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Data access under constraints

There are different types of constraints.

I Ontologies
They provide conceptual view of the data

I Schema mappings
They provide the specification how different schemas interact



Our assumptions

I Conceptual schema has a richer vocabulary than the data
stores

 Standard DB technologies are not applicable

I DBox (constraints with exact views): Complete information of
only some terms is available (from databases)

 Query answering is hard in general.



How to answer queries under constraints?

Common approach: Query rewriting

I Given Q over σ(KB,DB).

I Rewrite Q into Q ′, which is over σ(DB), such that
answer(Q) = answer(Q ′).

I Answer Q ′ using SQL.

Depends on KB and Q:

I KB is expressed in DL-Lite and Q is a (U)CQ.

I KB is expressed in FOL and Q is implicitly definable from
σ(DB).



Example

I KB:

Researcher(x)→ MSc(x) ∨ PhD(x)

MSc(x)→ Researcher(x)

PhD(x)→ Researcher(x)

MSc(x)→ ¬PhD(x)

I DB:

Researcher = {Leonard , Sheldon,Howard}
PhD = {Leonard , Sheldon}

Q(x) = MSc(x) is implicitly definable from Researcher and PhD.
Answer MSc = {Howard}



Definability

Definition 1 (Implicit definability)

ϕ is implicitly definable from P under KB if
∀I , J ∈ M(KB) : D I = DJ it holds that

·I |P = ·J |P ⇒ ϕI ≡ ϕJ

I.e. a formula is definable if its truth value solely depends on the
domain and the extensions of predicates in P.



Query rewriting framework

I Check consistency of KB and DB;

I Check implicit definability of Q from PDB under KB;

I Compute Craig’s interpolant (a.k.a rewriting);

I If the rewriting is domain independent, execute in SQL.



What is Abduction?

I “the action of forcibly taking someone away against their will”
[Oxford dictionary]



What is Abduction?

I Type of reasoning for deriving explanations to facts.

Definition 2 (Abductive problem)

A pair 〈Σ, q〉 such that Σ 6|= q

Definition 3
α is a solution if Σ ∪ {α} |= q

I consistent if Σ ∪ {α} is consistent,

I relevant if α 6|= q,

I conservative if σ(α) ⊆ σ(Σ, q).



Other restrictions

I Syntactic restriction

I Preference criteria:
I minimality: (α |= β ⇒ β |= α)

I Σ-minimality: (Σ ∪ α |= β ⇒ Σ ∪ β |= α)

I basicness: no relevant solution for 〈Σ, α〉



Data exchange

I
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Figure: Data exchange problem.

I Data exchange problem:
I Translate the data structured under S to the data under T in as

precise as possible way.
I Query answering over T must be consistent with the source

information.

I Data exchange setting: (S ,T ,Σst ,Σt), where Σst is a source to
target schema mapping, Σt is target constraints.



Schema mapping

Data exchange setting (S ,T ,Σst ,Σt)
Schema mappings given by dependencies

I source to target L1-to-L2-dependency:

ϕ(x̄ , ȳ)→ ∃z̄ .ψ(x̄ , z̄),

where

I ϕ is a L1-formula over S ,
I ψ is a L2-formula over T .

I Σst is expressed by source to target CQ-to-CQ dependencies,

I Σt is expressed by target to target CQ-to-CQ dependencies,
plus equality generating dependencies over T .

ϕ(x̄)→ xi = xj .



Data exchange

Example 4

Σst : P(x , y)→ ∃z(Q(x , z) ∧ Q(z , y))
I = {P(a, b)}
I {Q(a, b),Q(b, b)},
I {Q(a,⊥),Q(⊥, b)},
I {Q(a,⊥i ),Q(⊥i , b) | 1 ≤ i ≤ n}.

I For a source instance I there might be many solutions. Which
one to materialize?
 Universal solution (can be homomorphically embedded into all
other solutions)

I What is the semantics of query answering?
 Certain answers

certain(Q, I ) =
⋂
{Q(J) | J is a solution}
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What if a query is not definable?

I Assume Q is not definable from P under Σ.

I and we want to make it definable (Why? See later). How?

Definition 5 (Definability abductive problem)

A DAP is a tuple 〈Σ,P,Q〉 such that

Σ ∪ Σ̃ 6|= Q ↔ Q̃,

where ·̃ is replacement of predicates other than from P by fresh
ones.



Definability abduction

Definition 6
∆ is a solution to a DAP if

Σ ∪∆ ∪ Σ̃ ∪ ∆̃ |= Q ↔ Q̃.

It is

I consistent if Σ ∪∆ is,

I relevant if ∆ ∪ ∆̃ 6|= Q ↔ Q̃,

I conservative if σ(∆) ⊆ σ(Σ,Q) ∪ {=}



Example

I Σ :

∀x(s(x)→ g(x) ∨ u(x)),

∀x(g(x)→ s(x)),

∀x(u(x)→ s(x)),

I P = {s, u},
I Q = g .

Definability abductive solutions:

I ∀x .g(x)  Irrelevant

I ∀x .(g(x)↔ ¬s(x)) Inconsistent

I ∀x(g(x)→ ¬u(x)) Consistent, relevant



Constraints

Similarly to classical abduction the following has to be taken into
account:

I Syntactic restriction

I Preference criterion

What are these restrictions?
It depends on particular instances.

I In data exchange: dependencies.

I In ALC: concept inclusions.



DAP in data exchange
Why we need definability in data exchange?

I Odd anomalies of certain answering semantics.
Consider M = ({P}, {P ′},Σ) with Σ:

∀x , y(P(x , y)→ P ′(x , y)).

a source instance I = {P(a, a)} and

Q(x) = ∀y(P ′(x , y)→ P ′(y , x)).

