted by :L). The simpli�cation
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rules are used to detect counter-models and to prune the search space. If no model is

found, then another partition is tried, �ner than the initial one.

The following two rules are used by the strategy.

f [[P : X ]] g ! f[[P : X ^ s = t]]; [[P : X ^ s 6= t]]g

where s and t are two subterms in [[P : X ]]

f [[P : X ]] g ! f[[P : X ^ x = f(y)]]=f 2 �g

Where � is the signatures for function symbols and x; y 2 Var([[P : X ]]) .

The following theorem states the main technical result of this paper. It proves that

our method can build models for any formula having a model representable by equational

formulae (BuildMod

1

(S) is the name of the procedure implementing our method).

Theorem 1 If BuildMod

1

(S) returns S

0

then S

0

is (the representation of) a model of

S. If S has a eq-model then any fair application of BuildMod

1

returns an eq-model of S.

Remark 2 There exist several interesting classes of formulae with the property that any

satis�able set of c-clauses in these classes have an eq-model. This is the case for example

for the classes Pvd, Occ1N, the Bernay-Sch�on�nkel class and more generally any class

decidable by hyperresolution (see [3]). Our method can build models for any satis�able

formula in these classes.

3 Conclusion and future work

The use of mb-splitting appears to be critical in building models for di�cult formulae, as

for example a satis�able formula used by Goldfarb in proving the undecidability of G�odel

class with identity [4].

Two main technical problems are open by this work:

� Find criteria for "good" partitioning of the Herbrand universe in order to capture

larger classes of models or to improve e�ciency.

� Find criteria allowing to decide, faced to a conjecture, to switch Ramc from simul-

taneous search for refutations and models as originally to exclusive model building

search as in the present work.

References

[1] R. Caferra and N. Peltier. A new technique for verifying and correcting logic programs.

To appear in the Journal of Automated Reasoning, 1997.

[2] R. Caferra and N. Zabel. A method for simultaneous search for refutations and models

by equational constraint solving. Journal of Symbolic Computation, 13:613{641, 1992.

[3] C. Ferm�uller and A. Leitsch. Hyperresolution and automated model building. Journal

of Logic and Computation, 6(2):173{203, 1996.

[4] W. D. Goldfarb. The unsolvability of the G�odel class with identity. Journal of Symbolic

Logic, 49(4):1237{1252, 1984.

[5] N. Peltier. Increasing Model Building Capabilities by Constraint Solving on Terms

with Integer Exponents. Journal of Symbolic Computation, 24:59{101, 1997.

44


