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Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a triple (X ,D,C ),
where:

I X = (x1, . . . , xn) is a sequence of variables

I D = (D1, . . . ,Dn) is a sequence of domains for these variables
i.e., xi ∈ Di for all 1 ≤ i ≤ n

I C = {c1, . . . , cm} is a set of constraints on subsequences of X

A constraint on a sequence (x1, . . . , xk) with domains (D1, . . . ,Dk)
is a subset C ⊆ D1 × · · · ×Dk of the cross-product of the domains.

An instantiation (d1, . . . , dn) ∈ D1 × · · · × Dn is a solution for the
CSP if for each constraint c ∈ C on sequence (xi1 , . . . , xik ) we have
that (di1 , . . . , dik ) ∈ c .
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Domain Consistency

Many strategies used to solve CSPs use a method called constraint
propagation: transforming the CSP to an equivalent one that
satisfies some local consistency notions.

A CSP (X ,D,C ) is domain consistent (DC) for a constraint c ∈ C
on (xi1 , . . . , xik ) if

I for each xij and each dij ∈ Dij ,

I there exist di1 , . . . , dij−1
, dij+1

, . . . , dik such that:

I (di1 , . . . , dik ) ∈ c .

This (di1 , . . . , dik ) is called the support of dij .

Domain consistency is also called generalized arc consistency.
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Deterministic Finite-State Automata

A deterministic finite-state automaton (DFA) is a quintuple
A = (Q,Σ, δ, q0,F ), where:

I Q is a finite set of states

I Σ is an alphabet

I δ : Q × Σ→ Q is a (partial) transition function

I q0 ∈ Q is the initial state

I F ⊆ Q is the set of accepting states

A DFA A accepts a string w1 . . .wn ∈ Σ∗ if there are states
q1, . . . , qn ∈ Q such that:

I qi = δ(qi−1,wi ) for 1 ≤ i ≤ n

I qn ∈ F

The language a DFA recognizes is the set of strings it accepts.
DFAs recognize exactly the class of regular languages.
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the Regular Constraint

Given

I a sequence of variables X = (x1, . . . , xn) with domains
(D1, . . . ,Dn), and

I a DFA A,

the constraint Regular(X ,A) is the set of those sequences
(d1, . . . , dn) ∈ D1 × · · · × Dn such that:

I d1 . . . dn is accepted by A.

Enforcing DC for the Regular constraint can be done in linear time.
[1, 3]

Some suggested literature about the Regular constraint, for those
interested: [1, 2, 3, 4].
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the Regular Constraint (example)

Let

I X = (x1, x2, x3, x4),

I D1 = D2 = D3 = D4 = {a, b, c},
I A =

q0

start

q1b, c

a

b

I and c = Regular(X ,A).

Then {(a, b, c , b), (b, b, b, c)} ⊆ c , but (a, a, b, b) 6∈ c and
(b, b, b, a) 6∈ c .
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the GlobalCardinality Constraint

Given

I a sequence of variables X = (x1, . . . , xn) with domains
(D1, . . . ,Dn),

I a sequence of values V = (v1, . . . , vk),

I a sequence of lower bounds L = (l1, . . . , lk) ∈ Nk , and

I a sequence of upper bounds U = (u1, . . . , uk) ∈ Nk ,

the constraint GlobalCardinality(X ,V , L,U) is the set of those
sequences (d1, . . . , dn) ∈ D1 × · · · × Dn such that for each
1 ≤ i ≤ k :

I the number of occurrences of value vi in the sequence
(d1, . . . , dn) is at least li and at most ui .

Enforcing DC for the GlobalCardinality constraint can be done in
quadratic time. [5]
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the GlobalCardinality Constraint (example)

Let

I X = (x1, x2, x3, x4),

I D1 = D2 = D3 = D4 = {a, b, c},
I V = (a, b),

I L = (0, 2),

I U = (1, 3), and

I c = GlobalCardinality(X ,V , L,U).

Then {(a, b, c, b), (b, b, b, c)} ⊆ c , but (a, a, b, b) 6∈ c and
(b, b, b, b) 6∈ c .
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the RegularGcc constraint

Given

I a number of rows R ∈ N, a number of columns C ∈ N,

I a R × C matrix M of variables Mr ,c with domain Dr ,c ,

I for each row r a Regular constraint Regularr , and

I for each column c a GlobalCardinality constraint Gccc ,

the corresponding RegularGcc constraint is the set of those
instantiations1 that assign to each Mi ,j a value di ,j ∈ Di ,j such
that:

I for each row r , (dr ,1, . . . , dr ,C ) ∈ Regularr , and

I for each column c , (d1,c , . . . , dR,c) ∈ Gccc .

