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Introduction (1/2)

A few auxiliary definitions:

Class C: a set of formulas sharing some property.

A CNF formula F is in Horn iff each of its clauses has at most one
positive literal.

F is in Horn:

F = (x ∨ ¬y) ∧ (y ∨ ¬z ∨ ¬w) ∧ (¬w ∨ ¬z)

Horn can be solved in polynomial time (e.g., by unit propagation)
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Introduction (2/2)

Assume I give you a CNF like this (1000 clauses, >100 variables, 3-SAT):

(x1 ∨ ¬x2 ∨ ¬x3) ∨
... 997 Horn clauses... ∨
(xn1 ∨ ¬xn2 ∨ ¬xn3) ∨
(xm1 ∨ xm2 ∨ xm3)

How difficult is this instance? (E.g., could you solve it by hand?)

Solving instances of this kind gives me an NP-hard problem?

This is FPT !
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Motivation

A backdoor is a set of variables. Once we assign a value to the
backdoor variables, the problem becomes tractable (in P)

Introduced by Williams et al. ([8]) to try to explain the good
performances of modern SAT solvers.

Their claim: modern SAT solver can find backdoors easily.

→ But solvers are NOT designed for this!

! Why don’t we try to pro-actively find these backdoors?

Finding backdoors is an NP-Hard problem!
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Previous work

Theoretical work:

Defining several types of backdoors,

Complexity of finding them (especially parameterized complexity)

Empirical work:

Showing that backdoor sets are “small”, for different types of
backdoors

- Results are mostly based on local search algorithms! (Incompleteness)

Little information on runtime required to find them

One work ([5]) shows that using Horn-backdoors improves SAT
solving speed. However, no information on how long it takes to find
them!

Questions:

→ How can we find backdoors efficiently?

→ Can we “predict” backdoors by using additional domain knowledge?
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Deletion Backdoors (1/2)

F − B: Replacing in each clause of F the occurrences of x and ¬x with ⊥
for each variable x ∈ B (with B ⊆ var(F )) and simplifies the clause.
Basically, remove the occurrences (positive and negative) of the variables
in B from F

Definition: Deletion C -backdoor ([4])

A non-empty subset B of the variables of the formula F (B ⊆ var(F )) is a
deletion backdoor w.r.t. a class C for F iff F − B ∈ C .

Example

F = (x ∨ y ∨ z) ∧ (¬x ∨ z ∨ w) ∧ (y ∨ w) B = {z , y}
F − B ≡ (x ∨�y ∨ �z) ∧ (¬x ∨ �z ∨ w) ∧ (�y ∨ w)
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Deletion Backdoors (2/2)

From a deletion C -backdoor we can generate 2|B| formulas, each with a
different assignment to the backdoor variables. Once the backdoor is
decided, we can solve these instances in polynomial time!
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Vertex Cover (1/2)

Definition: Vertex Cover

Given a graph G = (V ,E ), we call R = {v1, .., vn} ⊆ V a vertex cover of
G iff for all e ∈ E there exists a vi ∈ R s.t. vi ∈ e.

In other words, we have a vertex vi ∈ R as representative of each edge in
E . We call |R| the size of the vertex cover.

Definition: Vertex Cover Problem

Given a graph G = (V ,E ) and an integer k > 0, is there a vertex cover R
for G s.t. |R| ≤ k ?
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Vertex Cover (2/2)

Example

Consider G = (V ,E ):

v1

v2

v3

v4 v1

v2

v3

v4 v1

v2

v3

v4

Then C1 = {v1, v4} and C2 = {v2, v3, v4} are vertex covers for G but only
C1 is a solution for the Vertex cover instance (G , 2).
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Reduction to Vertex Cover (1/2)

Samer and Szeider ([7]) propose a reduction from deletion Horn-backdoor
detection to the vertex cover problem.

Definition

GF is the graph composed by the variables of the CNF formula F in which
two variables v , u are adjacent iff v and u appear positively in a clause
from F .

