Explaining Query Answers in Lightweight Ontologies: The *DL-Lite* Case

Giorgio Stefanoni Supervisor: Prof. T. Eiter Co-Supervisors: Dr. M. Ortiz Dr. M. Šimkus Scientific Advisor: D. Calvanese

> Department of Computer Science University of Oxford, UK

> > February 20, 2012

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

Outline

Explaining Positive Answers

3 Explaining Negative Answers

4 Conclusions

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012 2 / 34

э

(日) (同) (三) (三)

Query Answering in Description Logics

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012 3 / 34

- 34

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjunctive Queries

• Formal counterpart of Select-Project-Join Queries in RA.

 $q(\vec{x}) \leftarrow \exists \vec{y}.\psi(\vec{x},\vec{y})$

• ψ is a conjunction of atoms over constants and variables of the form:

 $A(t) \qquad R(t,t')$

 A Union of CQs (UCQ) is a disjunction of CQs, corresponding to a union of SPJs.

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012 4 / 34

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

DL-Lite Λ

- Lightweight Description Logic tailored for accessing large data sources.
- Concepts and roles model set of objects and relationships among them.

$$C \to A \mid \exists R \qquad R \to P \mid P^-$$

- A *DL-Lite*_A ontology $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ is composed of: TBox \mathcal{T} Specifying constraints at the conceptual level.
 - $C \sqsubset D$ $C \sqsubset \neg D$ (funct R) $R_1 \sqsubset R_2$ $R_1 \sqsubset \neg R_2$

ABox \mathcal{A} Specifying the facts that hold in the domain.

$$A(b) \qquad P(a,b)$$

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

Foundations

FO-Rewritability

The perfect reformulation *embeds* terminological information into $r_{q,\mathcal{T}}$.

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

3

6 / 34

Foundations

Mock Ontology

February 20, 2012

Query (1)

University Database:

teaches(craig, SWT)

hasTutor(peter, craig)

Query:

$$q_1(x) \leftarrow Professor(x)$$

< □ > < □ > < □ > < □ > < □ > < □ >

 $\operatorname{cert}(q_1, \mathcal{T}, \mathcal{A}) = \{ craig \}$

• In the database there is no information on Professors, how did the system retrieve the answer?

- 31

Query (2)

University Database:

Query:

teaches(craig, SWT)

hasTutor(peter, craig)

 $q_2(x) \leftarrow teaches(x, y), Advanced(y),$ hasTutor(z, x)

$$\operatorname{cert}(q_2, \mathcal{T}, \mathcal{A}) = \emptyset$$

- Why is *craig* not an answer?
- Is SWT an Advanced course?
- Does craig teach a course not listed in the database?

(人間) トイヨト イヨト

- 20

Outline

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012 3

10 / 34

< 🗗 🕨

Aim

Provide explanations of the following form:

Axiom	Reason
has Tutor(peter, craig)	craig tutors
$\exists has Tutor^{-} \sqsubseteq Tutor$	craig is a Tutor
$Tutor \sqsubseteq Professor$	craig is a Professor

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

Ξ.

11 / 34

イロト イポト イヨト イヨト

Aim

Provide explanations of the following form:

Axiom	Reason
has Tutor(peter, craig)	craig tutors
$\exists has Tutor^{-} \sqsubseteq Tutor$	craig is a Tutor
$Tutor \sqsubseteq Professor$	craig is a Professor

Strategy: Gather information on how TBox axioms are used to generate the perfect reformulation.

