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Non-classical logics

are logics different from classical logic

provide adequate languages for reasoning, e.g., about
computer programs, dynamic data structures, resources,
algebraic varieties, natural language, vague or inconsistent
information, . . .



E.g. logics for reasoning with inconsistencies

Within classical logic, inconsistency leads to the trivialization
of the knowledge base, as everything becomes derivable:

A,¬A ` B

Paraconsistent logics are logics which allow contradictory but
non-trivial theories.

Definition

A propositional logic L is paraconsistent (with respect to ¬) if
there are L-formulas A,B, such that A,¬A 6` B.



How many interesting and useful logics?



Describing Logics

Non-classical logics are often described/introduced by adding
suitable properties to known systems:

Hilbert axioms

Semantic conditions

Example: Gödel logic is obtained from intuitionistic logic

by adding the Hilbert axiom (φ→ ψ) ∨ (ψ → φ), or

by adding the algebraic equation 1 ≤ (x → y) ∨ (y → x) to
Heyting algebras
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Why Proof Theory?

The applicability/usefulness of non-classical logics strongly
depends on the availability of analytic calculi.

“A logic without an analytic calculus is like a car without an
engine” (J.Y. Girard)



Why Proof Theory? II

Analytic calculi

are key for developing automated reasoning methods

are useful for establishing various properties of logics

(if uniform) also facilitate the switch from one logic to another,
deepening the understanding of the relations between them.



Sequent Calculus

Sequents (Gentzen 1934)

A1, . . . ,An ` B1, . . . ,Bm

Axioms: E.g., A ` A, ⊥ ` A

Rules (left and right):

Structural
E.g.

Γ,A,A⇒ Π

Γ,A⇒ Π
(c , l)

Γ,A⇒ Π

Γ,A,B ⇒ Π
(w , l)

Γ,B,A⇒ Π

Γ,A,B ⇒ Π
(e, l)

Logical

Cut
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Sequent Calculus – the cut rule

Γ⇒ A A⇒ Π
Γ,Σ⇒ Π

Cut

key to prove completeness w.r.t. Hilbert systems

modus ponens
A A→ B

B

corresponds to transitivity in algebra: from x ≤ a and a ≤ y
follows x ≤ y

bad for proof search

Cut-elimination theorem

Each proof using Cut can be transformed into a proof without Cut.



Sequent Calculus – state of the art

Cut-free sequent calculi have been successfully used

to prove consistency, decidability, interpolation, . . .

as bases for automated theorem proving

to give syntactic proofs of algebraic properties for which (in
particular cases) semantic methods are not known

Many useful and interesting logics have no cut-free sequent
calculus

A large range of generalizations of sequent calculus have been
introduced
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State of the art

The definition of analytic calculi is usually logic-tailored.
Steps:
(i) choosing a framework
(ii) looking for the “right” inference rule(s)
(iii) proving cut-elimination

Our Dream

Uniform procedures and automated support to

define analytic calculi for non-classical logics

use the introduced calculi for proving interesting properties
about the formalized logics in a uniform and systematic way
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This talk

General method to define analytic calculi and their
exploitation

Case Studies:

Substructural logics

analytic calculi : sequent and hypersequent

applications : order-theoretic completions, standard completeness

Paraconsistent logics

analytic calculi : sequent

applications : non-deterministic matrices, decidability



The idea



The idea



Case study: Substructural Logics

encompass e.g., intuitionistic logic, linear logic, fuzzy logics,
the logic of Bunched Implications ...
defined by adding Hilbert axioms to Full Lambek calculus FL
or algebraic equations to residuated lattices

Algebraic semantics for FLe = FL + exchange

(bounded pointed) commutative residuated lattice

P = 〈P,∧,∨,⊗,→,>, 0, 1,⊥〉

1 〈P,∧,∨,>, 0〉 is a lattice with > greatest and ⊥ least

2 〈P,⊗, 1〉 is a commutative monoid.

