
Higher-order Unification
(a personal perspective)

Tomer Libal

Inria, France

EMCL Workshop 2016
Vienna, February 12

History

History

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

Can we automate this? After a ll, computational logic is about mehcanizing logic

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

Can we automate this? After a ll, computational logic is about mehcanizing logic

30 years: Preßburger arithmetic, tableaux, heuristics, Davis-Putnam

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

Can we automate this? After a ll, computational logic is about mehcanizing logic

30 years: Preßburger arithmetic, tableaux, heuristics, Davis-Putnam

But, the Herband Space is inf inite!

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

Can we automate this? After a ll, computational logic is about mehcanizing logic

30 years: Preßburger arithmetic, tableaux, heuristics, Davis-Putnam

But, the Herband Space is inf inite!
Prawitz (1960): try my Unif ication method!

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

Can we automate this? After a ll, computational logic is about mehcanizing logic

30 years: Preßburger arithmetic, tableaux, heuristics, Davis-Putnam

But, the Herband Space is inf inite!
Prawitz (1960): try my Unif ication method!

Thanks! It is exactly what we looked for

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

Can we automate this? After a ll, computational logic is about mehcanizing logic

30 years: Preßburger arithmetic, tableaux, heuristics, Davis-Putnam

But, the Herband Space is inf inite!
Prawitz (1960): try my Unif ication method!

Thanks! It is exactly what we looked for

Herbrand (1930): so why have you waited 30 years? Look at my Property A!

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

History
How can we proceed?

Herbrand (1930): just apply a f inite number of contractions and instantiations

Can we automate this? After a ll, computational logic is about mehcanizing logic

30 years: Preßburger arithmetic, tableaux, heuristics, Davis-Putnam

But, the Herband Space is inf inite!
Prawitz (1960): try my Unif ication method!

Thanks! It is exactly what we looked for

Herbrand (1930): so why have you waited 30 years? Look at my Property A!

 In 1962 J.A. Robinson has read Prawitz's paper and
in January 1965 the Resolution method was published

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx

F irst-order Unif ication

I Applications:

I Automated deduction (Resolution, Tableau, . . .)

I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)

I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)

I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)

I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)

I Linguistics (Unification-based grammars,. . .)
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)

I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting,

pattern matching, . . .
I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting, pattern matching,

. . .
I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting, pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting, pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting, pattern matching, . . .

I Algorithms:
I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting, pattern matching, . . .

I Algorithms:
I Robinson (1965) - exponential
I Huet (1976) - "almost" linear, infinite terms

I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . .)
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . .)
I Linguistics (Unification-based grammars,. . .)
I Term rewriting, pattern matching, . . .

I Algorithms:
I Robinson (1965) - exponential
I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient

F irst-order Unif ication - Basic Algorithm

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

decompose

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

decompose

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

decompose

bind

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

decompose

bind

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

decompose

bind

delete

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

F irst-order Unif ication - Basic Algorithm

decompose

bind

delete

V

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ

Higher-order Unif ication

I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)

I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)

I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)

I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)

I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)

I Linguistics (Ellipsis, . . .)
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)

I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting,

Meta-logic, . . .
I Example (linguistics):

I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting, Meta-logic,

. . .
I Example (linguistics):

I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(z))

I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))

I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . .)
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . .)
I Linguistics (Ellipsis, . . .)
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))

Higher-order Unif ication

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

imitate

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

imitate project

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

imitate project

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

imitate project

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

imitate project

X
I Jensen and Pietrzykowski (1973): either

I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

imitate project

X
I Jensen and Pietrzykowski (1973): either

I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

imitate project

X
I Jensen and Pietrzykowski (1973): either

I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication
decompose
bind
delete

imitate project

X V
I Jensen and Pietrzykowski (1973): either

I imitation y 7→ λz.b
I projection y 7→ λz.z

Higher-order Unif ication - f lexible pairs

I xab .
= y(fa)a

I x 7→ λz1, z2.r(fz1)c; y 7→ λz1, z2.rz1c
I x 7→ λz1, z2.c; y 7→ λz1, z2.c

{u .
= u} ∪ S

S delete
{λxk.z(xk)

