Explaining Query Answers in Lightweight Ontologies: The DL-Lite Case

Giorgio Stefanoni Supervisor: Prof. T. Eiter Co-Supervisors: Dr. M. Ortiz Dr. M. Šimkus Scientific Advisor: D. Calvanese

Department of Computer Science
University of Oxford, UK
February 20, 2012

Outline

(1) Foundations

(2) Explaining Positive Answers
(3) Explaining Negative Answers
4. Conclusions

Query Answering in Description Logics

Conjunctive Queries

- Formal counterpart of Select-Project-Join Queries in RA.

$$
q(\vec{x}) \leftarrow \exists \vec{y} \cdot \psi(\vec{x}, \vec{y})
$$

- ψ is a conjunction of atoms over constants and variables of the form:

$$
A(t) \quad R\left(t, t^{\prime}\right)
$$

- A Union of CQs (UCQ) is a disjunction of CQs, corresponding to a union of SPJs.

DL- Lite $_{\mathcal{A}}$

- Lightweight Description Logic tailored for accessing large data sources.
- Concepts and roles model set of objects and relationships among them.

$$
C \rightarrow A|\exists R \quad R \rightarrow P| P^{-}
$$

- A D L-Lite $_{\mathcal{A}}$ ontology $\mathcal{O}=\langle\mathcal{T}, \mathcal{A}\rangle$ is composed of:

TBox \mathcal{T} Specifying constraints at the conceptual level.

$$
\begin{array}{lll}
C \sqsubseteq D & C \sqsubseteq \neg D & (\text { funct } R) \\
R_{1} \sqsubseteq R_{2} & R_{1} \sqsubseteq \neg R_{2} &
\end{array}
$$

ABox \mathcal{A} Specifying the facts that hold in the domain.

$$
A(b) \quad P(a, b)
$$

FO-Rewritability

The perfect reformulation embeds terminological information into $r_{q, \mathcal{T}}$.

Mock Ontology

Query (1)

University Database:

Query:

$$
\begin{aligned}
& \text { teaches(craig, SWT) } \\
& \text { hasTutor(peter, craig) }
\end{aligned}
$$

$$
q_{1}(x) \leftarrow \operatorname{Professor}(x)
$$

$$
\operatorname{cert}\left(q_{1}, \mathcal{T}, \mathcal{A}\right)=\{c r a i g\}
$$

- In the database there is no information on Professors, how did the system retrieve the answer?

Query (2)

University Database:
teaches(craig, SWT)
hasTutor(peter, craig)

Query:

$$
\begin{aligned}
q_{2}(x) \leftarrow & \text { teaches }(x, y), \text { Advanced }(y) \\
& \text { hasTutor }(z, x)
\end{aligned}
$$

$$
\operatorname{cert}\left(q_{2}, \mathcal{T}, \mathcal{A}\right)=\emptyset
$$

- Why is craig not an answer?
- Is $S W T$ an Advanced course?
- Does craig teach a course not listed in the database?

Outline

(2) Explaining Positive Answers
(3) Explaining Negative Answers
(4) Conclusions

Aim

Provide explanations of the following form:

Axiom	Reason
hasTutor $($ peter, craig $)$	craig tutors
\exists hasTutor $^{-} \sqsubseteq$ Tutor	craig is a Tutor
Tutor \sqsubseteq Professor	craig is a Professor

Aim

Provide explanations of the following form:

Axiom	Reason
hasTutor(peter, craig)	craig tutors
\exists hasTutor $^{-} \sqsubseteq$ Tutor	craig is a Tutor
Tutor \sqsubseteq Professor	craig is a Professor

Strategy: Gather information on how TBox axioms are used to generate the perfect reformulation.