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

< □ > < □ > < □ >
 February 20, 2012

3

PerfectRef(q, T) in a (non-rigorous) Nutshell

- $\{q\} \subseteq PerfectRef(q, \mathcal{T}).$
- For each $r \in PerfectRef(q, T)$, we consider different cases:
 - **1** $r(x) \leftarrow Professor(x)$ and $Tutor \sqsubseteq Professor \in \mathcal{T}$. Then,

 $r'(x) \leftarrow Tutor(x)$

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

PerfectRef(q, T) in a (non-rigorous) Nutshell

- $\{q\} \subseteq PerfectRef(q, \mathcal{T}).$
- For each $r \in PerfectRef(q, T)$, we consider different cases:
 - $\ \, \bullet \ \, r(x) \leftarrow Professor(x) \text{ and } Tutor \sqsubseteq Professor \in \mathcal{T}. \text{ Then,}$

 $r'(x) \leftarrow Tutor(x)$

② $r(x) \leftarrow hasTutor(x, y)$ and $PartTime \sqsubseteq \exists hasTutor$. Then, $r'(x) \leftarrow PartTime(x)$

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

PerfectRef(q, T) in a (non-rigorous) Nutshell

- $\{q\} \subseteq PerfectRef(q, \mathcal{T}).$
- For each $r \in PerfectRef(q, T)$, we consider different cases:
 - $\ \, \bullet \ \, r(x) \leftarrow Professor(x) \text{ and } Tutor \sqsubseteq Professor \in \mathcal{T}. \text{ Then,}$

 $r'(x) \leftarrow Tutor(x)$

② $r(x) \leftarrow hasTutor(x, y)$ and $PartTime \sqsubseteq \exists hasTutor$. Then, $r'(x) \leftarrow PartTime(x)$

③ $r(x) \leftarrow Professor(x)$ and $\exists teaches \sqsubseteq Professor$. Then,

$$r'(x) \leftarrow teaches(x, _)$$

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Computing Positive Explanations

- Maintain a graph G of rewritings.
 - $(r,r') \in G$ means that r' has been generated from r.
 - Label (r,r') with the axiom justifying the rewriting.
- Let π be a match for $r \in PerfectRef(q_1, \mathcal{T})$ in \mathcal{A} witnessing craig.
- IDEA: Traverse backwards the trace of rewritings from r until q_1 is reached. Suitably extend π to be a match for intervening queries.

$q_1(x) \leftarrow Professor(x)$

teaches(craig, SWT) Database hasTutor(peter, craig)

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

э

14 / 34

teaches(craig, SWT) Database hasTutor(peter, craig)

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

< 🗗 🕨

3

teaches(craig, SWT) Database hasTutor(peter, craig)

 π matches x on craig and y on peter.

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

 ✓ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 </p>

 February 20, 2012

3

teaches(craig, SWT) Database

hasTutor(*peter*, *craig*)

 π matches x on craig and y on peter.

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3

teaches(craig, SWT)

Database

hasTutor(*peter*, *craig*)

 π matches x on craig and y on peter.

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

э

Algorithmic Solution

- Modify *PerfectRef* to maintain rewriting graph.
- At explanation time, use Dijkstra algorithm to find shortest path between generating rewriting and user query.
- Extend match on generating rewriting for intervening queries.
- Return shortest path and extended match.

Complexity

- Dijkstra runs in $O(|V|^2)$.
- In our case, the number of vertexes is the number of conjunctive queries in PerfectRef(q, T).
- Worst-case: a CQ q admits exponentially many rewritings w.r.t. $DL-Lite_A$ TBox \mathcal{T} .
- Our explanation algorithm runs in exponential time w.r.t. the query.
- Data-complexity is still low.

Outline

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

(4) E > (4) E > February 20, 2012 3

17 / 34

< 🗗 🕨

Query (2)

University Database:

Query:

teaches(craig, SWT)

has Tutor(peter, craig)

 $q_2(x) \leftarrow teaches(x, y), Advanced(y),$ hasTutor(z, x)

 $\operatorname{cert}(q_2, \mathcal{T}, \mathcal{A}) = \emptyset$

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

3

18 / 34

(日) (同) (日) (日) (日)

Method

- Abductive Reasoning: solutions are assertions to be added to the ontology leading the given tuple to be returned by the system.
- Solutions should be non-redundant: study minimality conditions!

ㅋㅋ ㅋㅋㅋ

э

Abductive Reasoning

• A form of non-sequitor argument, in which

 $\Gamma \not\models B$

but \boldsymbol{B} is assumed to follow from the premises.