We expect the answer {a}.
However, certainM(I ,Q) = ∅!

I Note if we add ∀x(P ′(x , y)→ P(x , y)) to Σ, then the target instance
is fully defined.  Q will be answered correctly.



Non rewritability

I Consider M = ({G ,R}, {G ′,R ′},Σ) with

Σ = {G (x , y)→ G ′(x , y),R(x , y)→ R ′(x , y)}.

Then

Q(x) = R ′(x) ∨ ∃y∃z(R ′(y) ∧ G ′(y , z) ∧ ¬R ′(z))

is not FO rewritable over a universal solution!

I If we add G ′(x , y)→ G (x , y),R ′(x , y)→ R(x , y) to Σ, then the
target instance is fully defined and Q can be answered correctly.



Target is not definable from source

I Observe, the target schema is not implicitly definable from the
source schema.

I Can we amend the schema mappings Σ such that T becomes
definable from S?

I Any data exchange setting = (S ,T ,Σ) is a definability abductive
problem with the DAP query

∧
q∈T q(x̄q)

I What is the syntactic restriction?
Target-to-source dependencies  tableau and resolution
techniques are hardly applicable

I Preference criterion?
Σ-minimality: ∆1 is minimal if Σ ∪∆1 |= ∆2 ⇒ Σ ∪∆2 |= ∆1

Thus, we concentrate on finding minimal solutions only



Σst is full, Σt = ∅

Shape of solutions.

I CQ-to-CQ solutions.

I There is a data exchange setting which does not admit any
relevant consistent CQ-to-CQ DAP solution.

I CQ-to-CQ= solutions.

I Minimal relevant consistent CQ-to-CQ= DAP solutions are
among ∆j = {pi (x̄)→ ∃ȳ .ϕj

i (x̄ , ȳ) | 1 ≤ i ≤ n}, 1 ≤ j ≤ ki
I problems: difficult to find a minimal one; there might be

source instances for which there is no data exchange solution
under Σst ∪∆.



CQ-to-UCQ= solutions

I Σ = {ϕj
i (x̄ , ȳ)→ pi (x̄) | 1 ≤ j ≤ ki , 1 ≤ i ≤ n},

I There is a unique minimal t-s CQ-to-UCQ= solution:

∆ = {pi (x)→
∨

1≤i≤n
∃z̄jϕ

j
i (x̄ , z̄j)}.

I The problem is gone.



Embedded schema mappings
Now consider the case of embedded schema mappings.

I There is a pure embedded data exchange setting which does not
admit relevant consistent t-s CQ-to-(U)CQ solutions.
Example: p(x)→ ∃y .q(x , y)

How to get definability of T from S in this case?

I Equate existential variables with universal variables:
q(x , y)→ p(x) ∧ x = y  not intuitive

I Introduce new source predicates which give values for existential
variables:
qs(x , y)↔ q(x , y),
it will imply the source dependency: p(x)→ ∃y .qs(x , y)
 conservativeness criterion is sacrificed

These solutions are minimal!



Adding source and target constraints

I CQ-to-(U)CQ= solutions remain to be solutions with added
source and target constraints,

I Source constraints do not influence minimality,

I Target constraints do influence minimality
 one has to find minimal solutions taking into account the
target constraints



CWA-solutions

CWA-solutions were introduced to solve similar odd behavior of
certain answers semantics.

I M = (S ,T ,Σ) full schema mapping,

I I source instance and

I ∆ a minimal CQ-to-UCQ= solution. Then

J is a CWA−solution for I under Σ iff J is a solution for I under Σ∪∆.

 DAP solution provides formalization of meta-assumptions about
CWA by means of schema mappings.



DAP in ALC

Definition 7
DAP: 〈T ,P,C 〉.
A TBox TA is a solution:

C ≡T ∪TA∪T̃ ∪T̃A C̃ ,

I We show how we can generate solutions to a DAP for ALC.



Algorithm

I Construct a complete tableau for 〈Cu .¬ C̃ , T ∪ T̃ 〉.
I If closed, then definable. Otherwise let B be an open branch.

I If {x : E , x : F} ⊆ B and σ(E ), σ(F ) ⊆ σ(T ,C ), then
E v .¬ F ∈ closure(B).

I If {x : E , x : F} ⊆ B and σ(E ), σ(F ) ⊆ σ(T̃ , C̃ ), then

Ẽ v .¬ F̃ ∈ closure(B),

I A `T -solution is an element of
⊗
B∈ΓT

closure(B)

I Generates general concept inclusions E v F , where E and F
are from sub-concept closure of T and C .

I Algorithm is sound: Every `T -solution is a DAP solution.

I Alas, it is incomplete.



Summary

I We have introduced a new problem of gaining definability of a
formula from particular set of predicates. This problem arises in the
context of query rewriting under general constraints.

I This problem is abductive.

I We have applied it to the problem of data exchange, where there is a
need to have the target to be definable from the source.

I The problem has good solutions of the form t-s CQ-to-UCQ=

dependencies for full schema mappings.

I Embedded schema mappings are bad knowledge bases for definability
abduction. Non-conservative solutions can be found though.

I We have compared DAP solutions with recoveries and CWA-solutions.

I We have presented a sound algorithm for DAP in ALC.



Future work

I Complete algorithms for solution generation.

I Explore other scenarios when definability is needed.

I Try other preference criteria.

I Minimal solutions in the presence of target constraints in data
exchange.



Thank you!



Bad theories

I Σ = {r → w ,¬r}

I q = w

Then α = ¬r → w is the most reasonable explanation, but still
bad.
Therefore, the algorithms might not generate good solutions if the
knowledge base is bad.
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