$\operatorname{PerfectRef}(q, \mathcal{T})$ in a (non-rigorous) Nutshell

- $\{q\} \subseteq \operatorname{PerfectRef}(q, \mathcal{T})$.
- For each $r \in \operatorname{PerfectRef}(q, \mathcal{T})$, we consider different cases:
(1) $r(x) \leftarrow \operatorname{Professor}(x)$ and Tutor $\sqsubseteq \operatorname{Professor} \in \mathcal{T}$. Then,

$$
r^{\prime}(x) \leftarrow \operatorname{Tutor}(x)
$$

$\operatorname{PerfectRef}(q, \mathcal{T})$ in a (non-rigorous) Nutshell

- $\{q\} \subseteq \operatorname{PerfectRef}(q, \mathcal{T})$.
- For each $r \in \operatorname{PerfectRef}(q, \mathcal{T})$, we consider different cases:
(1) $r(x) \leftarrow \operatorname{Professor}(x)$ and Tutor \sqsubseteq Professor $\in \mathcal{T}$. Then,

$$
r^{\prime}(x) \leftarrow \operatorname{Tutor}(x)
$$

(2) $r(x) \leftarrow \operatorname{hasTutor}(x, y)$ and PartTime $\sqsubseteq \exists h a s T u t o r$. Then,

$$
r^{\prime}(x) \leftarrow \operatorname{PartTime}(x)
$$

$\operatorname{PerfectRef}(q, \mathcal{T})$ in a (non-rigorous) Nutshell

- $\{q\} \subseteq \operatorname{PerfectRef}(q, \mathcal{T})$.
- For each $r \in \operatorname{PerfectRef}(q, \mathcal{T})$, we consider different cases:
(1) $r(x) \leftarrow \operatorname{Professor}(x)$ and Tutor \sqsubseteq Professor $\in \mathcal{T}$. Then,

$$
r^{\prime}(x) \leftarrow \operatorname{Tutor}(x)
$$

(2) $r(x) \leftarrow \operatorname{hasTutor}(x, y)$ and PartTime $\sqsubseteq \exists h a s T u t o r$. Then,

$$
r^{\prime}(x) \leftarrow \operatorname{PartTime}(x)
$$

(3) $r(x) \leftarrow \operatorname{Professor}(x)$ and \exists teaches \sqsubseteq Professor. Then,

$$
r^{\prime}(x) \leftarrow \operatorname{teaches}\left(x,{ }_{_}\right)
$$

Computing Positive Explanations

- Maintain a graph G of rewritings.
- $\left(r, r^{\prime}\right) \in G$ means that r^{\prime} has been generated from r.
- Label (r, r^{\prime}) with the axiom justifying the rewriting.
- Let π be a match for $r \in \operatorname{PerfectRef}\left(q_{1}, \mathcal{T}\right)$ in \mathcal{A} witnessing craig.
- IDEA: Traverse backwards the trace of rewritings from r until q_{1} is reached. Suitably extend π to be a match for intervening queries.

Example

$$
q_{1}(x) \leftarrow \operatorname{Professor}(x)
$$

teaches(craig, SWT) Database hasTutor(peter, craig)

Example

teaches(craig, SWT)
Database
hasTutor(peter, craig)

Example

teaches(craig, SWT) Database hasTutor(peter, craig) π matches x on craig and y on peter.

Example

teaches(craig, SWT)
Database
hasTutor(peter, craig)
π matches x on craig and y on peter.

Example

teaches(craig, SWT)
Database
hasTutor(peter, craig)
π matches x on craig and y on peter.

Algorithmic Solution

- Modify PerfectRef to maintain rewriting graph.
- At explanation time, use Dijkstra algorithm to find shortest path between generating rewriting and user query.
- Extend match on generating rewriting for intervening queries.
- Return shortest path and extended match.

Complexity

- Dijkstra runs in $O\left(|V|^{2}\right)$.
- In our case, the number of vertexes is the number of conjunctive queries in $\operatorname{PerfectRef}(q, \mathcal{T})$.
- Worst-case: a CQ q admits exponentially many rewritings w.r.t. DL-Lite $\mathcal{A}_{\mathcal{A}}$ TBox \mathcal{T}.
- Our explanation algorithm runs in exponential time w.r.t. the query.
- Data-complexity is still low.

