Higher-order Unification
(a personal perspective)

Tomer Libal

Inria, France

EMCL Workshop 2016
Vienna, February 12

History

History

= —Pa, Pffa, 3x.Px \ —Pfx

Histo r@

How can we proceed? @

= —Pa, Pffa, 3x.Px \ —Pfx

History

How can we proceed? @
Herbrand (1930); just apply a finite number of contractions and instantiations

= —Pa, Pffa, 3x.Px \ —Pfx

History
How can we proceed?
Herbrand (1930); just apply a finite number of contractions and instantiations e

- Pa,—Pa - Pfa, —~Pfa F Pffa, —Pffa

= —Pa, Pffa, Pa \ —Pfa, Pfa \ —Pffa
- —Pa, Pffa, Pa N ~Pfa, 3x.Px A —Pfx 7
- —Pa, Pffa, 3x.Px A —Dfy, x.Px A —Dfr
F —Pa, Pffa, 3x.Px N\ —Pfx con

r

History

Can we antomate this? After all, computational logic is albout mehcanizing logic

How can we proceed? @
Herbrand (1930); just apply a finite number of contractions and instantiations

- Pa,—Pa - Pfa, —~Pfa F Pffa, —Pffa

= —Pa, Pffa, Pa \ —Pfa, Pfa \ —Pffa
- —Pa, Pffa, Pa N ~Pfa, 3x.Px A —Pfx 7
- —Pa, Pffa, 3x.Px A —Dfy, x.Px A —Dfr
F —Pa, Pffa, 3x.Px N\ —Pfx con

r

History

Can we antomate this? After all, computational logic is albout mehcanizing logic

How can we proceed? @
Herbrand (1930); just apply a finite number of contractions and instantiations

-
m 30 years: Pre@bw@@r arithmetic, tableanx, heuristics, DavisCutnam

- Pa,—Pa - Pfa, —~Pfa F Pffa, —Pffa

= —Pa, Pffa, Pa \ —Pfa, Pfa \ —Pffa
- —Pa, Pffa, Pa N ~Pfa, 3x.Px A —Pfx 7
F —Pa, Pffa, x.Px A —Pfy, IxPx A —Pfc
F —Pa, Pffa, 3x.Px N\ —Pfx con

r

History

How can we proceed?
Herbrand (1930); just apply a finite number of contractions and instantiations
Can we antomate this? After all, computational logic is albout mehcanizing logic

v
l : 30 years: PreBbw@gr arithmetic, tableaux, hewristics, DavisPutnam
But, the Herband Space is infinitel

XL

- Pa,—Pa - Pfa, —~Pfa F Pffa, —Pffa

= —Pa, Pffa, Pa \ —Pfa, Pfa \ —Pffa
- —Pa, Pffa, Pa N ~Pfa, 3x.Px A —Pfx 7
F —Pa, Pffa, x.Px A —Pfy, IxPx A —Pfc
= —Pa, Pffa, 3x.Px N\ ~Pfx con

r

History

How can we proceed?
Herbrand (1930); just apply a finite number of contractions and instantiations
Can we antomate this? After all, computational logic is albout mehcanizing logic

-
D 30 years: CreBburger arithmetic, tableaux, heuristics, DavisPutnam

Plawitz (1960): try) my Unification method!

But, the Herband Space is infinitel

XL

- Pa,—Pa - Pfa, —~Pfa F Pffa, —Pffa

= —Pa, Pffa, Pa \ —Pfa, Pfa \ —Pffa
- —Pa, Pffa, Pa N ~Pfa, 3x.Px A —Pfx 7
F —Pa, Pffa, x.Px A —Pfy, IxPx A —Pfc
- —Pa, Pffa, 3x.Px A —Pfx con

r

History

How can we proceed?
Herbrand (1930); just apply a finite number of contractions and instantiations
Can we antomate this? After all, computational logic is albout mehcanizing logic

-
D 30 years: CreBburger arithmetic, tableaux, heuristics, DavisPutnam

Plawitz (1960): try) my Unification method!

But, the Herband Space is infinitel

Thanks! Tt is exactly what we looked for

COO®

- Pa,—Pa - Pfa, —~Pfa F Pffa, —Pffa

= —Pa, Pffa, Pa \ —Pfa, Pfa \ —Pffa
- —Pa, Pffa, Pa N ~Pfa, 3x.Px A —Pfx 7
F —Pa, Pffa, x.Px A —Pfy, IxPx A —Pfc
- —Pa, Pffa, 3x.Px A —Pfx con

r

History

How can we proceed?
Herbrand (1930); just apply a finite number of contractions and instantiations
Can we antomate this? After all, computational logic is albout mehcanizing logic

! v
30 years: PreBbw@ar arithmetic, tableaux, hewristics, DavisPutnam

Plawitz (1960): try) my Unification method!
o Thanks! Tt is exactly what we looked for

Herbrand (1930): so why have you waited 30 years? Look at my Property Al

But, the Herband Space is infinitel

COO®

- Pa,—Pa - Pfa, —~Pfa F Pffa, —Pffa

= —Pa, Pffa, Pa \ —Pfa, Pfa \ —Pffa

- —Pa, Pffa, Pa N ~Pfa, 3x.Px A —Pfx 7

F —Pa, Pffa, x.Px A —Pfy, IxPx A —Pfc
= —Pa, Pffa, 3x.Px N\ ~Pfx con

r

History

How can we proceed?
Herbrand (1930); just apply a finite number of contractions and instantiations
Can we antomate this? After all, computational logic is albout mehcanizing logic

l -
30 years: PreBbw@@r arithmetic, tableanx, heuristics, DavisCutnam

2 But, the Herband Space (s infinitel
W Prawitz (1960): try my Unification methodl

Thanks! Tt is exactly what we looked for
Herbrand (1930): so why have you waited 30 years? Look at my Property Al