.
= λxk.v} ∪ S

{〈〈z, λxk.v〉〉} ∪ σ(S) ↓β
bind

{λxk.a(vn)
.
= λxk.a(un} ∪ S

{λxk.v1
.
= λxk.u1, . . . , λxk.vn

.
= λxk.un} ∪ S

decomp

{λxk.y(un)
.
= λxk.b(vm)} ∪ S

{y ↑η
.
= t ↑η , λxk.y(un)

.
= λxk.b(vm)} ∪ S

imitate
{λxk.y(un)

.
= λxk.a(vm)} ∪ S

{y ↑η
.
= s ↑η , λxk.y(un)

.
= λxk.a(vm)} ∪ S

project

Where a ∈ Σ or a ∈ xk ; b ∈ Σ; z does not occur in v;
σ = [λxk .v/x]; t = λxn .b(ym(xn));
s = λxn .xi(yl(xn)) for 0 < i ≤ n and l = ty(xi).

Higher-order Unif ication - f lexible pairs
I xab .

= y(fa)a

I x 7→ λz1, z2.r(fz1)c; y 7→ λz1, z2.rz1c
I x 7→ λz1, z2.c; y 7→ λz1, z2.c

{u .
= u} ∪ S

S delete
{λxk.z(xk)

.
= λxk.v} ∪ S

{〈〈z, λxk.v〉〉} ∪ σ(S) ↓β
bind

{λxk.a(vn)
.
= λxk.a(un} ∪ S

{λxk.v1
.
= λxk.u1, . . . , λxk.vn

.
= λxk.un} ∪ S

decomp

{λxk.y(un)
.
= λxk.b(vm)} ∪ S

{y ↑η
.
= t ↑η , λxk.y(un)

.
= λxk.b(vm)} ∪ S

imitate
{λxk.y(un)

.
= λxk.a(vm)} ∪ S

{y ↑η
.
= s ↑η , λxk.y(un)

.
= λxk.a(vm)} ∪ S

project

Where a ∈ Σ or a ∈ xk ; b ∈ Σ; z does not occur in v;
σ = [λxk .v/x]; t = λxn .b(ym(xn));
s = λxn .xi(yl(xn)) for 0 < i ≤ n and l = ty(xi).

Higher-order Unif ication - f lexible pairs
I xab .

= y(fa)a
I x 7→ λz1, z2.r(fz1)c; y 7→ λz1, z2.rz1c

I x 7→ λz1, z2.c; y 7→ λz1, z2.c

{u .
= u} ∪ S

S delete
{λxk.z(xk)

.
= λxk.v} ∪ S

{〈〈z, λxk.v〉〉} ∪ σ(S) ↓β
bind

{λxk.a(vn)
.
= λxk.a(un} ∪ S

{λxk.v1
.
= λxk.u1, . . . , λxk.vn

.
= λxk.un} ∪ S

decomp

{λxk.y(un)
.
= λxk.b(vm)} ∪ S

{y ↑η
.
= t ↑η , λxk.y(un)

.
= λxk.b(vm)} ∪ S

imitate
{λxk.y(un)

.
= λxk.a(vm)} ∪ S

{y ↑η
.
= s ↑η , λxk.y(un)

.
= λxk.a(vm)} ∪ S

project

Where a ∈ Σ or a ∈ xk ; b ∈ Σ; z does not occur in v;
σ = [λxk .v/x]; t = λxn .b(ym(xn));
s = λxn .xi(yl(xn)) for 0 < i ≤ n and l = ty(xi).

Higher-order Unif ication - f lexible pairs
I xab .

