
Backdoors for SAT

Marco Gario
Supervisor: Steffen Hölldobler

Advisor: Norbert Manthey

EMCL / TUD

February 21, 2012

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 1 / 24

Content

1 Introduction

2 Backdoors

3 Experimental Results

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 2 / 24

Outline

1 Introduction

2 Backdoors

3 Experimental Results

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 3 / 24

Introduction (1/2)

A few auxiliary definitions:

Class C: a set of formulas sharing some property.

A CNF formula F is in Horn iff each of its clauses has at most one
positive literal.

F is in Horn:

F = (x ∨ ¬y) ∧ (y ∨ ¬z ∨ ¬w) ∧ (¬w ∨ ¬z)

Horn can be solved in polynomial time (e.g., by unit propagation)

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 4 / 24

Introduction (2/2)

Assume I give you a CNF like this (1000 clauses, >100 variables, 3-SAT):

(x1 ∨ ¬x2 ∨ ¬x3) ∨
... 997 Horn clauses... ∨
(xn1 ∨ ¬xn2 ∨ ¬xn3) ∨
(xm1 ∨ xm2 ∨ xm3)

How difficult is this instance? (E.g., could you solve it by hand?)

Solving instances of this kind gives me an NP-hard problem?

This is FPT !

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 5 / 24

Introduction (2/2)

Assume I give you a CNF like this (1000 clauses, >100 variables, 3-SAT):

(x1 ∨ ¬x2 ∨ ¬x3) ∨
... 997 Horn clauses... ∨
(xn1 ∨ ¬xn2 ∨ ¬xn3) ∨
(xm1 ∨ xm2 ∨ xm3)

How difficult is this instance? (E.g., could you solve it by hand?)

Solving instances of this kind gives me an NP-hard problem?

This is FPT !

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 5 / 24

Motivation

A backdoor is a set of variables. Once we assign a value to the
backdoor variables, the problem becomes tractable (in P)

Introduced by Williams et al. ([8]) to try to explain the good
performances of modern SAT solvers.

Their claim: modern SAT solver can find backdoors easily.

→ But solvers are NOT designed for this!

! Why don’t we try to pro-actively find these backdoors?

Finding backdoors is an NP-Hard problem!

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 6 / 24

Previous work

Theoretical work:

Defining several types of backdoors,

Complexity of finding them (especially parameterized complexity)

Empirical work:

Showing that backdoor sets are “small”, for different types of
backdoors

- Results are mostly based on local search algorithms! (Incompleteness)

Little information on runtime required to find them

One work ([5]) shows that using Horn-backdoors improves SAT
solving speed. However, no information on how long it takes to find
them!

Questions:

→ How can we find backdoors efficiently?

→ Can we “predict” backdoors by using additional domain knowledge?

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 7 / 24

Outline

1 Introduction

2 Backdoors

3 Experimental Results

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 8 / 24

Deletion Backdoors (1/2)

F − B: Replacing in each clause of F the occurrences of x and ¬x with ⊥
for each variable x ∈ B (with B ⊆ var(F)) and simplifies the clause.
Basically, remove the occurrences (positive and negative) of the variables
in B from F

Definition: Deletion C -backdoor ([4])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
deletion backdoor w.r.t. a class C for F iff F − B ∈ C .

Example

F = (x ∨ y ∨ z) ∧ (¬x ∨ z ∨ w) ∧ (y ∨ w) B = {z , y}
F − B ≡ (x ∨�y ∨ �z) ∧ (¬x ∨ �z ∨ w) ∧ (�y ∨ w)

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 9 / 24

Deletion Backdoors (1/2)

F − B: Replacing in each clause of F the occurrences of x and ¬x with ⊥
for each variable x ∈ B (with B ⊆ var(F)) and simplifies the clause.
Basically, remove the occurrences (positive and negative) of the variables
in B from F

Definition: Deletion C -backdoor ([4])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
deletion backdoor w.r.t. a class C for F iff F − B ∈ C .

Example

F = (x ∨ y ∨ z) ∧ (¬x ∨ z ∨ w) ∧ (y ∨ w) B = {z , y}
F − B ≡ x ∧ (¬x ∨ w) ∧ w

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 9 / 24

Deletion Backdoors (2/2)

From a deletion C -backdoor we can generate 2|B| formulas, each with a
different assignment to the backdoor variables. Once the backdoor is
decided, we can solve these instances in polynomial time!