Tn 1962 JA Robinson has read Prawitz's paper and
in January 1965 the Resolution method was published

COO®

- Pa,—Pa - Pfa, —~Pfa F Pffa, —Pffa

= —Pa, Pffa, Pa \ —Pfa, Pfa \ —Pffa

- —Pa, Pffa, Pa N ~Pfa, 3x.Px A —Pfx 7

F —Pa, Pffa, x.Px A —Pfy, IxPx A —Pfc
con
= —Pa, Pffa, 3x.Px N\ ~Pfx

r

Flrst-order Unification

Flrst-order Unification

» Applications:

Flrst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)

Flrst~order Unification

» Applications:

» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)

Flrst~order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
» Type inference (ML, Haskel, ...)

Furst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
» Type inference (ML, Haskel, ...)
» Linguistics (Unification-based grammars,...)

Furst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
Type inference (ML, Haskel, ...)
Linguistics (Unification-based grammars,...)
Term rewriting,

\{ v v

Furst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
Type inference (ML, Haskel, ...)
Linguistics (Unification-based grammars,...)
Term rewriting, pattern matching,

\{ v v

Furst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
Type inference (ML, Haskel, ...)
Linguistics (Unification-based grammars,...)
Term rewriting, pattern matching, . ..

\{ v v

Furst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
» Type inference (ML, Haskel, ...)
» Linguistics (Unification-based grammars,...)
» Term rewriting, pattern matching, ...

» Algorithms:

Furst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
» Type inference (ML, Haskel, ...)
» Linguistics (Unification-based grammars,...)
» Term rewriting, pattern matching, ...
» Algorithms:
» Robinson (1965) - exponential

Furst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
» Type inference (ML, Haskel, ...)
» Linguistics (Unification-based grammars,...)
» Term rewriting, pattern matching, ...

» Algorithms:
» Robinson (1965) - exponential
» Huet (1976) - "almost" linear, infinite terms

Furst-order Unification

» Applications:
» Automated deduction (Resolution, Tableau, ...)
» Programming languages (Prolog, Constrained-based)
» Type inference (ML, Haskel, ...)
» Linguistics (Unification-based grammars,...)
» Term rewriting, pattern matching, ...
» Algorithms:
» Robinson (1965) - exponential

» Huet (1976) - "almost" linear, infinite terms
» Martelli and Montanari (1982) - linear, relatively efficient

First-order Unification - Basic A(@or(thm

» Unification problems and their solutions:

First-order Unification - Basic A(@or(t&\m

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}

» Most general unifier o
» V030.0 =009

First-order Unification - Basic A(@or&thm

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}
» Most general unifier o

» V83d6.0 =000
{u=u}us {f(vy,..., vp) =f(ug,...,un)}US {x=v}UsS
S delete oz, on = un}US decormp (S) bind

Where x does not occur in v and ¢ = [v/x].

First-order Unification - Basic A(@or&t&\m

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}
» Most general unifier o

» V83d6.0 =000
{u=u}us {f(vy,..., vp) =f(ug,...,un)}US {x=v}UsS
S delete oz, on = un}US decormp (S) bind

Where x does not occur in v and ¢ = [v/x].

{fza = faa}

First-order Unification - Basic A(@or&thm

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}
» Most general unifier o

» V83d6.0 =000
{u=u}us {f(vy,..., vp) =f(ug,...,un)}US {x=v}UsS
S delete oz, on = un}US decormp (S) bind

Where x does not occur in v and ¢ = [v/x].

{fza = faa}> decompose

{z =a,a =a}

First-order Unification - Basic A(@or&thm

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}
» Most general unifier o

» V83d6.0 =000
{u=u}us {f(vy,..., vp) =f(ug,...,un)}US {x=v}UsS
S delete oz, on = un}US decormp (S) bind

Where x does not occur in v and ¢ = [v/x].

{fza = faa}> decompose

{z =a,a =a}

First-order Unification - Basic A(@or&thm

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}
» Most general unifier o

» V83d6.0 =000
{u=u}us {f(vy,..., vp) =f(ug,...,un)}US {x=v}UsS
S delete oz, on = un}US decormp (S) bind

Where x does not occur in v and ¢ = [v/x].

{fza = faa}> decompose

{z =a,a =
Sd——

{a = a}> bind

First-order Unification - Basic A(@or&thm

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}
» Most general unifier o

» V83d6.0 =000
{u=u}us {f(vy,..., vp) =f(ug,...,un)}US {x=v}UsS
S delete oz, on = un}US decormp (S) bind

Where x does not occur in v and ¢ = [v/x].

{fza = faa}> decompose

{x =a,a =

{a = a}> bind

First-order Unification - Basic A(@or&thm

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}
» Most general unifier o

» V83d6.0 =000
{u=u}us {f(vy,..., vp) =f(ug,...,un)}US {x=v}UsS
S delete oz, on = un}US decormp (S) bind

Where x does not occur in v and ¢ = [v/x].

{fza = faa}> decompose

{x =a,a =

{a = a}> bind
}> delete

First-order Unification - Basic A(@or&thm

» Unification problems and their solutions:
> {tl isl,...,tn = Sn}
» Most general unifier o

» V83d6.0 =000
{u=u}us {f(vy,..., vp) =f(ug,...,un)}US {x=v}UsS
S delete oz, on = un}US decormp (S) bind

Where x does not occur in v and ¢ = [v/x].