 \bullet Solutions are set of formulae ${\mathcal E}$ such that

 $\Gamma \cup \mathcal{E} \models B$

Natural conditions over solutions:
 Consistency Γ ∪ ε ⊭ ⊥
 Minimality ε is minimal wrt. some criterion.

(B)

Reasoning over Abduction Problems

- Does there exist a (minimal) solution? (EXIST)
- 2 Does a formula α occur in all (minimal) solutions? (NEC)
- **③** Does a formula α occur in some (minimal) solution? (REL)
- **(**Is a set \mathcal{E} of formulae a (minimal) solution? (REC)

A B K A B K

Query Abduction Problem

- We call $\mathcal{P} = \langle \mathcal{T}, \mathcal{A}, Q(\vec{x}), \vec{a} \rangle$ a QAP, where
 - $(\mathbf{\mathcal{T}}, \mathcal{A}) \text{ is a } DL\text{-}Lite_{\mathcal{A}} \text{ ontology.}$
 - **2** $Q(\vec{x})$ is a Union of CQs.
 - **③** \vec{a} is a tuple of constants of matching arity.
- A solution to \mathcal{P} is an ABox \mathcal{E} such that:
 - $\langle \mathcal{T}, \mathcal{A} \cup \mathcal{E} \rangle$ is consistent.
 - $\vec{a} \in \operatorname{cert}(q, \mathcal{T}, \mathcal{A} \cup \mathcal{E}).$
- We denote with $expl(\mathcal{P})$ the set of all solutions to \mathcal{P} .

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

Properties of QAPs

 $\mathcal{P} = \langle \mathcal{T}, \mathcal{A}, Q(\vec{x}), \vec{a} \rangle$

- If $\vec{a} \notin \operatorname{cert}(q, \mathcal{T}, \mathcal{A})$, we call \vec{a} a negative answer to Q over the ontology.
- Negative answers exist only if the ontology is consistent.
- If the ontogy is inconsistent, the the QAP does have solutions.
- A solution ${\cal E}$ to QAP ${\cal P}$ can introduce constants not occurring in the ABox ${\cal A}.$

Reasoning & Preference Orders

- We consider the four reasoning tasks over abductive problems under 3 different preference orders:
 - no minimality condition,
 - subset-minimality order denoted by \subseteq , and,
 - minimum explanation size order denoted by \leq .

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

Query (2)

University Database:

Query:

teaches(craig, SWT)

hasTutor(peter, craig)

 $q_2(x) \leftarrow teaches(x, y), Advanced(y),$ hasTutor(z, x)

	ABox additions:
\leq	Advanced(SWT)
⊆	teaches(craig, new: ALG), Advanced(new: ALG)
none	teaches(craig, new: TOC), has Tutor(new: Ben, craig),
	Advanced(new: TOC)

< 17 ►

Explaining Negative Answers

Outline of Complexity Results

	<u>≺</u> -EXIST	<u>≺</u> -NEC	<u>≺</u> -REL	<u>≺</u> -REC
none	PTime	PTime	PTime	NP
\leq	PTime	P^{NP}_{\parallel}	P^{NP}_{\parallel}	DP
\subseteq	PTime	PTime	Σ_2^P	DP

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

イロト イポト イヨト イヨト

26 / 34

Explaining Negative Answers

Outline of Complexity Results

	<u>≺</u> -EXIST	<u></u> ≺-NEC	<u>≺</u> -REL	<u>≺</u> -REC
none	PTime	PTime	PTime	NP
\leq	PTime	P ^{NP} ∥	P^{NP}_{\parallel}	DP
\subseteq	PTime	PTime	Σ_2^P	DP

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

February 20, 2012

イロト イポト イヨト イヨト

26 / 34

Canonical Explanations

- If QAP $\mathcal{P} = \langle \mathcal{T}, \mathcal{A}, Q, \vec{a} \rangle$ has a solution, then there is a small solution.
- Finding a solution amounts to satisfy one of the CQs in Q.
- Satisfying a CQ does not require more than the number of terms contained in the query itself.
- Hence, one can find a solution by instantiating terms occurring in the query using a small number of new constants.