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 10 / 24

Vertex Cover (1/2)

Definition: Vertex Cover

Given a graph G = (V ,E), we call R = {v1, .., vn} ⊆ V a vertex cover of
G iff for all e ∈ E there exists a vi ∈ R s.t. vi ∈ e.

In other words, we have a vertex vi ∈ R as representative of each edge in
E . We call |R| the size of the vertex cover.

Definition: Vertex Cover Problem

Given a graph G = (V ,E) and an integer k > 0, is there a vertex cover R
for G s.t. |R| ≤ k ?

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 11 / 24

Vertex Cover (2/2)

Example

Consider G = (V ,E):

v1

v2

v3

v4 v1

v2

v3

v4 v1

v2

v3

v4

Then C1 = {v1, v4} and C2 = {v2, v3, v4} are vertex covers for G but only
C1 is a solution for the Vertex cover instance (G , 2).

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 12 / 24

Reduction to Vertex Cover (1/2)

Samer and Szeider ([7]) propose a reduction from deletion Horn-backdoor
detection to the vertex cover problem.

Definition

GF is the graph composed by the variables of the CNF formula F in which
two variables v , u are adjacent iff v and u appear positively in a clause
from F .

Lemma

A set B ⊆ var(F) is a deletion Horn-backdoor for F iff B is a vertex cover
of GF

This relation extends also to Minimum Vertex Cover, in which we are
interested in the vertex cover/backdoor of minimal size (smallest
backdoor).

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 13 / 24

Reduction to Vertex Cover (2/2)

Example

F = (x ∨ y ∨ z) ∧ (¬x ∨ z ∨ w) ∧ (y ∨ w)

F − C ≡ x ∧ (¬x ∨ w) ∧ w

x

y

z

w

GF

x

y

z

w

Cover/Deletion
Horn-backdoor

We can use existing results from Vertex Cover (including FPT results) to
solve deletion Horn-backdoor detection!

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 14 / 24

Goals & Challenges

Study deletion Horn-backdoors in SAT instances

→ Build a dataset efficiently, e.g. FPT

− No available implementation of parameterized Vertex Cover

→ Implement algorithms that are a good trade-off between performance
and implementation complexity

Test whether we can use local search to efficiently find smallest
deletion Horn-backdoors

Study the relation of the backdoor size with features of the instances

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 15 / 24

Goals & Challenges

Study deletion Horn-backdoors in SAT instances

→ Build a dataset efficiently, e.g. FPT

− No available implementation of parameterized Vertex Cover

→ Implement algorithms that are a good trade-off between performance
and implementation complexity

Test whether we can use local search to efficiently find smallest
deletion Horn-backdoors

Study the relation of the backdoor size with features of the instances

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 15 / 24

Goals & Challenges

Study deletion Horn-backdoors in SAT instances

→ Build a dataset efficiently, e.g. FPT

− No available implementation of parameterized Vertex Cover

→ Implement algorithms that are a good trade-off between performance
and implementation complexity

Test whether we can use local search to efficiently find smallest
deletion Horn-backdoors

Study the relation of the backdoor size with features of the instances

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 15 / 24

Solving Vertex Cover

Local search algorithm: COVER ([6])

o FPT algorithms: Kernelization and Bounded search

o Reduction to SAT

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 16 / 24

Outline

1 Introduction

2 Backdoors

3 Experimental Results

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 17 / 24

Methodology

1 Benchmark with 3239 instances from various sources;

2 Generate the associated vertex cover instances;

3 Run a modified version of COVER [6] to obtain an upper-bound on
the size of the smallest deletion Horn-backdoor;

4 For instances with small backdoors (k ≤ 150) verify the minimality of
the backdoor;

5 For instances with bigger backdoors confirm that the lower-bound is
bigger than 150;

6 Considering only the instances for which we have the exact value of
the smallest backdoor, compute the quality of the solution provided
by a fast version of COVER.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 18 / 24

Results

2418 (74%) instances have upper-bound on the size of the deletion
Horn-backdoor up to 150:

2357 (97.5%) verified by the FPT algorithms,

8 more with CryptoMinisat,

53 remain unverified

Runtime1

Time-out: 90 minutes

Average: 25 second; 87% in less than 5 seconds, 93% in under a
minute (thanks to kernelization!)