{fza = faa}> decompose

{x =a,a =

{a = a}> bind
}> delete

Vv

Higher-order Unification

Higher-order Unification

» Applications:

Higher-order Unification

» Applications:
» Automated deduction (Arithmetic, Meta-physics,...)

Higher-order Unification

» Applications:

» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)

Higher-order Unification

» Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
» Type inference (Coq, dependent types, ...)

Higher-order Unification

» Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
» Type inference (Coq, dependent types, ...)
» Linguistics (Ellipsis, ...)

Higher-order Unification

» Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
Type inference (Coq, dependent types, ...)
Linguistics (Ellipsis, ...)
Term rewriting,

\{ v v

Higher-order Unification

» Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
Type inference (Coq, dependent types, ...)
Linguistics (Ellipsis, ...)
Term rewriting, Meta-logic,

\{ v v

Higher-order Unification

» Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
Type inference (Coq, dependent types, ...)
Linguistics (Ellipsis, ...)
Term rewriting, Meta-logic, ...

\{ v v

Higher-order Unification

Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
» Type inference (Coq, dependent types, ...)
» Linguistics (Ellipsis, ...)
» Term rewriting, Meta-logic, ...

v

» Example (linguistics):
» Assume that "dan likes his wife and george does too".

Higher-order Unification

Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
» Type inference (Coq, dependent types, ...)
» Linguistics (Ellipsis, ...)
» Term rewriting, Meta-logic, ...

v

» Example (linguistics):

» Assume that "dan likes his wife and george does too".
» P(dan) = likes(dan,wife-of(dan))

Higher-order Unification

Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
» Type inference (Coq, dependent types, ...)
» Linguistics (Ellipsis, ...)
» Term rewriting, Meta-logic, ...

v

» Example (linguistics):
» Assume that "dan likes his wife and george does too".
» P(dan) = likes(dan,wife-of(dan))
» P— Az.likes(dan,wife—of(dan))

Higher-order Unification

Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
» Type inference (Coq, dependent types, ...)
» Linguistics (Ellipsis, ...)
» Term rewriting, Meta-logic, ...

v

» Example (linguistics):
» Assume that "dan likes his wife and george does too".
» P(dan) = likes(dan,wife-of(dan))
» P— Az.likes(dan,wife—of(dan))
» P— Az.likes(dan,wife-of(z))

Higher-order Unification

Applications:
» Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)
» Type inference (Coq, dependent types, ...)
» Linguistics (Ellipsis, ...)
» Term rewriting, Meta-logic, ...

v

» Example (linguistics):
» Assume that "dan likes his wife and george does too".
» P(dan) = likes(dan,wife-of(dan))
» P— Az.likes(dan,wife—of(dan))
» P— Az.likes(dan,wife-of(z))
» P Az.likes(z,wife-of(z))

Higher-order Unification

Applications:

Automated deduction (Arithmetic, Meta-physics,...)
» Programming languages (A-Prolog)

Type inference (Coq, dependent types, ...)
Linguistics (Ellipsis, ...)

Term rewriting, Meta-logic, ...

v

\4

v v

\{

» Example (linguistics):
» Assume that "dan likes his wife and george does too".
» P(dan) = likes(dan,wife—-of(dan))
» P— Az.likes(dan,wife—of(dan))
» P— Az.likes(dan,wife-of(z))
» P Az.likes(z,wife-of(z))
» P Az.likes(z,wife-of(dan))

Higher-order Unification

{fz(yb)(yc) = fabc}

Higher-order Unification

{fz(yb)(yc) = fabc}
{x =a,yb=b>b,yc = c}> decompose

Higher-order Unification

{fz(yb)(yc) = fabe}
{x =a,yb=">b,yc =c}
{a =a,yb =0b,yc =c}

decompose
bind

Higher-order Unification

{fz(yb)(yc) = fabe}
{o=a,yb=b, yo = c}« e
. . . n

la=a yb=0byc=cl

{yb=10b,yc=c}

Higher-order Unification

{fz(yb)(yc) = fabc}
(o= a,yb=b,ye = c}o e
(==
{yb=1b,yc=c}

Higher-order Unification

{f:n(yb)(yC) = fabc}> decompose

a,yb = b, yc =
a,yb = b, yc:'c}% oind

{ub=b,yc=c delete

{x
{a

» Jensen and Pietrzykowski (1973): either
» imitation y — Az.b
> projectiony — Az.z

Higher-order Unification

{fz(yb)(yec) = fabe}
{z =a,yb=0b,yc = C}> dﬁcampogg
{a = a,yb = b, yc = c}

{yb=b,yc = c}

imitate

{y = Az.b, yb =b,yc = ¢}

» Jensen and Pietrzykowski (1973): either
» imitation y — Az.b
> projectiony — Az.z

Higher-order Unification

{fz(yb)(ye) = fabe}
{x = a, yb = b, ye - C}> dﬁcampogg
{a = a,yb = b, yc = c}

{yb=b,yc = c}

imitate proect

{y = \z.b,yb = b, yc = c} {y = AXz.z,yb =b,yc = c}

» Jensen and Pietrzykowski (1973): either
» imitation y — Az.b
> projectiony — Az.z

Higher-order Unification

{fz(yb)(ye) = fabe}
{z =a,yb=b,yc = c}> dacompose
{a =a,yb =0b,yc =c}
{yb = b, yc = c}
imitate proect
{y = \z.b, yb = b, yc = c}> {y = AXz.z,yb =b,yc = c}
{b=1b,b=c}