Outline

(2) Explaining Positive Answers

(3) Explaining Negative Answers

4. Conclusions

Query (2)

University Database:

$$
\begin{aligned}
& \text { teaches(craig, SWT) } \\
& \text { hasTutor(peter, craig) }
\end{aligned}
$$

Query:

$$
\begin{aligned}
q_{2}(x) \leftarrow & \text { teaches }(x, y), \text { Advanced }(y) \\
& \text { hasTutor }(z, x)
\end{aligned}
$$

$$
\operatorname{cert}\left(q_{2}, \mathcal{T}, \mathcal{A}\right)=\emptyset
$$

Method

- Abductive Reasoning: solutions are assertions to be added to the ontology leading the given tuple to be returned by the system.
- Solutions should be non-redundant: study minimality conditions!

Abductive Reasoning

- A form of non-sequitor argument, in which

$$
\Gamma \not \vDash B
$$

but B is assumed to follow from the premises.

- Solutions are set of formulae \mathcal{E} such that

$$
\Gamma \cup \mathcal{E} \models B
$$

- Natural conditions over solutions:

Consistency $\Gamma \cup \mathcal{E} \not \models \perp$
Minimality \mathcal{E} is minimal wrt. some criterion.

Reasoning over Abduction Problems

(1) Does there exist a (minimal) solution? (EXIST)
(2) Does a formula α occur in all (minimal) solutions? (NEC)
(3) Does a formula α occur in some (minimal) solution? (REL)
(9) Is a set \mathcal{E} of formulae a (minimal) solution? (REC)

Query Abduction Problem

- We call $\mathcal{P}=\langle\mathcal{T}, \mathcal{A}, Q(\vec{x}), \vec{a}\rangle$ a QAP, where
(1) $\langle\mathcal{T}, \mathcal{A}\rangle$ is a $D L$-Lite $_{\mathcal{A}}$ ontology.
(2) $Q(\vec{x})$ is a Union of CQs.
(3) \vec{a} is a tuple of constants of matching arity.
- A solution to \mathcal{P} is an $A B o x \mathcal{E}$ such that:
- $\langle\mathcal{T}, \mathcal{A} \cup \mathcal{E}\rangle$ is consistent.
- $\vec{a} \in \operatorname{cert}(q, \mathcal{T}, \mathcal{A} \cup \mathcal{E})$.
- We denote with $\operatorname{expl}(\mathcal{P})$ the set of all solutions to \mathcal{P}.

Properties of QAPs

$$
\mathcal{P}=\langle\mathcal{T}, \mathcal{A}, Q(\vec{x}), \vec{a}\rangle
$$

- If $\vec{a} \notin \operatorname{cert}(q, \mathcal{T}, \mathcal{A})$, we call \vec{a} a negative answer to Q over the ontology.
- Negative answers exist only if the ontology is consistent.
- If the ontogy is inconsistent, the the QAP does have solutions.
- A solution \mathcal{E} to QAP \mathcal{P} can introduce constants not occurring in the ABox \mathcal{A}.

Reasoning \& Preference Orders

- We consider the four reasoning tasks over abductive problems under 3 different preference orders:
- no minimality condition,
- subset-minimality order denoted by \subseteq, and,
- minimum explanation size order denoted by \leq.

Query (2)

University Database:
teaches(craig, SWT)
hasTutor(peter, craig)

	ABox additions:
\leq	Advanced (SWT)
\subseteq	teaches(craig, new : ALG), Advanced(new : ALG)
none	teaches(craig, new : TOC), hasTutor(new : Ben, craig),
	Advanced(new $: T O C)$

Outline of Complexity Results

	--EXIST	〔-NEC	〔-REL	-REC
none	PTime	PTime	PTime	NP
\leq	PTime	PNP	PNP	DP
\subseteq	PTime	PTime	$\Sigma_{2}^{\text {P }}$	DP

Outline of Complexity Results

	--EXIST	〔-NEC	〔-REL	-REC
none	PTime	PTime	PTime	NP
\leq	PTime	PNP	PNP	DP
\subseteq	PTime	PTime	$\Sigma_{2}^{\text {P }}$	DP

Canonical Explanations

- If $\mathrm{QAP} \mathcal{P}=\langle\mathcal{T}, \mathcal{A}, Q, \vec{a}\rangle$ has a solution, then there is a small solution.
- Finding a solution amounts to satisfy one of the CQs in Q.
- Satisfying a CQ does not require more than the number of terms contained in the query itself.
- Hence, one can find a solution by instantiating terms occurring in the query using a small number of new constants.