Lemma

A set B ⊆ var(F ) is a deletion Horn-backdoor for F iff B is a vertex cover
of GF

This relation extends also to Minimum Vertex Cover, in which we are
interested in the vertex cover/backdoor of minimal size (smallest
backdoor).
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Reduction to Vertex Cover (2/2)

Example

F = (x ∨ y ∨ z) ∧ (¬x ∨ z ∨ w) ∧ (y ∨ w)

F − C ≡ x ∧ (¬x ∨ w) ∧ w

x

y

z

w

GF

x

y

z

w

Cover/Deletion
Horn-backdoor

We can use existing results from Vertex Cover (including FPT results) to
solve deletion Horn-backdoor detection!
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Goals & Challenges

Study deletion Horn-backdoors in SAT instances

→ Build a dataset efficiently, e.g. FPT

− No available implementation of parameterized Vertex Cover

→ Implement algorithms that are a good trade-off between performance
and implementation complexity

Test whether we can use local search to efficiently find smallest
deletion Horn-backdoors

Study the relation of the backdoor size with features of the instances
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Solving Vertex Cover

Local search algorithm: COVER ([6])

o FPT algorithms: Kernelization and Bounded search

o Reduction to SAT
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Methodology

1 Benchmark with 3239 instances from various sources;

2 Generate the associated vertex cover instances;

3 Run a modified version of COVER [6] to obtain an upper-bound on
the size of the smallest deletion Horn-backdoor;

4 For instances with small backdoors (k ≤ 150) verify the minimality of
the backdoor;

5 For instances with bigger backdoors confirm that the lower-bound is
bigger than 150;

6 Considering only the instances for which we have the exact value of
the smallest backdoor, compute the quality of the solution provided
by a fast version of COVER.
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Results

2418 (74%) instances have upper-bound on the size of the deletion
Horn-backdoor up to 150:

2357 (97.5%) verified by the FPT algorithms,

8 more with CryptoMinisat,

53 remain unverified

Runtime1

Time-out: 90 minutes

Average: 25 second; 87% in less than 5 seconds, 93% in under a
minute (thanks to kernelization!)

The generated vertex cover instances were in most of the cases easy, but a
few were really hard (2%).

1Timings based on Intel Centrino 1.7Ghz, 1GB RAM
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COVER Results

We define two configurations for COVER.
Full computation:

Runtime: 30-90 minutes

Solution quality: Always finds the optimum

Fast computation:

Runtime: 115 ms (avg), 97 ms (avg) for k ≤ 150

Solution quality: 98% of the times optimum

Average error among all the instances is 0.11%.

COVER is a good method to compute smallest deletion Horn-backdoors.
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Correlations

We are interested in the relation between smallest deletion Horn-backdoor
(sdH-bd) size and other properties of the instances:

Flat Colouring on flat graphs; sdH-bd size is exactly two times
the number of vertices in the graph.

Random Uniform random formulas (uf/uuf): correlation between
number of variables and sdH-bd size is 0.99

CarConf Verify some consistency properties of requested car
configuration. Correlation between number of variables and
upper-bound of the sdH-bd size for the same configuration is
high:

Base configuration Correlation (r) # Instances

C168 0.99 58
C170 0.99 6
C202 0.83 23
C208 0.99 16
C210 0.89 32
C220 0.95 348
C638 0.73 84
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Conclusions

We studied the relation between deletion Horn-backdoor detection and the
vertex cover problem.

COVER is a good way of computing quickly (and with an excellent
quality) smallest deletion Horn-backdoors

Kernelization can play a key role. Even with a simple kernelization,
we solved many instances without search.

In some cases, features of an instance can be related with the size of
its smallest deletion Horn backdoor.
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Further work

Implement COVER/deletion Horn-backdoor detection in a solver and
allow branching only on backdoors variables;

Use backdoors to explore different solver architectures, and not only
DPLL;

Influence of preprocessing on different classes of backdoors;

Build predictive models that can find backdoors!
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Thank you

Questions?
Datasets, tools and slides are available online: http://marco.gario.org/work/
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Fixed-parameter tractable

For an NP-Hard problem we have an exponential worst-case runtime
in the size of the problem: e.g. SAT O(2n)

We can do better by defining a parameter k on which to confine the
exponential explosion: e.g. p-SAT O(2k ∗ nc), with k number of
variables and some constant c

Problems for which we can identify such parameters are called
Fixed-parameter tractable (FPT)

Note that SAT parameterized by the size of a backdoor is FPT
(O(2|B| ∗ nc))
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Bounded search

We implement a simple bounded search by Hüffner ([3]),

The trivial solution for vertex cover has complexity O(2k)

The best O(1.2738k)

This one O(1.47k)
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Results (3/3)

Kernelization is important:

42% of all instances were solved by kernelization (51.5% in the group
with k ≤ 150);

Otherwise, parameter reduction of 17.8% (avg)

Parameter has exponential influence on runtime

Extreme case from k = 109 to k ′ = 6

219 instances might have a solution of size ≤ 150, but remain unverified.
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SAT Notation (1/2)

F : a propositional formula in CNF

var(F ) : the set of variables occurring in F .

l , l : a positive variable or its negation

J : (partial) interpretation. Partial mapping from var(F ) to the
boolean values {>,⊥}.
Class C: a set of formulas sharing some property.

