
Runtime verification meets Android security

Gil Vegliach

Joint work with Andreas Bauer and Jan-Christoph Küster



Background, what Android is
I Developed by Android Inc. (acquired by Google in 2005)
I Open Handset Alliance (founded in 2007)
I Software stack for mobile devices:

OS, middleware, key applications



Android’s security model
In a nutshell. . .

System level protection:
I Apps are “sandboxed”: unique UID (↔ Linux: one

UID/user), own virtual machine
I Simple, static permission labels restrict resource access

(manifest file)

Observe:
No dynamic security mechanisms

Not a bug—a feature:
“Android has no mechanism for granting permissions
dynamically (at run-time) because it complicates the user
experience to the detriment of security.”
(Source: http://developer.android.com/guide/topics/security/security.html)



Malware is spreading out
Smart phones and tablet PCs are popular

I June ’11: 550,000 new Android devices activated every
day

I (up from 400,000 per day two months earlier in May 2011)
I Security problems for mobile platforms on the rise:

“Since 2007, the number of new antivirus database
records for mobile malware has virtually doubled every
year.” – Kaspersky Q1/2011

(Source: Juniper Threat Center→ McAfee Q2/2011)



Some malware examples
Android/NickySpy.A

I Records user’s phone
conversations in
adaptive multi-rate
format (.amr)

I Stores in /sd-
card/shangzhou/callrecord/

I Transmits information to
(e.g.) jin.56mo.com on
port 2018



Some malware examples
Trojan-SMS.AndroidOS.FakePlayer.A and spyware Android/Actrack.A

I FakePlayer.A: First reported in August
’10, Russian movie player sending
SMS to premium Russian numbers,
string: “798657”

I Actrack.A: Send GPS location, battery
and radio status to a central internet
server controlled by the vendor at
regular intervals.



What people are doing about it
Research community

A recent “explosion” of related papers;
some of the more interesting ones:

I Static analysis of ≥ 1,100 Android apps
(Enck et al, USENIX Security Symposium ’11)

I Saint installer (Enck et al, CCS’09)
I TaintDroid (Ongtang et al, ACSAC’09)
I Soundcomber Trojan (Schlegel et al, NDSS ’11)



What we are doing about it
Runtime verification for security



Implementation
Architecture overview

Linux kernel
(C API)

user space

kernel space

Monitor
application

App-
lications

trace
operations

syscalls

events

Custom
kernel

module

Android Framework
(Java API)

Some extra
I/O code

I Monitor/GUI app (Java),
application level

I Logging code, in the
framework

I Kernel module, internet and
bluetooth permissions

Not “vaporware”:
Runs on an actual phone, Samsung Nexus S



Runtime verification on Android
The policy language

Syntax
ϕ ::= p(t)|¬ϕ|ϕ ∧ ϕ|Xϕ|ϕUϕ|∀x : p. ϕ, (p/1)

Ex event: { sms(123), battery(low), email(“nasa@gov.com”) }

Semantics
w , i |= p(t) ⇔ p(t ↓) ∈ w(i)
. . .
w , i |= ϕUψ ⇔ ∃k ≥ i . w , k |= ψ ∧ ∀j . i ≤ j < k ⇒ w , j |= ϕ
w , i |= ∀x : p. ϕ ⇔ ∀c. p(c) ∈ w(i)⇒ w , i |= ϕ[x/c]

Ex: {{p(2),p(3)}, {p(5)}, {q(4)}ω} |= G∀x : p. prime(x)



Example policies

I Android/NickySpy.A: record conversation (.amr), store on
sdcard, send through internet

G∀x : sd write. amr file(x) =⇒ (6 ∃y : connect(y))

I AndroidOS.FakePlayer.A: send SMS to premium Russian
numbers

G∀x : sms. ¬sms(x)Ucontact(x)

I Android/Actrack.A: send GPS location, battery and radio
status through internet

G(¬((F∃x : connect(x)) ∧ gps))



Finite trace semantics

u is finite trace of events, then:

u,0 |=3 ϕ :=


> if for any infinite trace w , uw ,0 |= ϕ,
⊥ if for any infinite trace w , uw ,0 6|= ϕ,
? otherwise.

That is, a monitor detects good and bad prefixes of L(ϕ).

Not all formulae have good and/or bad prefixes!



Why is this world-class research?

This is work in progress, so let’s hope it turns into world-class
research some day. :-)

But some points to notice:

I Not yet another logic looking for an application.
I Not just engineering either.
I Most related work either

I completely modify Android framework (not portable), or
I do not delve deep enough into the system to get

meaningful information (e.g. device feature collection on the
application-level)

I Our work, arguably, is sufficiently low-level, yet portable.
I To the best of our knowledge, only behavioural detection

tool for Android in existence.



Conclusions & Future work

I Small paper accepted at Nasa Formal Methods
Symposium (NFM) 2012: “Android security meets runtime
verification”

I Proof of concept: runtime verification on mobiles
I Implemented on an actual mobile phone, run smoothly
I Need to extend pre-defined policy collections, more

high-level policy language
I Need to develop further the logic



Thank you for your attention!


