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Background, what Android is
I Developed by Android Inc. (acquired by Google in 2005)
I Open Handset Alliance (founded in 2007)
I Software stack for mobile devices:

OS, middleware, key applications



Android’s security model
In a nutshell. . .

System level protection:
I Apps are “sandboxed”: unique UID (↔ Linux: one

UID/user), own virtual machine
I Simple, static permission labels restrict resource access

(manifest file)

Observe:
No dynamic security mechanisms

Not a bug—a feature:
“Android has no mechanism for granting permissions
dynamically (at run-time) because it complicates the user
experience to the detriment of security.”
(Source: http://developer.android.com/guide/topics/security/security.html)



Malware is spreading out
Smart phones and tablet PCs are popular

I June ’11: 550,000 new Android devices activated every
day

I (up from 400,000 per day two months earlier in May 2011)
I Security problems for mobile platforms on the rise:

“Since 2007, the number of new antivirus database
records for mobile malware has virtually doubled every
year.” – Kaspersky Q1/2011

(Source: Juniper Threat Center→ McAfee Q2/2011)



Some malware examples
Android/NickySpy.A

I Records user’s phone
conversations in
adaptive multi-rate
format (.amr)

I Stores in /sd-
card/shangzhou/callrecord/

I Transmits information to
(e.g.) jin.56mo.com on
port 2018



Some malware examples
Trojan-SMS.AndroidOS.FakePlayer.A and spyware Android/Actrack.A

I FakePlayer.A: First reported in August
’10, Russian movie player sending
SMS to premium Russian numbers,
string: “798657”

I Actrack.A: Send GPS location, battery
and radio status to a central internet
server controlled by the vendor at
regular intervals.



What people are doing about it
Research community

A recent “explosion” of related papers;
some of the more interesting ones:

I Static analysis of ≥ 1,100 Android apps
(Enck et al, USENIX Security Symposium ’11)

I Saint installer (Enck et al, CCS’09)
I TaintDroid (Ongtang et al, ACSAC’09)
I Soundcomber Trojan (Schlegel et al, NDSS ’11)



What we are doing about it
Runtime verification for security



Implementation
Architecture overview
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Some extra
I/O code

I Monitor/GUI app (Java),
application level

I Logging code, in the
framework

I Kernel module, internet and
bluetooth permissions

Not “vaporware”:
Runs on an actual phone, Samsung Nexus S



Runtime verification on Android
The policy language

Syntax
ϕ ::= p(t)|¬ϕ|ϕ ∧ ϕ|Xϕ|ϕUϕ|∀x : p. ϕ, (p/1)

Ex event: { sms(123), battery(low), email(“nasa@gov.com”) }

Semantics
w , i |= p(t) ⇔ p(t ↓) ∈ w(i)
. . .
w , i |= ϕUψ ⇔ ∃k ≥ i . w , k |= ψ ∧ ∀j . i ≤ j < k ⇒ w , j |= ϕ
w , i |= ∀x : p. ϕ ⇔ ∀c. p(c) ∈ w(i)⇒ w , i |= ϕ[x/c]

Ex: {{p(2),p(3)}, {p(5)}, {q(4)}ω} |= G∀x : p. prime(x)



Example policies

I Android/NickySpy.A: record conversation (.amr), store on
sdcard, send through internet

G∀x : sd write. amr file(x) =⇒ (6 ∃y : connect(y))

I AndroidOS.FakePlayer.A: send SMS to premium Russian
numbers

G∀x : sms. ¬sms(x)Ucontact(x)

I Android/Actrack.A: send GPS location, battery and radio
status through internet

G(¬((F∃x : connect(x)) ∧ gps))



Finite trace semantics

u is finite trace of events, then:

u,0 |=3 ϕ :=


> if for any infinite trace w , uw ,0 |= ϕ,
⊥ if for any infinite trace w , uw ,0 6|= ϕ,
? otherwise.

That is, a monitor detects good and bad prefixes of L(ϕ).

Not all formulae have good and/or bad prefixes!



Why is this world-class research?

This is work in progress, so let’s hope it turns into world-class
research some day. :-)

But some points to notice:

I Not yet another logic looking for an application.
I Not just engineering either.
I Most related work either

I completely modify Android framework (not portable), or
I do not delve deep enough into the system to get

meaningful information (e.g. device feature collection on the
application-level)

I Our work, arguably, is sufficiently low-level, yet portable.
I To the best of our knowledge, only behavioural detection

tool for Android in existence.



Conclusions & Future work

I Small paper accepted at Nasa Formal Methods
Symposium (NFM) 2012: “Android security meets runtime
verification”

I Proof of concept: runtime verification on mobiles
I Implemented on an actual mobile phone, run smoothly
I Need to extend pre-defined policy collections, more

high-level policy language
I Need to develop further the logic



Thank you for your attention!