= y(fa)a
I x 7→ λz1, z2.r(fz1)c; y 7→ λz1, z2.rz1c
I x 7→ λz1, z2.c; y 7→ λz1, z2.c

{u .
= u} ∪ S

S delete
{λxk.z(xk)

.
= λxk.v} ∪ S

{〈〈z, λxk.v〉〉} ∪ σ(S) ↓β
bind

{λxk.a(vn)
.
= λxk.a(un} ∪ S

{λxk.v1
.
= λxk.u1, . . . , λxk.vn

.
= λxk.un} ∪ S

decomp

{λxk.y(un)
.
= λxk.b(vm)} ∪ S

{y ↑η
.
= t ↑η , λxk.y(un)

.
= λxk.b(vm)} ∪ S

imitate
{λxk.y(un)

.
= λxk.a(vm)} ∪ S

{y ↑η
.
= s ↑η , λxk.y(un)

.
= λxk.a(vm)} ∪ S

project

Where a ∈ Σ or a ∈ xk ; b ∈ Σ; z does not occur in v;
σ = [λxk .v/x]; t = λxn .b(ym(xn));
s = λxn .xi(yl(xn)) for 0 < i ≤ n and l = ty(xi).

Higher-order Unif ication - f lexible pairs
I xab .

= y(fa)a
I x 7→ λz1, z2.r(fz1)c; y 7→ λz1, z2.rz1c
I x 7→ λz1, z2.c; y 7→ λz1, z2.c

{u .
= u} ∪ S

S delete
{λxk.z(xk)

.
= λxk.v} ∪ S

{〈〈z, λxk.v〉〉} ∪ σ(S) ↓β
bind

{λxk.a(vn)
.
= λxk.a(un} ∪ S

{λxk.v1
.
= λxk.u1, . . . , λxk.vn

.
= λxk.un} ∪ S

decomp

{λxk.y(un)
.
= λxk.b(vm)} ∪ S

{y ↑η
.
= t ↑η , λxk.y(un)

.
= λxk.b(vm)} ∪ S

imitate
{λxk.y(un)

.
= λxk.a(vm)} ∪ S

{y ↑η
.
= s ↑η , λxk.y(un)

.
= λxk.a(vm)} ∪ S

project

Where a ∈ Σ or a ∈ xk ; b ∈ Σ; z does not occur in v;
σ = [λxk .v/x]; t = λxn .b(ym(xn));
s = λxn .xi(yl(xn)) for 0 < i ≤ n and l = ty(xi).

Higher-order Unif ication: non-termination

I Enumerates a minimal complete set of unifiers.

I Can be infinite:
I x(fa) .

= f (xa):
I x 7→ λz.f nz for all n ≥ 0.

I Second-order unification problem is undecdiable (Goldfarb
1981)

I Higher-order unification problem is semi-decidable

Higher-order Unif ication: non-termination
I Enumerates a minimal complete set of unifiers.

I Can be infinite:
I x(fa) .

= f (xa):
I x 7→ λz.f nz for all n ≥ 0.

I Second-order unification problem is undecdiable (Goldfarb
1981)

I Higher-order unification problem is semi-decidable

Higher-order Unif ication: non-termination
I Enumerates a minimal complete set of unifiers.
I Can be infinite:

I x(fa) .
= f (xa):

I x 7→ λz.f nz for all n ≥ 0.

I Second-order unification problem is undecdiable (Goldfarb
1981)

I Higher-order unification problem is semi-decidable

Higher-order Unif ication: non-termination
I Enumerates a minimal complete set of unifiers.
I Can be infinite:

I x(fa) .
= f (xa):

I x 7→ λz.f nz for all n ≥ 0.

I Second-order unification problem is undecdiable (Goldfarb
1981)

I Higher-order unification problem is semi-decidable

Higher-order Unif ication: non-termination
I Enumerates a minimal complete set of unifiers.
I Can be infinite:

I x(fa) .
= f (xa):

I x 7→ λz.f nz for all n ≥ 0.