» Jensen and Pietrzykowski (1973): either

» imitation y — Az.b
> projectiony — Az.z

Higher-order Unification

{fz(yb)(ye) = fabe}
{z =a,yb=b,yc = c}> dacompose
{a =a,yb =0b,yc =c}
{yb=1b,yc = c}

imitate proect
{y = \z.b,yb = b, yc = c} {y = AXz.z,yb =b,yc = c}

{b=1b,b=c}
{b =c}

» Jensen and Pietrzykowski (1973): either

» imitation y — Az.b
> projectiony — Az.z

Higher-order Unification

{fz(yb)(ye) = fabe}
{z =a,yb=b,yc = c}> dacompose
{a =a,yb =0b,yc =c}
{yb=1b,yc = c}
imitate proect
{y = \z.b,yb = b, yc = c} {y = AXz.z,yb =b,yc = c}
{b=1b,b=c}
{b =c}

X

» Jensen and Pietrzykowski (1973): either

» imitation y — Az.b
> projectiony — Az.z

Higher-order Unification

{fz(yb)(ye) = fabe}
{z =a,yb=b,yc = c}> dacompose
{a =a,yb =0b,yc =c}
{yb="b,yc = c}
imitate proect
{y = Az.b, yb =b,yc = ¢} {yikz.z,yb—;b,ycic}>
{b=0b,b=—c} {b=">b,c =c}
{b=c}

X

» Jensen and Pietrzykowski (1973): either

» imitation y — Az.b
> projectiony — Az.z

Higher-order Unification

{fw(yb)(yc) = fabc}
{x = a, yb = b, yc - C}> d‘%amposg
{a = a,yb = b, yc = c}

{yb=b,yc = c}
imitate prgect

{b=0b,b=—c} {b=">b,c =c}
{b =c} {c = c}

X

» Jensen and Pietrzykowski (1973): either

» imitation y — Az.b
» projectiony — Az.z

{y = Az.b, yb =b,yc = ¢} {yikz,z,ybﬁb,ycﬁc}g

Higher-order Unification

{fz(yb)(yec) = fabe}
{z =a,yb=0b,yc = C}> dﬁcampogg
{a = a,yb = b, yc = c}

{yb= b, yc = c}

imitate proect

{y = \z.b,yb = b, yc = c} {y = AXz.z,yb =b,yc = c}
{b=0b,b=—c} {b=">b,c =c}
{b =c} {c = c}
% 1]
¢ \/

» Jensen and Pietrzykowski (1973): either

» imitation y — Az.b
> projectiony — Az.z

Higher-order Unification - flexible pairs

Higher-order Unification - flexible pairs

» xab = y(fa)a

Higher-order Unification - flexible pairs

» xab = y(fa)a
> X Azy,20.7(fz1)C; Yy > Azq, 2p.721C

Higher-order Unification - flexible pairs

» xab = y(fa)a
> X Azy,20.7(fz1)C; Yy > Azq, 2p.721C
> X AZ1,20.CY > AZ1,20.C

Higher-order Unification - flexible pairs

» xab = y(fa)a
> X Az1,20.7(fz1) ¢y — Azy, 20.121C
> X AZ1,20.CY > AZ1,20.C

{u = u} us {/\XikZ(JTk) = /\XTCU} us .
———— delete — bind
S {{{z A% o)) U (S) Ig
{Axca(Ty) = Axpa(iy } US Lecom
{AXg.v1 = AXug, ..., AX0y = ARy JUS P
Wey(m) = Mmbius ATy (i) = \Ga(an)} US
- — imitate - —
{y Ty=t Ty, A%y () = Axe.b(0n)} US {y 1y= s Ty, Ay () = Axa(om) } US

Wherea € X ora € x; b € X; z does not occur in v;
o = [A%gv/x]; t = A%b(ym (¥n));
s = AXy.x;(y; (%)) for 0 < i <mand | = ty(x;).

project

H(@erder Unification: non-termination

H@Mraom{er Unification: non~termination

» Enumerates a minimal complete set of unifiers.

H@Mraorder Unification: non~termination

» Enumerates a minimal complete set of unifiers.
» Can be infinite:

- x(fa) = f(xa):

» x— Azf"zforalln > 0.

Hi@h@rﬁorder Unification: non-termination

» Enumerates a minimal complete set of unifiers.
» Can be infinite:

- x(fa) = f(xa):

» x— Azf"zforalln > 0.

» Second-order unification problem is undecdiable (Goldfarb
1981)

H(@h@rﬁorder Unification: non-termination

» Enumerates a minimal complete set of unifiers.
» Can be infinite:

» x(fa) = f(xa):

» x— Azf"zforalln > 0.

» Second-order unification problem is undecdiable (Goldfarb
1981)

» Higher-order unification problem is semi-decidable

H(@Mwm{er Unification - Overview

HO unification

o

Im/\pmvgmgmg Decidable Fm@ments

Regularity Einite
\

SN

Tnfinite Tattems Ramified types

e

Monadic SO Context Dependent types

H(@erder Unification - Overview

HO unification

o

Im/\pmvgmgms Decidable Fm@ments
Regularity Finite
\
Tnfinite Battems Ramified types

