
Reaching definability via Abduction

Evgeny Sherkhonov

thesis is done at Free Univesity of Bozen-Bolzano
TU Dresden

Supervisors: Prof. Enrico Franconi, Prof. Steffen Hölldobler

February 21, 2012

Background
Query answering under constraints
Definability
Abduction
Data exchange

Definability Abduction
Problem formalization
Definability abduction in data exchange
Definability abduction in ALC

Conclusion and future work

Data access under constraints

There are different types of constraints.

I Ontologies
They provide conceptual view of the data

I Schema mappings
They provide the specification how different schemas interact

Our assumptions

I Conceptual schema has a richer vocabulary than the data
stores

 Standard DB technologies are not applicable

I DBox (constraints with exact views): Complete information of
only some terms is available (from databases)

 Query answering is hard in general.

How to answer queries under constraints?

Common approach: Query rewriting

I Given Q over σ(KB,DB).

I Rewrite Q into Q ′, which is over σ(DB), such that
answer(Q) = answer(Q ′).

I Answer Q ′ using SQL.

Depends on KB and Q:

I KB is expressed in DL-Lite and Q is a (U)CQ.

I KB is expressed in FOL and Q is implicitly definable from
σ(DB).

Example

I KB:

Researcher(x)→ MSc(x) ∨ PhD(x)

MSc(x)→ Researcher(x)

PhD(x)→ Researcher(x)

MSc(x)→ ¬PhD(x)

I DB:

Researcher = {Leonard , Sheldon,Howard}
PhD = {Leonard , Sheldon}

Q(x) = MSc(x) is implicitly definable from Researcher and PhD.
Answer MSc = {Howard}

Definability

Definition 1 (Implicit definability)

ϕ is implicitly definable from P under KB if
∀I , J ∈ M(KB) : D I = DJ it holds that

·I |P = ·J |P ⇒ ϕI ≡ ϕJ

I.e. a formula is definable if its truth value solely depends on the
domain and the extensions of predicates in P.

Query rewriting framework

I Check consistency of KB and DB;

I Check implicit definability of Q from PDB under KB;

I Compute Craig’s interpolant (a.k.a rewriting);

I If the rewriting is domain independent, execute in SQL.

What is Abduction?

I “the action of forcibly taking someone away against their will”
[Oxford dictionary]

What is Abduction?

I Type of reasoning for deriving explanations to facts.

Definition 2 (Abductive problem)

A pair 〈Σ, q〉 such that Σ 6|= q

Definition 3
α is a solution if Σ ∪ {α} |= q

I consistent if Σ ∪ {α} is consistent,

I relevant if α 6|= q,

I conservative if σ(α) ⊆ σ(Σ, q).

Other restrictions

I Syntactic restriction

I Preference criteria:
I minimality: (α |= β ⇒ β |= α)

I Σ-minimality: (Σ ∪ α |= β ⇒ Σ ∪ β |= α)

I basicness: no relevant solution for 〈Σ, α〉

Data exchange

I

S T
Σst

Σt

J

Figure: Data exchange problem.

I Data exchange problem:
I Translate the data structured under S to the data under T in as

precise as possible way.
I Query answering over T must be consistent with the source

information.

I Data exchange setting: (S ,T ,Σst ,Σt), where Σst is a source to
target schema mapping, Σt is target constraints.

Schema mapping

Data exchange setting (S ,T ,Σst ,Σt)
Schema mappings given by dependencies

I source to target L1-to-L2-dependency:

ϕ(x̄ , ȳ)→ ∃z̄ .ψ(x̄ , z̄),

where

I ϕ is a L1-formula over S ,
I ψ is a L2-formula over T .

I Σst is expressed by source to target CQ-to-CQ dependencies,

I Σt is expressed by target to target CQ-to-CQ dependencies,
plus equality generating dependencies over T .

ϕ(x̄)→ xi = xj .

Data exchange

Example 4

Σst : P(x , y)→ ∃z(Q(x , z) ∧ Q(z , y))
I = {P(a, b)}
I {Q(a, b),Q(b, b)},
I {Q(a,⊥),Q(⊥, b)},
I {Q(a,⊥i),Q(⊥i , b) | 1 ≤ i ≤ n}.