3 For any x , y , z ∈ P, x ⊗ y ≤ z ⇐⇒ y ≤ x → z

4 0 ∈ P.
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The sequent calculus for FLe

A,B, Γ ` Π

A⊗ B, Γ ` Π
⊗l Γ ` A ∆ ` B

Γ,∆ ` A⊗ B
⊗r

Γ ` A B,∆ ` Π

Γ,A→ B,∆ ` Π
→ l

A, Γ ` B

Γ ` A→ B
→ r

A, Γ ` Π B, Γ ` Π

A ∨ B, Γ ` Π
∨l

Γ ` Ai

Γ ` A1 ∨ A2
∨r

0 ` 0l

Ai , Γ ` Π

A1 ∧ A2, Γ ` Π
∧l Γ ` A Γ ` B

Γ ` A ∧ B
∧r

Γ ` > >r

Γ `
Γ ` 0

0r ` 1
1r ⊥, Γ ` Π

⊥l Γ ` Π
1, Γ ` Π

1l

Π contains at most one formula



Case study: Substructural Logics

They lack the properties expressed by sequent calculus structural
rules

Contraction: α→ α ∧ α
A,A, Γ ` Π

A, Γ ` Π
(c)

Exchange: α ∧ β → β ∧ α
Γ,B,A,Π ` ∆

Γ,A,B,Π ` ∆
(e)

Weakening: α ∧ β → α
Γ ` Π

Γ,A ` Π
(w)

`FLe+axiom = `FLe+rule



Case study: Substructural Logics

They lack the properties expressed by sequent calculus structural
rules

Contraction: α→ α ∧ α
A,A, Γ ` Π

A, Γ ` Π
(c)

Exchange: α ∧ β → β ∧ α
Γ,B,A,Π ` ∆

Γ,A,B,Π ` ∆
(e)

Weakening: α ∧ β → α
Γ ` Π

Γ,A ` Π
(w)

`FLe+axiom = `FLe+rule



Classification – substructural logics

Definition (Classification; AC, Galatos and Terui, LICS 2008)

The classes Pn,Nn of positive and negative axioms/equations
are:

P0 ::= N0 ::= atomic formulas

Pn+1 ::= Nn | Pn+1 ∨ Pn+1 | Pn+1 ⊗ Pn+1 | 1 | ⊥
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0 | >



Examples

Class Axiom Name

N2 α→ 1, ⊥ → α weakening
α→ α⊗ α contraction
α⊗ α→ α expansion
⊗αn → ⊗αm knotted axioms
¬(α ∧ ¬α) weak contraction

P2 α ∨ ¬α excluded middle
(α→ β) ∨ (β → α) prelinearity

P3 ¬α ∨ ¬¬α weak excluded middle
¬(α⊗ β) ∨ (α ∧ β → α⊗ β) (wnm)

N3 ((α→ β)→ β)→ ((β → α)→ α)  Lukasiewicz axiom
(α ∧ β)→ α⊗ (α→ β) divisibility



Transformation

Given a base cut-free calculus C. The algorithm is based on:

Ingredient 1

The use of the invertible logical rules of C

Ingredient 2: Ackermann Lemma

An algebraic equation t ≤ u is equivalent to a quasiequation
u ≤ x ⇒ t ≤ x , and also to x ≤ t ⇒ x ≤ u, where x is a fresh
variable not occurring in t, u.

Example: the sequent A ` B is equivalent to

Γ ` A
Γ ` B

Γ,B ` ∆

Γ,A ` ∆

(Γ,∆ fresh metavariables for multisets of formulas)



From axioms to sequent rules: an example

Axiom ¬(¬A ∧ A)

Equivalent to ⇒ ¬(¬A ∧ A)

Invertibility ¬A ∧ A ⇒

Ackermann Lemma Γ ⇒ ¬A ∧ A
Γ ⇒

Invertibility Γ ⇒ ¬A Γ ⇒ A
Γ ⇒

Invertibility
Γ,A ⇒ Γ ⇒ A

Γ ⇒

Equivalent rule
Γ, Γ ⇒

Γ ⇒



Preliminary results

Algorithm to transform:

axioms/equations up to the class N2 into ”good” structural
rules in sequent calculus

An application to universal algebra

Analytic sequent calculi iff Dedekind-MacNeille completion

(AC, N. Galatos and K. Terui. LICS 2008 and APAL 2012)

Behond N2?