1991 \ 1996

Monadic SO Context Dependent types
1988 2015 2011

H(@erder Unification - Overview

HO unification

o

Im/\pmvgmgms Decidable Fm@ments

Regularity Einite

Tnfinite Tattems Ramified types
1991 1996
Monadic SO Context [Dependent types
1988 2015 2011
Tmproved termination Extended pattems

m@ular tree auntomata

H@hawm{er Unification - Overview

HO unification

o

Im/\pmvgmgmg Decidable Fm@ments

Regularity Finite

Tnfinite Tattems Ramified types

1991 1996
Monadic SO Context [Dependent types
1988 2015 2011
Trproved termination Extended pattems

m@u(ﬂr tree auntomata

Cantor’s Theorem

Cantor’s Theorem

Cantor’s Theorem

{z:ax & f(x)}

Cantor’s diagional set

Cantor’s Theorem

{z:ax & f(x)}

Cantor’s diagional set

Andrews-Miller-Cohen-Pfenning ('84)
—3fisisoVbisoda; : fla) =0

Cantor’s Theorem

{z:ax & f(x)}

Cantor’s diagional set

Andrews-Miller-Cohen-Pfenning ('84)
—3fisisoVbisoda; : fla) =0

LEO-III HOL Theorem Prover

Cantor’s Theorem

{z:ax & f(x)}

Cantor’s diagional set

Andrews-Miller-Cohen-Pfenning ('84)
—3fisisoVbisoda; : fla) =0

Az.—f (Z,z) <<— LEO-III HOL Theorem Prover

Cantor’s Theorem

{z:ax & f(x)}

Cantor’s diagional set

Andrews-Miller-Cohen-Pfenning ('84)
—3fisisoVbisoda; : fla) =0

i?

Az.—f (Z,z) <<— LEO-III HOL Theorem Prover

Cantor’s Theorem

{z:ax & f(x)}

Cantor’s diagional set

Andrews-Miller-Cohen-Pfenning ('84)
—3fisisoVbisoda; : fla) =0
i ?

Az.—f (Z,z) <<— LEO-III HOL Theorem Prover

A Y

Huet's pre-unification procedure ('75)

Cantor’s Theorem

{z:ax & f(x)}

Cantor’s diagional set

Andrews-Miller-Cohen-Pfenning ('84)
—3fisisoVbisoda; : fla) =0
i ?

Az.—f (Z,z) <<— LEO-III HOL Theorem Prover

A Y

Huet's pre-unification procedure ('75)

» Semi-decidable

FOI’CLV\@ termination

Forang termination

» Search space is prunned to be finite.

Forang termination

» Search space is prunned to be finite.

Forang termination

» Search space is prunned to be finite. >

>\Z.f92

Fbrcin@ termination

» Search space is prunned to be finite. >
» Several problems: w <\

» Incomplete - bound must be big enough. 9
Az.f7z

Forang termination

» Search space is prunned to be finite.
» Several problems: x |
» Incomplete - bound must be big enough.

Fbrcin@ termination

» Search space is prunned to be finite.

» Several problems: x

» Incomplete - bound must be big enough.
» Inefficient - bound must be as small as possible:

Forang termination

» Search space is prunned to be finite.

» Several problems: x
» Incomplete - bound must be big enough.
» Inefficient - bound must be as small as possible:
» Some problems cannot have bounds.

@t’cm@ termination

» Search space is prunned to be finite.

» Several problems:
» Incomplete - bound must be big enough.
» Inefficient - bound must be as small as possible.
» Some problems cannot have bounds.

» This part: a second-order pre-unification procedure.

» Sound and complete.
» Same complexity as Huet’s pre-unification procedure.
» Terminates on more problems than Huet’s.

> including all problems generated by LEO-III
for Cantor’s theorem.

TNon-termination

Ty = "xQY

Non-termination

Ty = DxQY
project / \immte

rTo = Az.zZ,xTQY = "TQY To = Az.1x12,TQY = TTQY

Non-termination

Ty = DxQY
project / \imimte
rTo = Az.zZ,xTQY = "TQY To = Az.1x12,TQY = TTQY
bind/ \bir\d

Non-termination

Ty = DxQY
project / \imimte
rTo = Az.zZ,xTQY = "TQY To = Az.1x12,TQY = TTQY
bind/ \bir\d
\Aawmpose

T1Y = "xT1Y

Non-termination

TOY = "TQY
P(1), " NI

yiﬁy wlyi—uply

Non-termination

TOY = "TQY
P(1), " NI

yiﬁy wlyi—uply

Non-termination

Ty = DxQY
P(1), " NI
y = -y 1Y = Ty

F(2), 7 N\ @)

yﬁ—vy x2yi—|x2y

Non-termination

Ty = DxQY
P(1), " NI
y = -y 1Y = Ty

F(2), 7 N\ @)

gg Yy = "y x2yi—|x2y

Non-termination o

QY = "xQyY
P(1) N\ I

Yy ="y X1y = "T1yY

m(QV \3(2)

5‘3 Yy = "y xoY = Ty

.. TEYALAr Infinite tree

r - -

oy = Ty
P(1) N\ I
=y Ty = Ty

F(2), 7 N\ @)

5‘3 Y=Y xTQY = TTQY .-

TNon-termination

» Semi-decidable: possible non-termination only if not unifiable.

.. TEYALAr Infinite tree

Non-termination ,
xQy = —xQy
F(1), 7 N\ FQ)
Yy ="y xT1y = "T1Y
B (QV \ 3(2)

5‘3 Y=Y xTQY = TTQY .-

» Semi-decidable: possible non-termination only if not unifiable.

» Levy ('98): possible non-termination only if we can encounter
cycles.

... EGULAT infinite tree

Non-termination ,
xQy = —xQy
F(1), 7 N\ FQ)
Yy ="y xT1y = "T1Y
B (QV \ 3(2)

5‘3 Y=Y xTQY = TTQY .-

» Semi-decidable: possible non-termination only if not unifiable.

» Levy ('98): possible non-termination only if we can encounter
cycles.

» Lemma 1: e is unifiable iff 37 > 0 (i) is unifiable.

Non-termination "
xOy = _‘xoy
‘13(1)/ \j(l)
Y = Y :Uly = _‘:Uly
T(2), 7 N\ I 2
5‘3 Yy = "y Toy -

v

v

cycles.

v

v

Lemma 2: Vi,j > 0B(i) is unifiable if B (j) is.