I For a source instance I there might be many solutions. Which
one to materialize?
 Universal solution (can be homomorphically embedded into all
other solutions)

I What is the semantics of query answering?
 Certain answers

certain(Q, I) =
⋂
{Q(J) | J is a solution}

Outline

Background
Query answering under constraints
Definability
Abduction
Data exchange

Definability Abduction
Problem formalization
Definability abduction in data exchange
Definability abduction in ALC

Conclusion and future work

What if a query is not definable?

I Assume Q is not definable from P under Σ.

I and we want to make it definable (Why? See later). How?

Definition 5 (Definability abductive problem)

A DAP is a tuple 〈Σ,P,Q〉 such that

Σ ∪ Σ̃ 6|= Q ↔ Q̃,

where ·̃ is replacement of predicates other than from P by fresh
ones.

Definability abduction

Definition 6
∆ is a solution to a DAP if

Σ ∪∆ ∪ Σ̃ ∪ ∆̃ |= Q ↔ Q̃.

It is

I consistent if Σ ∪∆ is,

I relevant if ∆ ∪ ∆̃ 6|= Q ↔ Q̃,

I conservative if σ(∆) ⊆ σ(Σ,Q) ∪ {=}

Example

I Σ :

∀x(s(x)→ g(x) ∨ u(x)),

∀x(g(x)→ s(x)),

∀x(u(x)→ s(x)),

I P = {s, u},
I Q = g .

Definability abductive solutions:

I ∀x .g(x) Irrelevant

I ∀x .(g(x)↔ ¬s(x)) Inconsistent

I ∀x(g(x)→ ¬u(x)) Consistent, relevant

Constraints

Similarly to classical abduction the following has to be taken into
account:

I Syntactic restriction

I Preference criterion

What are these restrictions?
It depends on particular instances.

I In data exchange: dependencies.

I In ALC: concept inclusions.

DAP in data exchange
Why we need definability in data exchange?

I Odd anomalies of certain answering semantics.
Consider M = ({P}, {P ′},Σ) with Σ:

∀x , y(P(x , y)→ P ′(x , y)).

a source instance I = {P(a, a)} and

Q(x) = ∀y(P ′(x , y)→ P ′(y , x)).

We expect the answer {a}.
However, certainM(I ,Q) = ∅!

I Note if we add ∀x(P ′(x , y)→ P(x , y)) to Σ, then the target instance
is fully defined. Q will be answered correctly.

Non rewritability

I Consider M = ({G ,R}, {G ′,R ′},Σ) with

Σ = {G (x , y)→ G ′(x , y),R(x , y)→ R ′(x , y)}.

Then

Q(x) = R ′(x) ∨ ∃y∃z(R ′(y) ∧ G ′(y , z) ∧ ¬R ′(z))

is not FO rewritable over a universal solution!

I If we add G ′(x , y)→ G (x , y),R ′(x , y)→ R(x , y) to Σ, then the
target instance is fully defined and Q can be answered correctly.

Target is not definable from source

I Observe, the target schema is not implicitly definable from the
source schema.

I Can we amend the schema mappings Σ such that T becomes
definable from S?

I Any data exchange setting = (S ,T ,Σ) is a definability abductive
problem with the DAP query

∧
q∈T q(x̄q)

I What is the syntactic restriction?
Target-to-source dependencies tableau and resolution
techniques are hardly applicable

I Preference criterion?
Σ-minimality: ∆1 is minimal if Σ ∪∆1 |= ∆2 ⇒ Σ ∪∆2 |= ∆1

Thus, we concentrate on finding minimal solutions only

Σst is full, Σt = ∅

Shape of solutions.

I CQ-to-CQ solutions.

I There is a data exchange setting which does not admit any
relevant consistent CQ-to-CQ DAP solution.

I CQ-to-CQ= solutions.