The generated vertex cover instances were in most of the cases easy, but a
few were really hard (2%).

1Timings based on Intel Centrino 1.7Ghz, 1GB RAM
Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 19 / 24

COVER Results

We define two configurations for COVER.
Full computation:

Runtime: 30-90 minutes

Solution quality: Always finds the optimum

Fast computation:

Runtime: 115 ms (avg), 97 ms (avg) for k ≤ 150

Solution quality: 98% of the times optimum

Average error among all the instances is 0.11%.

COVER is a good method to compute smallest deletion Horn-backdoors.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 20 / 24

Correlations

We are interested in the relation between smallest deletion Horn-backdoor
(sdH-bd) size and other properties of the instances:

Flat Colouring on flat graphs; sdH-bd size is exactly two times
the number of vertices in the graph.

Random Uniform random formulas (uf/uuf): correlation between
number of variables and sdH-bd size is 0.99

CarConf Verify some consistency properties of requested car
configuration. Correlation between number of variables and
upper-bound of the sdH-bd size for the same configuration is
high:

Base configuration Correlation (r) # Instances

C168 0.99 58
C170 0.99 6
C202 0.83 23
C208 0.99 16
C210 0.89 32
C220 0.95 348
C638 0.73 84

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 21 / 24

Conclusions

We studied the relation between deletion Horn-backdoor detection and the
vertex cover problem.

COVER is a good way of computing quickly (and with an excellent
quality) smallest deletion Horn-backdoors

Kernelization can play a key role. Even with a simple kernelization,
we solved many instances without search.

In some cases, features of an instance can be related with the size of
its smallest deletion Horn backdoor.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 22 / 24

Further work

Implement COVER/deletion Horn-backdoor detection in a solver and
allow branching only on backdoors variables;

Use backdoors to explore different solver architectures, and not only
DPLL;

Influence of preprocessing on different classes of backdoors;

Build predictive models that can find backdoors!

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 23 / 24

Thank you

Questions?
Datasets, tools and slides are available online: http://marco.gario.org/work/

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 24 / 24

References I

Faisal N. Abu-Khzam, R.L. Collins, M.R. Fellows, M.A. Langston,
W.H. Suters, and C.T. Symons.
Kernelization algorithms for the vertex cover problem: Theory and
experiments.
In Proceedings of the 6th Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 62–69, 2004.

Y. Crama, O. Ekin, and P.L. Hammer.
Variable and term removal from Boolean formulae.
Discrete Applied Mathematics, 75(3):217–230, 1997.

F. Hüffner, R. Niedermeier, and S. Wernicke.
Techniques for Practical Fixed-Parameter Algorithms.
The Computer Journal, 51(1):7–25, March 2007.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 25 / 24

References II

Naomi Nishimura and Prabhakar Ragde.
Solving #SAT using vertex covers.
Acta Informatica, 44(7):509–523, 2007.

Lionel Paris, Richard Ostrowski, Pierre Siegel, and Lakhdar Sais.
Computing Horn Strong Backdoor Sets Thanks to Local Search.
2006 18th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’06), pages 139–143, November 2006.

Silvia Richter, Malte Helmert, and Charles Gretton.
A stochastic local search approach to vertex cover.
KI 2007: Advances in Artificial Intelligence, pages 412–426, 2007.

Marko Samer and Stefan Szeider.
Backdoor trees.
Proceedings of the 23rd Conference on Artificial, pages 363–368, 2008.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 26 / 24

References III

Ryan Williams, C.P. Gomes, and Bart Selman.
Backdoors to typical case complexity.
In Proceeding of IJCAI-03, volume 18, pages 1173–1178, 2003.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 27 / 24

Fixed-parameter tractable

For an NP-Hard problem we have an exponential worst-case runtime
in the size of the problem: e.g. SAT O(2n)

We can do better by defining a parameter k on which to confine the
exponential explosion: e.g. p-SAT O(2k ∗ nc), with k number of
variables and some constant c

Problems for which we can identify such parameters are called
Fixed-parameter tractable (FPT)