.. TEYALAr Infinite tree

Semi-decidable: possible non-termination only if not unifiable.
Levy ('98): possible non-termination only if we can encounter

Lemma 1: e is unifiable iff 37 > 0 (i) is unifiable.

Cyclic equations ~ monadic signature

xgt = C(xzqgs)

Cyclic equations ~ monadic signature

N4

xg € FV(t, C, s)

Cyclic equations -~ monadic signature

xgt = C(xzqgs)

fvot = C(wOS)
‘B(m) S J(m)
t = C/(s) xmtiC(xms)
B2m) L J(@2m) :
tiC(s) met—C(mes) “““ .

Cyclic equations -~ monadic signature

xgt = C(xzqgs)

mot = C(wOS)
‘B(m) S J(m)
t = C/(s) xmtiC(xms)
B2m) LIeEm) :
t = C(S) $2mt = C(mes) ~~~~~ .
Lemmal Lemmaz

Cyclic equations -~ monadic signature

xgt = C(xzqgs)

fvot = C(wOS)
‘B(m) S J(m)
t = C/(s) xmtiC(xms)
B2m) LIeEm) :
t = C(S) $2mt = C(mes) ~~~~~ .
Lemmal Lemmaz

\V4

Cyclic equations -~ monadic signature

xgt = C(xzqgs)

fvot = C(wOS)
‘B(m) S J(m)
t = C/(s) xmtiC(xms)
B2m) LIeEm) :
t = C(S) $2mt = C(mes) ~~~~~ .
Lemmal Lemmaz

Vv VvV

Cyclic equations -~ monadic signature

xgt = C(xzqgs)

fvot = C(wOS)
‘B(m) S J(m)
t = C/(s) xmtiC(xms)
B2m) LIeEm) :
t = C(S) $2mt = C(mes) ~~~~~ .
Lemmal Lemmaz

Vv VvV

Cyclic equations -~ monadic signature

xgt = C(xzqgs)

mot = C(wo 8) e
(m) S J(m) e
t = C/(s) xmtiC(acms)
B(2m) LI@m)
t = C(S) $2mt = C(w2m8)
Lemmal Lemmaz 7

Vv VvV

» Theorem: e is unifiable iff 30 < i < m s.t. (i) is unifiable.

Cyclic equations -~ monadic signature

xgt = C(xzqgs)

mot = C(wOS)
(m) JIlm)y T _
>t =0C(s) wmtiC(xms))

simpler \ B (2 m) E (2m)

t = c(s) 2ot = C(w2ms) .~ ;
Lemmal Lemmaz =

Vv VvV

» Theorem: e is unifiable iff 30 < i < m s.t. (i) is unifiable.

Cyclic equations -~ monadic signature

xgt = C(xzqgs)

:not N C’(:Bos)
(m) LIm) T _
_ >t =C(s) :cmtiC(xms) .‘

simpler \ P (2m) } ‘ 3 (2m)

t = C(s) Tomt = C(:Bzms)
Lenmal Lemma 2

Vv VvV

» Theorem: e is unifiable iff 30 < i < m s.t. (i) is unifiable.

» Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer '88 for full monadic SOU)

Non-monadic cyclic equations

zo(—y1) = zoy2 V ¥3

Non-monadic cyclic equations

zo(—y1) = zoy2 V ¥3
‘13(}% NI

—y1 =ya Vyz 1(7y1) =z1y2 Vwiy2 | w1yl = y3

Non-monadic cyclic equations

zo(—y1) = zoy2 V ¥3
‘B(V NI

;,‘:‘gﬁyl =y2 Vyz =x1(7y1) =z1y2 Vwiy2 | w1yl = y3

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 = y2 V y3 wl(ﬁyl)iw1y2\/ww?|wlylﬁy3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 = y2 V y3 wl(ﬁyl)iw1y2\/ww?|wlylﬁy3

PR \U3(2)

Y1 =y Vwiyg | w1yl = ¥y3

\ . .
\Zvé $2(ﬁy1)=w2y2\/w2y2|ww1 =y3+1

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 = y2 V y3 m1(ﬁ1»/1)i901y2\/w1112|w1111iy3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3
z2(—y1) = x2y2 V way?2 | w1yl = y3+1

PBB) %3)
-yl = yg Vwayg | w1yl = y3+1

x3(—-y1) = r3yg V w3zy2 | w1yl = y3z+2

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 = y2 V y3 m1(ﬁ1»/1)i901y2\/w1112|w1111ﬁy3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3
z2(—y1) = x2y2 V way?2 | w1yl = y3+1

PBB) %3)
-yl = yg Vwayg | w1yl = y3+1

v ‘ '

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 = y2 V y3 m1(ﬁ1»/1)i901y2\/w1112|w1111iy3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1

PBB) %3)
-yl = yg Vwayg | w1yl = y3+1

x3(—-y1) = r3yg V w3zy2 | w1yl = y3z+2

‘)3(42/

Y1 =y V w3y | w1yl = y3 42

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 = y2 V y3 m1(ﬁ1»/1)i901y2\/w1112|w1111iy3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1

PBB) %3)
-yl = yg Vwayg | w1yl = y3+1

x3(—-y1) = r3yg V w3zy2 | w1yl = y3z+2

g‘g ‘33(42/

Y1 = yo V w3y | w1yl = y3 42

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
33(}% ANAEY)
—y1 = y2 V y3 m1(ﬁ1»/1)i901y2\/wly?|wlyliy3

B(2), 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
B(3) %3)

-yl = yo Vwoys | w1yl = y3+1

x3(—y1) = z3y2 V w3zy?2 | w1yl = y3+2

‘33(42/ \

—y1 = yg V w3y | w1yl = y3 42

s it m@mmr?