I Minimal relevant consistent CQ-to-CQ= DAP solutions are
among ∆j = {pi (x̄)→ ∃ȳ .ϕj

i (x̄ , ȳ) | 1 ≤ i ≤ n}, 1 ≤ j ≤ ki
I problems: difficult to find a minimal one; there might be

source instances for which there is no data exchange solution
under Σst ∪∆.

CQ-to-UCQ= solutions

I Σ = {ϕj
i (x̄ , ȳ)→ pi (x̄) | 1 ≤ j ≤ ki , 1 ≤ i ≤ n},

I There is a unique minimal t-s CQ-to-UCQ= solution:

∆ = {pi (x)→
∨

1≤i≤n
∃z̄jϕ

j
i (x̄ , z̄j)}.

I The problem is gone.

Embedded schema mappings
Now consider the case of embedded schema mappings.

I There is a pure embedded data exchange setting which does not
admit relevant consistent t-s CQ-to-(U)CQ solutions.
Example: p(x)→ ∃y .q(x , y)

How to get definability of T from S in this case?

I Equate existential variables with universal variables:
q(x , y)→ p(x) ∧ x = y not intuitive

I Introduce new source predicates which give values for existential
variables:
qs(x , y)↔ q(x , y),
it will imply the source dependency: p(x)→ ∃y .qs(x , y)
 conservativeness criterion is sacrificed

These solutions are minimal!

Adding source and target constraints

I CQ-to-(U)CQ= solutions remain to be solutions with added
source and target constraints,

I Source constraints do not influence minimality,

I Target constraints do influence minimality
 one has to find minimal solutions taking into account the
target constraints

CWA-solutions

CWA-solutions were introduced to solve similar odd behavior of
certain answers semantics.

I M = (S ,T ,Σ) full schema mapping,

I I source instance and

I ∆ a minimal CQ-to-UCQ= solution. Then

J is a CWA−solution for I under Σ iff J is a solution for I under Σ∪∆.

 DAP solution provides formalization of meta-assumptions about
CWA by means of schema mappings.

DAP in ALC

Definition 7
DAP: 〈T ,P,C 〉.
A TBox TA is a solution:

C ≡T ∪TA∪T̃ ∪T̃A C̃ ,

I We show how we can generate solutions to a DAP for ALC.

Algorithm

I Construct a complete tableau for 〈Cu .¬ C̃ , T ∪ T̃ 〉.
I If closed, then definable. Otherwise let B be an open branch.

I If {x : E , x : F} ⊆ B and σ(E), σ(F) ⊆ σ(T ,C), then
E v .¬ F ∈ closure(B).

I If {x : E , x : F} ⊆ B and σ(E), σ(F) ⊆ σ(T̃ , C̃), then

Ẽ v .¬ F̃ ∈ closure(B),

I A `T -solution is an element of
⊗
B∈ΓT

closure(B)

I Generates general concept inclusions E v F , where E and F
are from sub-concept closure of T and C .

I Algorithm is sound: Every `T -solution is a DAP solution.

I Alas, it is incomplete.

Summary

I We have introduced a new problem of gaining definability of a
formula from particular set of predicates. This problem arises in the
context of query rewriting under general constraints.

I This problem is abductive.

I We have applied it to the problem of data exchange, where there is a
need to have the target to be definable from the source.

I The problem has good solutions of the form t-s CQ-to-UCQ=

dependencies for full schema mappings.

I Embedded schema mappings are bad knowledge bases for definability
abduction. Non-conservative solutions can be found though.

I We have compared DAP solutions with recoveries and CWA-solutions.

I We have presented a sound algorithm for DAP in ALC.

Future work

I Complete algorithms for solution generation.

I Explore other scenarios when definability is needed.

I Try other preference criteria.

I Minimal solutions in the presence of target constraints in data
exchange.

Thank you!

Bad theories

I Σ = {r → w ,¬r}

I q = w

Then α = ¬r → w is the most reasonable explanation, but still
bad.
Therefore, the algorithms might not generate good solutions if the
knowledge base is bad.

	Background
	Query answering under constraints
	Definability
	Abduction
	Data exchange

	Definability Abduction
	Problem formalization
	Definability abduction in data exchange
	Definability abduction in ALC

	Conclusion and future work