Complexity of \subseteq-EXIST

- A minimal solution to a QAP \mathcal{P} exists iff \mathcal{P} has a (general) solution.

Theorem
For DL-Lite ${ }_{\mathcal{A}}$, EXIST is in PTime-complete.

Upper bound intuition.

- Consider QAPs over CQs, general result for UCQs follows.
- Treat the body of the query as an ABox \mathcal{E} and set $\mathcal{O}=\mathcal{O} \cup \mathcal{E}$.
- Replace each variable x in \mathcal{E} with a variable representative a_{x}.
- Use disjointness in \mathcal{O} to enforce distinctness among constants. Thus, only variable representatives can be identified.
- Check satisfiability of the resulting ontology \mathcal{O} without the UNA.

Complexity of \subseteq-NEC

- An assertion is \subseteq-necessary iff it is necessary.

Theorem
For DL-Lite ${ }_{\mathcal{A}}$, NEC is PTime-complete.

Upper bound intuition.

- We want to decide whether $A(a)$ is necessary for $\mathcal{P}=\langle\mathcal{O}, q, \vec{a}\rangle$.
- Check whether $A(a)$ is a consequence of \mathcal{O}. In case return no.
- Create $\mathcal{P}^{\prime}=\left\langle\mathcal{O}^{\prime}, q, \vec{a}\right\rangle$ by extending \mathcal{O} as follows:

$$
\mathcal{T} \cup \bar{A} \sqsubseteq \neg A \quad \mathcal{A} \cup\{\bar{A}(a)\}
$$

- Check that \mathcal{P}^{\prime} does not admit solutions. If this is the case return yes.

Complexity of \subseteq-REL

Theorem
For $D L-$ Lite $_{\mathcal{A}}, \subseteq-R E L$ is Σ_{2}^{P}-complete.

Upper bound intuition.

- We want to decide whether $A(a)$ is \subseteq-relevant for $\mathcal{P}=\langle\mathcal{T}, \mathcal{A}, q, \vec{a}\rangle$.
- Guess a derivation of one rewriting r in $\operatorname{PerfetctRef}(q, \mathcal{T})$.
- Guess a subset E of the atoms of r
- Guess an instantiation \mathcal{E} of the atoms in E.
- Check that \mathcal{E} is an explanation for \mathcal{P}. (NP)
- Check that \mathcal{E} is minimal (coNP)

Complexity of \subseteq-REC

Theorem
For DL-Lite ${ }_{\mathcal{A}}, \subseteq-$ REC is DP-complete.
Upper bound intuition.

- By definition of DP.
- A language L is in DP if there are two languages L_{1} and L_{2}, resp. in NP and coNP such that:

$$
L=L_{1} \cap L_{2}
$$

- Thus

$$
\begin{array}{r}
L_{1}=\{\langle\mathcal{P}, \mathcal{E}\rangle \mid \mathcal{E} \in \operatorname{expl}(\mathcal{P})\} \\
L_{2}=\left\{\langle\mathcal{P}, \mathcal{E}\rangle \mid \neg \exists \mathcal{E}^{\prime} \in \operatorname{expl}(\mathcal{P}) \text { such that } \mathcal{E}^{\prime} \subset \mathcal{E}\right\} \\
\subseteq-\mathrm{REC}=L_{1} \cap L_{2}
\end{array}
$$

Outline

(2) Explaining Positive Answers
(3) Explaining Negative Answers
4. Conclusions

Conclusions

- Provide an algorithmic solution to the problem of explaining positive answers.
- Contribute with a new formalization to the problem of explaining negative answers over ontologies as an abductive task.
- For $D L-$ Lite $_{\mathcal{A}}$, we study the complexity of reasoning over QAPs under minimality conditions.

Publications

- The Complexity of Conjunctive Query Abduction in DL-Lite. Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni Proc. of the 24th Int. Workshop on Description Logics (DL 2011). Volume 745 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/. 2011.
- The Complexity of Explaining Negative Query Answers in DL-Lite. Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni. Accepted to KR2012.