Non-monadic cyclic equations
zo(—y1) = zoy2 V ¥3
P(1) N3

—y1 =ya Vyz z1(7y1) =1y V wiy2 | w1yl = Y3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
BB, %3)

-yl = yg Vwayg | w1yl = y3+1

x3(—-y1) = r3yg V w3zy2 | w1yl = y3z+2

‘)3(42/

Y1 =y V w3y | w1yl = y3 42

Lenmmal Lemma2

Non-monadic cyclic equations
zo(—y1) = zoy2 V ¥3
P(1) N3

—y1 =yga Vyg x1(0yy1) =2x7y2 V wiy2 | w1yl = y3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
RE), N
-yl = yg Vwayg | w1yl = y3+1

x3(-y1) = r3yg V w3zy2 | w1yl = y3z+2

‘)3(42/

Y1 =y V w3y | w1yl = y3 42

Lenmmal Lemma2

Non-monadic cyclic equations
zo(—y1) = zoy2 V ¥3
P(1) N3

—y1 =ya Vyz z1(7y1) =1y V wiy2 | w1yl = Y3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
BB, %3)

-yl = yg Vwayg | w1yl = y3+1

x3(—-y1) = r3yg V w3zy2 | w1yl = y3z+2

‘)3(42/

Y1 =y V w3y | w1yl = y3 42

Lenmmal Lemma2

\V

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
NI
Y1 = Y2 ﬁyl)—wly2VW1y2|wlylﬁy3

. ‘ J3(2)
Y1 =y vV wiyg gl = Y3

2(2y1) = zoyo V way2 | w1yl = y3+1

(3)
—y1 = yo V waoysg | wiwyy = y3+1\\

y1) = x3y2 V w3zy2 | wiyy = y3+2

Y1 = yg V w3y | w1yl = y3 42

Lenmmal Lemma2

\V

Non-monadic cyclic equations
zo(—y1) = zoy2 V ¥3
P(1) N3

—y1 =ya Vyz z1(7y1) =1y V wiy2 | w1yl = Y3

PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
BB, %3)

-yl = yg Vwayg | w1yl = y3+1

x3(—-y1) = r3yg V w3zy2 | w1yl = y3z+2

‘)3(42/

Y1 =y V w3y | w1yl = y3 42

Lenmmal Lemma2

\V ?

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 =y2 Vysz =1(7y1) ==z1y2 V wiy2 | w1yl = Y3
B(2), 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
PT(3) P(3) %3)
-yl = yo Vwoys | w1yl = y3+1
z3(—y1) = x3yg V w3y2 | w1yl = y3+2
P (a) B(4)

Y1 =y V w3y | w1yl = y3 42

Lenmmal Lemma2

\V ?

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 =y2 Vysz =1(7y1) ==z1y2 V wiy2 | w1yl = Y3
B(2), 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
PT(3) P(3) %3)
-yl = yo Vwoys | w1yl = y3+1
z3(—y1) = x3yg V w3y2 | w1yl = y3+2
P (a) B(4)

Y1 =y V w3y | w1yl = y3 42

Lommal Lemma2 Lemma2¥

\V ?

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 =y2 Vysz =1(7y1) ==z1y2 V wiy2 | w1yl = Y3
B(2), 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
PT(3) P(3) %3)
-yl = yo Vwoys | w1yl = y3+1
z3(—y1) = x3yg V w3y2 | w1yl = y3+2
P (a) B(4)

Y1 =y V w3y | w1yl = y3 42

Lommal Lemma2 Lemma2¥

\V ? \V

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 =y2 Vysz =1(7y1) ==z1y2 V wiy2 | w1yl = Y3
PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
PT(3) P(3) %3)
-yl = yo Vwoys | w1yl = y3+1
z3(—y1) = x3yg V w3y2 | w1yl = y3+2
P (a) B(4)

Y1 =y V w3y | w1yl = y3 42

P (i) € P(9)
Lommal Lemma2 Lemma2¥

\/ ? \/ UB(3)) C UCBT (%))

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 =y2 Vysz =1(7y1) ==z1y2 V wiy2 | w1yl = Y3
PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
PT(3) P(3) %3)
-yl = yo Vwoys | w1yl = y3+1
z3(—y1) = x3yg V w3y2 | w1yl = y3+2
P (a) B(4)

Y1 =y V w3y | w1yl = y3 42

P (i) € P(9)
Lommal Lemma2 Lemma2¥

\/ \/ UB(3)) C UCBT (%))

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 =y2 Vysz =1(7y1) ==z1y2 V wiy2 | w1yl = Y3
PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(—y1) = x2y2 V way?2 | w1yl = y3+1
PT(3) P(3) %3)
-yl = yo Vwoys | w1yl = y3+1
z3(—y1) = x3yg V w3y2 | w1yl = y3+2
P (a) B(4)

Y1 =y V w3y | w1yl = y3 42

P (i) € P(9)
Lommal Lemma2 Lemma2¥

\/ \/ UP (i) C UBT (1))
» Theorem: e is unifiable only if 30 < i < 3m s.t. B (i) is unifiable.

Non-monadic cyclic equations

zo(—y1) = zoy2 V y3
B NI
—y1 =y2 Vysz =1(7y1) ==z1y2 V wiy2 | w1yl = Y3
PB(2),— 3(2)

Y1 =y Vwiyg | w1yl = ¥y3

z2(-y1) = zayg V way?2 | w1yl = y3+1
B (3) ‘13(3)‘/ YES)
—Y1 = Y2 \//wgryg w1yl = y3+1
simple? z3(-y1) = 23y V w3y2 | w1yl = ¥z +2
\‘Ji_ (4) ‘33(42/

Y1 = yo V w3y | w1yl = y3 42

P (i) € P(9)
Lommal Lemma2 Lemma2¥

\/ \/ UP (i) C UBT (1))
» Theorem: e is unifiable only if 30 < i < 3m s.t. B (i) is unifiable.