$\mathsf{Complexity} \text{ of } \subseteq \mathsf{-EXIST}$

• A minimal solution to a QAP \mathcal{P} exists iff \mathcal{P} has a (general) solution.

Theorem

For DL-Lite_A, EXIST is in PTime-complete.

Upper bound intuition.

- Consider QAPs over CQs, general result for UCQs follows.
- Treat the body of the query as an ABox \mathcal{E} and set $\mathcal{O} = \mathcal{O} \cup \mathcal{E}$.
- Replace each variable x in \mathcal{E} with a variable representative a_x .
- Use disjointness in \mathcal{O} to enforce distinctness among constants. Thus, only variable representatives can be identified.
- Check satisfiability of the resulting ontology ${\cal O}$ without the UNA.

$\mathsf{Complexity} \text{ of } \subseteq \mathsf{-NEC}$

• An assertion is ⊆-necessary iff it is necessary.

Theorem

For DL-Lite_A, NEC is PTime-complete.

Upper bound intuition.

- We want to decide whether A(a) is *necessary* for $\mathcal{P} = \langle \mathcal{O}, q, \vec{a} \rangle$.
- Check whether A(a) is a consequence of \mathcal{O} . In case return no.
- Create $\mathcal{P}'=\langle \mathcal{O}',q,\vec{a}\rangle$ by extending $\mathcal O$ as follows:

$$\mathcal{T} \cup \bar{A} \sqsubseteq \neg A \qquad \mathcal{A} \cup \{\bar{A}(a)\}$$

• Check that \mathcal{P}' does not admit solutions. If this is the case return yes.

$\mathsf{Complexity} \text{ of } \subseteq \mathsf{-\mathsf{REL}}$

Theorem

For DL-Lite_A, \subseteq -REL is Σ_2^{P} -complete.

Upper bound intuition.

- We want to decide whether A(a) is \subseteq -relevant for $\mathcal{P} = \langle \mathcal{T}, \mathcal{A}, q, \vec{a} \rangle$.
- Guess a derivation of one rewriting r in PerfetctRef(q, T).
- Guess a subset E of the atoms of r
- Guess an instantiation \mathcal{E} of the atoms in E.
- Check that \mathcal{E} is an explanation for \mathcal{P} . (NP)
- Check that \mathcal{E} is minimal (coNP)

A B A A B A

э

Complexity of \subseteq -REC

Theorem For DL-Lite_A, \subseteq -REC is DP-complete.

Upper bound intuition.

- By definition of DP.
- A language L is in DP if there are two languages L_1 and L_2 , resp. in NP and coNP such that:

$$L = L_1 \cap L_2$$

Thus

$$\begin{split} L_1 &= \{ \langle \mathcal{P}, \mathcal{E} \rangle \mid \mathcal{E} \in \mathsf{expl}(\mathcal{P}) \} \\ L_2 &= \{ \langle \mathcal{P}, \mathcal{E} \rangle \mid \neg \exists \mathcal{E}' \in \mathsf{expl}(\mathcal{P}) \text{ such that } \mathcal{E}' \subset \mathcal{E} \} \\ &\subseteq \mathsf{-REC} = L_1 \cap L_2 \end{split}$$

Explanation of Query Answers

Outline

- Explaining Positive Answers
- 3 Explaining Negative Answers

Giorgio Stefanoni (Oxford)

Explanation of Query Answers

✓ ♂ > < ≥ > < ≥ >
February 20, 2012

32 / 34

э

Conclusions

- Provide an algorithmic solution to the problem of explaining positive answers.
- Contribute with a new formalization to the problem of explaining negative answers over ontologies as an abductive task.
- For *DL-Lite*_A, we study the complexity of reasoning over QAPs under minimality conditions.

Publications

- The Complexity of Conjunctive Query Abduction in DL-Lite. Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni Proc. of the 24th Int. Workshop on Description Logics (DL 2011). Volume 745 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/. 2011.
- The Complexity of Explaining Negative Query Answers in DL-Lite. Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni. Accepted to KR2012.

э.