1We implicitly generalize the notion of a CSP from sequences to matrices.
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Practical use of RegularGcc

Consider a nurse scheduling problem with n nurses over d days,
where each nurse can be assigned one of multiple shifts each day.

Each day there must be a certain number of shifts assigned
(capacity requirement).

There are restrictions on the assignment for each nurse (individual
requirements). For instance:

I No early morning shift directly after a late night shift.

I At least one off-work period of f days in a row.

Encode this in a RegularGcc constraint on an n × d matrix.

I possible values ∼ different shifts

I capacity requirements ∼ column (Gcc) constraints

I individual requirements ∼ row (Regular) constraints
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NP-hardness of enforcing DC

We sketch a reduction from 3-SAT. Take a 3-CNF formula
ϕ = γ1 ∧ · · · ∧ γC on propositional variables p1, . . . , pR .

We construct a R × C matrix M of variables with domain
{−1, 0, 1}.

Each row r corresponds to a variable pr and each column c
corresponds to a clause γc .

We initialize the domains of the variables as follows. For each
clause γc we set the domain of Mr ,c to

I {0} if pr does not occur in γc ,

I {−1, 0} if pr occurs negatively in γc , and

I {0, 1} if pr occurs positively in γc .
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NP-hardness of enforcing DC

On each column we put the GlobalCardinality constraint that
enforces that the value 0 occurs at most R − 1 times.

On each row we put the Regular constraint that enforces that the
row contains besides 0’s either only 1’s or only −1’s.

(Solution ⇒ model)
If a 1 appears in row r , set pr to >; otherwise to ⊥.

(Model ⇒ solution)
If pr is assigned >, set all possible 1’s in row r , the rest 0’s.
If pr is assigned ⊥, set all possible −1’s in row r , the rest 0’s.
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NP-hardness of enforcing DC

For instance, take
ϕ = (p1 ∨ p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p1 ∨ ¬p2) ∧ (p3 ∨ p3 ∨ p2).

The instantiated matrix looks like this.

γ1 γ2 γ3

p1 0,1 -1,0 0

p2 0,1 -1,0 0,1

p3 -1,0 0 0,1
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NP-hardness of enforcing DC

For instance, take
ϕ = (p1 ∨ p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p1 ∨ ¬p2) ∧ (p3 ∨ p3 ∨ p2).

The instantiated matrix looks like this.

γ1 γ2 γ3

p1 0,1 -1,0 0

p2 0,1 -1,0 0,1

p3 -1,0 0 0,1

The red satisfying instantiation corresponds to the red solution.
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More complexity issues I looked at. . .

I It is NP-hard even for more restricted cases (restricted row
constraints).

I It is NP-hard even for bounds consistency.
I It is FPT, when parameterized on

I simultaneously both the number of rows and the (maximal)
automaton size.

I We got similar FPT results for slightly more general cases
(more general column constraints).

I It is W[2]-hard, when parameterized on
I just the number of rows.

I We got similar W[2]-hardness results for some more restricted
cases.
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Some issues I am currently looking at. . .

I Can the complexity results be extended to cases with
symmetry breaking constraints?

I For lexicographical ordering of rows, it seems so. . . at least
partly. . .

I Different symmetry breaking constraints?

I Are there practical restricted cases where propagation is
cheaper?

21 / 22



References

Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Global matrix constraints. In: Proceedings of the

International Workshop on Constraint Modelling and Reformulation. pp. 27–41 (2011)

Katsirelos, G., Maneth, S., Narodytska, N., Walsh, T.: Restricted global grammar constraints. In:

Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming
(CP’09). vol. 5732, pp. 501–508. Springer (2009)

Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M.

(ed.) Proceedings of the 10th International Conference on Principles and Practice of Constraint
Programming (CP’04). vol. 3258, pp. 482–495. Springer (2004)

Quimper, C.G., Walsh, T.: Decomposing global grammar constraints. In: Bessiere, C. (ed.) Proceedings of

the 13th International Conference on Principles and Practice of Constraint Programming (CP’07). vol.
4741, pp. 590–604. Springer (2007)

Regin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of the 14th

National Conference on Artificial intelligence (AAAI’98). pp. 209–215 (1996)

22 / 22


	Reminder on CSPs
	the RegularGcc Constraint
	Example of Practical Use
	Complexity of Propagation