Note that SAT parameterized by the size of a backdoor is FPT
(O(2|B| ∗ nc))

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 28 / 24

Bounded search

We implement a simple bounded search by Hüffner ([3]),

The trivial solution for vertex cover has complexity O(2k)

The best O(1.2738k)

This one O(1.47k)

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 29 / 24

Results (3/3)

Kernelization is important:

42% of all instances were solved by kernelization (51.5% in the group
with k ≤ 150);

Otherwise, parameter reduction of 17.8% (avg)

Parameter has exponential influence on runtime

Extreme case from k = 109 to k ′ = 6

219 instances might have a solution of size ≤ 150, but remain unverified.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 30 / 24

SAT Notation (1/2)

F : a propositional formula in CNF

var(F) : the set of variables occurring in F .

l , l : a positive variable or its negation

J : (partial) interpretation. Partial mapping from var(F) to the
boolean values {>,⊥}.
Class C: a set of formulas sharing some property.

Horn class: F is in Horn iff each of its clauses has at most one
positive literal.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 31 / 24

SAT Notation (2/2)

Example

F = a ∧ ¬b ∧ (¬d ∨ c) ∧ (¬c ∨ d)

var(F) = {a, b, c , d}
J = {b, c}
F |J ≡ a ∧��¬b ∧�����(¬d ∨ c) ∧ (��¬c ∨ d) ≡ a ∧ d

For V = {c},
F − V ≡ a ∧ ¬b ∧ (¬d ∨ �c) ∧ (��¬c ∨ d) ≡ a ∧ ¬b ∧ ¬d ∧ d

F ∈ Horn

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 32 / 24

Subsolvers

Definition: Subsolver [8]

We call an algorithm C a subsolver if, given an input formula F :

Tricotomy: C either rejects the input F , or “determines” F correctly (as
unsatisfiable or satisfiable, returning a solution if satisfiable),

Efficiency: C runs in polynomial time,

Trivial solvability: C can determine if F is trivially true (has no constraints) or
trivially false (has contradictory constraint),

Self-reducibility: if C determines F , then for any assignment J of the variable x
C determines F |J

There exists a subsolver for Horn! And also for other classes: e.g. RHorn,
2SAT, UP+PL.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 33 / 24

Subsolvers

Definition: Subsolver [8]

We call an algorithm C a subsolver if, given an input formula F :

Tricotomy: C either rejects the input F , or “determines” F correctly (as
unsatisfiable or satisfiable, returning a solution if satisfiable),

Efficiency: C runs in polynomial time,

Trivial solvability: C can determine if F is trivially true (has no constraints) or
trivially false (has contradictory constraint),

Self-reducibility: if C determines F , then for any assignment J of the variable x
C determines F |J

There exists a subsolver for Horn! And also for other classes: e.g. RHorn,
2SAT, UP+PL.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 33 / 24

Simple Preprocessing I

For preprocessing we use the following four rules:

P1 A vertex of degree 0 cannot be part of any cover, therefore we obtain
G ′ by removing it from G .

P2 If there is a vertex x of degree 1, then there is an optimal vertex cover
in which its neighbour y is in the cover.

x y x y

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 34 / 24

Simple Preprocessing II

P3 If there is a vertex of degree 2 with two adjacent neighbours, then
there is an optimal vertex cover containing both these neighbours.

x

w

y

x

w

z

P4 If there is a vertex x of degree 2 with two non-adjacent neighbours y
and w , then x can be removed by contracting the edges (w , x) and
(x , y).

w x y x ′

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 35 / 24

Bounded search I

We use this simple bounded search by Hüffner ([3])

S1 If there is a vertex of degree one, put its neighbour into the cover.

x y x y

S2 If there is a vertex x of degree two, then either i) both neighbours of
x are in an optimal vertex cover, or ii) x is in an optimal cover
together with all neighbours of its neighbours.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 36 / 24

Bounded search II

x

y

w

a

b

c

d

e

x

y

w

a

b

c

d

e

First branch

x

y

w

a

b

c

d

e

Second branch

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 37 / 24

Bounded search III

S3 If there is a vertex x of degree at least three, then either x or all its
neighbours are in the cover.

x

w

y

z

x

w

y

z

First branch

x

w

y

z

Second branch

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 38 / 24

Strong/Deletion Backdoors (1/2)

F |J : reduct of F w.r.t. the (partial) interpretation J; it is obtained by
replacing each variable v in F with J(v) and simplifying.