Horn class: F is in Horn iff each of its clauses has at most one
positive literal.
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SAT Notation (2/2)

Example

F = a ∧ ¬b ∧ (¬d ∨ c) ∧ (¬c ∨ d)

var(F ) = {a, b, c , d}
J = {b, c}
F |J ≡ a ∧��¬b ∧�����(¬d ∨ c) ∧ (��¬c ∨ d) ≡ a ∧ d

For V = {c},
F − V ≡ a ∧ ¬b ∧ (¬d ∨ �c) ∧ (��¬c ∨ d) ≡ a ∧ ¬b ∧ ¬d ∧ d

F ∈ Horn
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Subsolvers

Definition: Subsolver [8]

We call an algorithm C a subsolver if, given an input formula F :

Tricotomy: C either rejects the input F , or “determines” F correctly (as
unsatisfiable or satisfiable, returning a solution if satisfiable),

Efficiency: C runs in polynomial time,

Trivial solvability: C can determine if F is trivially true (has no constraints) or
trivially false (has contradictory constraint),

Self-reducibility: if C determines F , then for any assignment J of the variable x
C determines F |J

There exists a subsolver for Horn! And also for other classes: e.g. RHorn,
2SAT, UP+PL.
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Simple Preprocessing I

For preprocessing we use the following four rules:

P1 A vertex of degree 0 cannot be part of any cover, therefore we obtain
G ′ by removing it from G .

P2 If there is a vertex x of degree 1, then there is an optimal vertex cover
in which its neighbour y is in the cover.

x y x y
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Simple Preprocessing II

P3 If there is a vertex of degree 2 with two adjacent neighbours, then
there is an optimal vertex cover containing both these neighbours.

x

w

y

x

w

z

P4 If there is a vertex x of degree 2 with two non-adjacent neighbours y
and w , then x can be removed by contracting the edges (w , x) and
(x , y).

w x y x ′
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Bounded search I

We use this simple bounded search by Hüffner ([3])

S1 If there is a vertex of degree one, put its neighbour into the cover.

x y x y

S2 If there is a vertex x of degree two, then either i) both neighbours of
x are in an optimal vertex cover, or ii) x is in an optimal cover
together with all neighbours of its neighbours.
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Bounded search II

x

y

w

a

b

c

d

e

x

y

w

a

b

c

d

e

First branch

x

y

w

a

b

c

d

e

Second branch
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Bounded search III

S3 If there is a vertex x of degree at least three, then either x or all its
neighbours are in the cover.

x

w

y

z

x

w

y

z

First branch

x

w

y

z

Second branch
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Strong/Deletion Backdoors (1/2)

F |J : reduct of F w.r.t. the (partial) interpretation J; it is obtained by
replacing each variable v in F with J(v) and simplifying.

Definition: Strong C -Backdoor ([8])

A non-empty subset B of the variables of the formula F (B ⊆ var(F )) is a
strong backdoor w.r.t. the subsolver C for F iff for all interpretations
J : B → {>,⊥}, C returns a satisfying assignment or concludes
unsatisfiability of F |J .

F − V : replaces in each clause of F the occurrences of x and ¬x with ⊥
for each variable x ∈ V (with V ⊆ var(F )) and simplifies the clause.

Definition: Deletion C -backdoor ([4])

A non-empty subset B of the variables of the formula F (B ⊆ var(F )) is a
deletion backdoor w.r.t. a class C for F iff F − B ∈ C .
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Strong/Deletion Backdoors (1/2)

For some classes, like Horn, deletion backdoor and strong backdoor are
equivalent. ([2])

Example
This is good! To verify whether B is a deletion C -backdoor we just need to
check whether F − B is in C and not whether all the 2|B| reducts of F are.
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Local Search: COVER
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Kernelization

Kernelization

Given a parameterized problem (x , k), a kernelization is a polynomial time
preprocessing technique that either:

returns a new equisatisfiable instance (x ′, k ′) (with |x ′| ≤ g(k) and
k ′ ≤ k),

rejects the instance as unsatisfiable

The high degree kernelization is simple but powerful:

HdK A vertex of degree > k must be in any cover of size ≤ k.

By applying some other pre-processing to our graph, we can apply the
following result:

Property ([1])

If G is a graph with a vertex cover of size k and there is no vertex of G
with degree > k or degree < 3, then |V | ≤ k2

3 + k .
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