Ex. (α→ β) ∨ (β → α)
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Hypersequent calculus

It is obtained embedding sequents into hypersequents

Γ1 ` Π1 | . . . | Γn ` Πn

where for all i = 1, . . . n, Γi ` Πi is a sequent.

Axioms within the class P3 have the form

N2 ∨N2 ∨ · · · ∨ N2
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Structural hypersequent rules: an example

Gödel logic = Intuitionistic logic + (α→ β) ∨ (β → α)

G | Γ,Σ′ ` ∆′ G | Γ′,Σ ` ∆

G | Γ,Σ ` ∆ | Γ′,Σ′ ` ∆′
(com)

(Avron, Annals of Math and art. Intell. 1991)

β ` β α ` α
(com)

α ` β |β ` α
(→,r),(→,r)

` α→ β | ` β → α

(∨i,r),(∨i,r)

` (α→ β) ∨ (β → α) | ` (α→ β) ∨ (β → α)

(EC)

` (α→ β) ∨ (β → α)



Climbing up the hierarchy

Algorithm to transform:

axioms/equations up to the class P3 into ”good” structural
rules in hypersequent calculus

An application to universal algebra

Analytic calculi iff hyperDedekind-MacNeille completion

(AC, N. Galatos and K. Terui. Algebra Universalis 2011 and APAL
2016)



From axioms to rules – our tool

http://www.logic.at/people/lara/axiomcalc.html

Input: Hilbert axioms



An application to standard completeness

Completeness of axiomatic systems with respect to algebras whose
lattice reduct is the real unit interval [0, 1].

(Hajek 1998) Formalizations of Fuzzy Logic



Some standard complete logics

T-norm based logics

Example: Gödel logic

v : Propositions→ [0, 1]

v(A ∧ B) = min{v(A), v(B)} v(⊥) = 0
v(A ∨ B) = max{v(A), v(B)}
v(A→ B) = 1 if v(A) ≤ v(B), and v(B) otherwise

Monoidal T-norm based logic MTL (Godo, Esteva, FSS 2001)

MTL = FLew + (α→ β) ∨ (β → α))
v(A⊗ B) = v(A) ∗ v(B), ∗ left continous t-norm
v(A ∨ B) = max{v(A), v(B)}
v(A→ B) = v(A)⇒∗ v(B)
v(⊥) = 0



Standard Completeness?

Question Given a logic L obtained by extending MTL with

A ∨ ¬A (excluded middle)?

An−1 → An (n-contraction)?

¬(A⊗ B) ∨ (A ∧ B → A⊗ B) (weak nilpotent minimum)?

....

Is L standard complete? (is it a formalization of Fuzzy Logic?)

Case-by-case answer



A uniform proof of standard completeness

Theorem (Baldi and AC, TCS 2014, ISMVL 2015)

Given any set Ax of Hilbert axioms satisfying “suitable conditions”
MTL + Ax is standard complete.

Proof

Define an analytic hypersequent calculus

Elimination of the density rule (p eigenvariable):

G | Γ ` p |Σ, p ` ∆

G | Γ,Σ ` ∆
(density)

Dedekind-MacNeille style completion



Substructural logics – summary

automated introduction of sequent and hypersequent calculi
for large classes of logics

preservation of various order-theoretic completions of the
corresponding algebras

uniform proofs of standard completeness for many (well
known or new) logics



Case study: Paraconsistent logics

E.g. Da Costa’s axioms defining the C-systems:

(n1) α ∨ ¬α (n2) α→ (¬α→ β)
(c) ¬¬α→ α (e) α→ ¬¬α
(nl∧) ¬(α ∧ β)→ (¬α ∨ ¬β) (nr∧) (¬α ∨ ¬β)→ ¬(α ∧ β)
(nl∨) ¬(α ∨ β)→ (¬α ∧ ¬β) (nr∨) (¬α ∧ ¬β)→ ¬(α ∨ β)
(nl→) ¬(α→ β)→ (α ∧ ¬β) (nr→) (α ∧ ¬β)→ ¬(α→ β)
(b) α→ (¬α→ (◦α→ β)) (r�) ◦(α � β)→ (◦α ∨ ◦β)
(k) ◦α ∨ (α ∧ ¬α) (k2) ◦α ∨ ¬α
(o1�) ◦α→ ◦(α � β) (o2�) ◦β → ◦(α � β)
(a�) (◦α ∧ ◦β)→ ◦(α � β) (a¬) ◦α→ ◦¬α

.....

Divide propositions into consistent and inconsistent ones.

Reflect this classification within the language.

Employ a special (primitive or defined) connective ◦ with intuitive
meaning ◦α: “α is consistent”.



Case study: Paraconsistent logics

We identified a formal grammar generating (infinitely many)
axioms in the language of CL+ with new unary connectives.

For any set of axioms generated by this grammar we provided
algorithms (and a PROLOG program):

(Step 1) to extract a corresponding sequent calculus

(Step 2) exploit the calculus to define suitable semantics for the
logic, which is used:
⇒ to show the decidability of the logic

(AC, O. Lahav, L. Spendier, A. Zamansky. LFCS 2013 and TOCL
2014)



Useful semantics

Definition

A partial non-deterministic matrix (PNmatrix) M consists of:

(i) a set VM of truth values,

(ii) a subset of VM of designated truth values, and

(iii) a truth-table �M : VnM → P(VM) for every n-ary connective �.

PNmatrices generalise the notion of non-deterministic matrices
(A. Avron, 2001) by allowing empty sets in the truth tables.



Why non-determinism?

Standard rules for classical negation and conjunction:

Γ ` ∆, ψ

Γ,¬ψ ` ∆

Γ, ψ ` ∆

Γ ` ∆,¬ψ

Γ, ψ, ϕ ` ∆

Γ, ψ ∧ ϕ ` ∆

Γ ` ∆, ψ Γ ` ∆, ϕ

Γ ` ∆, ψ ∧ ϕ

¬
1 0
0 1

∧
1 1 1
1 0 0
0 1 0
0 0 0



Why non-determinism?

Standard rules for classical negation and conjunction:

Γ ` ∆, ψ

Γ,¬ψ ` ∆

Γ, ψ ` ∆

Γ ` ∆,¬ψ

Γ, ψ, ϕ ` ∆

Γ, ψ ∧ ϕ ` ∆

Γ ` ∆, ψ Γ ` ∆, ϕ

Γ ` ∆, ψ ∧ ϕ

¬
1 0
0 ???

∧
1 1 ???
1 0 0
0 1 0
0 0 0



Why non-determinism?
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Step 2: Extracting PNmatrices

Truth values VM: tuples of size = # of unary connectives +1

New rules reduce the level of non-determinism

Type 3: P
Γ, ?ψ ⇒ ∆

reduce the set of truth values VM

Type 2: P
Γ, ?i ?j ψ ⇒ ∆

determine truth tables for ?j

Type 1:
Q

Γ, ?(ψ � ϕ)⇒ ∆
determine truth tables for �



Our Tool : Paralyzer (PARAconsistent logic anaLYZER)

Input: Set of axioms A according to our grammar.
Output:

Proof Theory: sequent calculus for CL+ with A
Semantics: truth tables (using PNmatrices)

Encoding of the calculus into ISABELLE

http://www.logic.at/staff/lara/tinc/webparalyzer/paralyzer.html



Open problems and work in progress

Systematic introduction of analytic calculi

enlarge the set of axioms we can capture

first-order logics, modal logics, deontic logics . . .

Their exploitation

automated deduction methods
algebraic completions
Curry Howard hysomorphism
...

Applications: e.g. analysis of the Indian sacred texts (Vedas)

“Non-classical Proofs: Theory, Applications and Tools”, research
project 2012-2017 (START prize – Austrian Research Fund)
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