Decidable fragements of Prg‘ected Cycles

» B~ unifiable?

Decidable fragerments of Prjected Cycles

» B~ unifiable?

» Simple such decidable classes

Decidable fragerments of Prjected Cycles

» B~ unifiable?
» Simple such decidable classes
» Stronger classes: regular tree automata

Decidable fragerments of Prjected Cycles

» B~ unifiable?

» Simple such decidable classes

» Stronger classes: regular tree automata
» Idea: P\ P~ are freely generated

Oecidable fragements of Prjected Cycles

B~ unifiable?
Simple such decidable classes

v

v

v

Stronger classes: regular tree automata

v

Idea: P \ P~ are freely generated

v

Regular tree language + unifier for ‘B~ = decidability

Tattem unification

» Most usefull subclass: higher-order unitary unification.

Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:
» Proof assistants and Logical frameworks

Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

» variables are applied to a distinct list of bound variables:

atterm unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

» variables are applied to a distinct list of bound variables:
» Pattern: Azyzp.xz1 = fyz12o

atterm unification

>

>

v

v

v

Most usefull subclass: higher-order unitary unification.
Applications:

» Proof assistants and Logical frameworks
» AProlog

variables are applied to a distinct list of bound variables:
Pattern: Azjzp.xz1 = fyz1zo
Non-pattern: Azyzp.xz1z1 = a

atterm unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

v

variables are applied to a distinct list of bound variables:

v

Pattern: Azjzp.xz1 = fyz1zo

v

Non-pattern: Azyzp.xz1z1 = a

v

Idea: Determinism between (Project) and (Imitate)

atterm unification

>

>

v

v

v

v

v

Most usefull subclass: higher-order unitary unification.
Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

variables are applied to a distinct list of bound variables:
Pattern: Azjzp.xz1 = fyz1zo

Non-pattern: Azyzp.xz1z1 = a

Idea: Determinism between (Project) and (Imitate)
Higher-order patterns (Miller ‘91): same complexity as FOU

Extending Tatterm unification

» Many examples are unitary but are not patterns

Extending Tatterm unification

» Many examples are unitary but are not patterns
» Example:

Extending Tatterm unification

» Many examples are unitary but are not patterns

» Example:
» Coq ssreflect:bigop (foldr)
» Azx(fz) =t

Extending Tatterm unification

» Many examples are unitary but are not patterns

» Example:
» Coq ssreflect:bigop (foldr)
» Azx(fz) =t

» AProlog

Extending Tatterm unification

» Many examples are unitary but are not patterns

» Example:
» Coq ssreflect:bigop (foldr)
» Azx(fz) =t

» AProlog

> CECEY

Extending Tatterm unification

» Many examples are unitary but are not patterns
y p y P

» Example:
» Coq ssreflect:bigop (foldr)
» Azx(fz) =t
» AProlog

> CECEY

» Remember: Determinism between (Project) and (Imitate)

Extending Tatterm unification

» Many examples are unitary but are not patterns

» Example:
» Coq ssreflect:bigop (foldr)
» Azx(fz) =t
» AProlog

> ...
» Remember: Determinism between (Project) and (Imitate)

» Class: restricting terms and subtle subterm relation

>

>

v

v

v

Extending Tatterm unification

Many examples are unitary but are not patterns

Example:
» Coq ssreflect:bigop (foldr)
» Azx(fz) =t
» AProlog

> ...
Remember: Determinism between (Project) and (Imitate)

Class: restricting terms and subtle subterm relation
Examples:

Extending Tatterm unification

» Many examples are unitary but are not patterns

» Example:
» Coq ssreflect:bigop (foldr)
» Azx(fz) =t
» AProlog

> CECEY
» Remember: Determinism between (Project) and (Imitate)
» Class: restricting terms and subtle subterm relation

» Examples:
» Extended patterns: Azy, z0.x(fz1)(gz122) = y(fz1)

Extending Tatterm unification

» Many examples are unitary but are not patterns

» Example:
» Coq ssreflect:bigop (foldr)
» Azx(fz) =t
» AProlog

> CECEY
» Remember: Determinism between (Project) and (Imitate)
» Class: restricting terms and subtle subterm relation
» Examples:

» Extended patterns: Azy, z0.x(fz1)(gz122) = y(fz1)
» Non E-patterns: Azq,25.x(fz1)(gz122) = yz1

Conclusion

» Active research:

Conclusion

» Active research:
» Define tree automata class

Conclusion

» Active research:

» Define tree automata class
» Add abstractions to extended patterns

Conclusion

» Active research:

» Define tree automata class
» Add abstractions to extended patterns

» Implementation:

Conclusion

» Active research:
» Define tree automata class
» Add abstractions to extended patterns
» Implementation:
» Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, AProlog,
theorem provers.

Conclusion

» Active research:
» Define tree automata class
» Add abstractions to extended patterns
» Implementation:
» Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, AProlog,
theorem provers.
» Improved termination: theorem provers

Conclusion

» Active research:
» Define tree automata class
» Add abstractions to extended patterns
» Implementation:
» Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, AProlog,
theorem provers.
» Improved termination: theorem provers

» Comparisons:

Conclusion

» Active research:
» Define tree automata class
» Add abstractions to extended patterns
» Implementation:
» Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, AProlog,
theorem provers.
» Improved termination: theorem provers
» Comparisons:

» theorem provers with variations of the two unification
procedures