Definition: Strong C -Backdoor ([8])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
strong backdoor w.r.t. the subsolver C for F iff for all interpretations
J : B → {>,⊥}, C returns a satisfying assignment or concludes
unsatisfiability of F |J .

F − V : replaces in each clause of F the occurrences of x and ¬x with ⊥
for each variable x ∈ V (with V ⊆ var(F)) and simplifies the clause.

Definition: Deletion C -backdoor ([4])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
deletion backdoor w.r.t. a class C for F iff F − B ∈ C .

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 39 / 24

Strong/Deletion Backdoors (1/2)

F |J : reduct of F w.r.t. the (partial) interpretation J; it is obtained by
replacing each variable v in F with J(v) and simplifying.

Definition: Strong C -Backdoor ([8])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
strong backdoor w.r.t. the subsolver C for F iff for all interpretations
J : B → {>,⊥}, C returns a satisfying assignment or concludes
unsatisfiability of F |J .

F − V : replaces in each clause of F the occurrences of x and ¬x with ⊥
for each variable x ∈ V (with V ⊆ var(F)) and simplifies the clause.

Definition: Deletion C -backdoor ([4])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
deletion backdoor w.r.t. a class C for F iff F − B ∈ C .

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 39 / 24

Strong/Deletion Backdoors (1/2)

F |J : reduct of F w.r.t. the (partial) interpretation J; it is obtained by
replacing each variable v in F with J(v) and simplifying.

Definition: Strong C -Backdoor ([8])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
strong backdoor w.r.t. the subsolver C for F iff for all interpretations
J : B → {>,⊥}, C returns a satisfying assignment or concludes
unsatisfiability of F |J .

F − V : replaces in each clause of F the occurrences of x and ¬x with ⊥
for each variable x ∈ V (with V ⊆ var(F)) and simplifies the clause.

Definition: Deletion C -backdoor ([4])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
deletion backdoor w.r.t. a class C for F iff F − B ∈ C .

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 39 / 24

Strong/Deletion Backdoors (1/2)

F |J : reduct of F w.r.t. the (partial) interpretation J; it is obtained by
replacing each variable v in F with J(v) and simplifying.

Definition: Strong C -Backdoor ([8])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
strong backdoor w.r.t. the subsolver C for F iff for all interpretations
J : B → {>,⊥}, C returns a satisfying assignment or concludes
unsatisfiability of F |J .

F − V : replaces in each clause of F the occurrences of x and ¬x with ⊥
for each variable x ∈ V (with V ⊆ var(F)) and simplifies the clause.

Definition: Deletion C -backdoor ([4])

A non-empty subset B of the variables of the formula F (B ⊆ var(F)) is a
deletion backdoor w.r.t. a class C for F iff F − B ∈ C .

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 39 / 24

Strong/Deletion Backdoors (1/2)

For some classes, like Horn, deletion backdoor and strong backdoor are
equivalent. ([2])

Example
This is good! To verify whether B is a deletion C -backdoor we just need to
check whether F − B is in C and not whether all the 2|B| reducts of F are.

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 40 / 24

Local Search: COVER

 0

 200

 400

 600

 800

 1000

 1200

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240

In
s
ta

n
c
e

s

Runtime (ms)

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 41 / 24

Kernelization

Kernelization

Given a parameterized problem (x , k), a kernelization is a polynomial time
preprocessing technique that either:

returns a new equisatisfiable instance (x ′, k ′) (with |x ′| ≤ g(k) and
k ′ ≤ k),

rejects the instance as unsatisfiable

The high degree kernelization is simple but powerful:

HdK A vertex of degree > k must be in any cover of size ≤ k.

By applying some other pre-processing to our graph, we can apply the
following result:

Property ([1])

If G is a graph with a vertex cover of size k and there is no vertex of G
with degree > k or degree < 3, then |V | ≤ k2

3 + k .

Marco Gario (EMCL / TUD) Backdoors for SAT February 21, 2012 42 / 24

	Introduction
	Backdoors
	Experimental Results