I Second-order unification problem is undecdiable (Goldfarb
1981)

I Higher-order unification problem is semi-decidable

Higher-order Unif ication - Overview
HO unif ication

Decidable fragments

Regularity

Inf inite

F inite

Ramif ied typesPatterns

Monadic SO Context Dependent types

Improvements

Higher-order Unif ication - Overview
HO unif ication

Decidable fragments

Regularity

Inf inite

F inite

Ramif ied typesPatterns

Monadic SO Context Dependent types

Improvements

19961991

201120151988

Higher-order Unif ication - Overview
HO unif ication

Decidable fragments

Regularity

Inf inite

F inite

Ramif ied typesPatterns

Monadic SO Context Dependent types

Improvements

19961991

201120151988

Improved termination Extended patterns

regular tree automata

Higher-order Unif ication - Overview
HO unif ication

Decidable fragments

Regularity

Inf inite

F inite

Ramif ied typesPatterns

Monadic SO Context Dependent types

Improvements

19961991

201120151988

Improved termination Extended patterns

regular tree automata

Cantor's Theorem

I Semi-decidable

Cantor's Theorem

I Semi-decidable

Cantor's Theorem

Cantor's diagonal set

I Semi-decidable

Cantor's Theorem

Cantor's diagonal set
Andrews-Miller-Cohen-Pfenning ('84)

I Semi-decidable

Cantor's Theorem

Cantor's diagonal set
Andrews-Miller-Cohen-Pfenning ('84)

LEO-III HOL Theorem Prover

I Semi-decidable

Cantor's Theorem

Cantor's diagonal set
Andrews-Miller-Cohen-Pfenning ('84)

LEO-III HOL Theorem Prover

I Semi-decidable

Cantor's Theorem

Cantor's diagonal set
Andrews-Miller-Cohen-Pfenning ('84)

LEO-III HOL Theorem Prover

?

I Semi-decidable

Cantor's Theorem

Cantor's diagonal set
Andrews-Miller-Cohen-Pfenning ('84)

LEO-III HOL Theorem Prover

?

Huet's pre-unification procedure ('75)

I Semi-decidable

Cantor's Theorem

Cantor's diagonal set
Andrews-Miller-Cohen-Pfenning ('84)

LEO-III HOL Theorem Prover

?

Huet's pre-unification procedure ('75)

I Semi-decidable

Forcing termination

I Search space is prunned to be finite.
I Several problems:

I Incomplete - bound must be big enough.
I Inefficient - bound must be as small as possible.
I Some problems cannot have bounds.

I This part: a second-order pre-unification procedure.
I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Forcing termination
I Search space is prunned to be finite.

I Several problems:

I Incomplete - bound must be big enough.
I Inefficient - bound must be as small as possible.
I Some problems cannot have bounds.

I This part: a second-order pre-unification procedure.
I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Forcing termination
I Search space is prunned to be finite.

I Several problems:

I Incomplete - bound must be big enough.
I Inefficient - bound must be as small as possible.
I Some problems cannot have bounds.

I This part: a second-order pre-unification procedure.
I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Forcing termination
I Search space is prunned to be finite.

I Several problems:

I Incomplete - bound must be big enough.
I Inefficient - bound must be as small as possible.
I Some problems cannot have bounds.

I This part: a second-order pre-unification procedure.
I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Forcing termination
I Search space is prunned to be finite.
I Several problems:

I Incomplete - bound must be big enough.

I Inefficient - bound must be as small as possible.
I Some problems cannot have bounds.

I This part: a second-order pre-unification procedure.
I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Forcing termination
I Search space is prunned to be finite.
I Several problems:

I Incomplete - bound must be big enough.

I Inefficient - bound must be as small as possible.
I Some problems cannot have bounds.

I This part: a second-order pre-unification procedure.
I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Forcing termination
I Search space is prunned to be finite.
I Several problems:

I Incomplete - bound must be big enough.
I Inefficient - bound must be as small as possible.

I Some problems cannot have bounds.
I This part: a second-order pre-unification procedure.

I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Forcing termination
I Search space is prunned to be finite.
I Several problems:

I Incomplete - bound must be big enough.
I Inefficient - bound must be as small as possible.
I Some problems cannot have bounds.

I This part: a second-order pre-unification procedure.
I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Forcing termination
I Search space is prunned to be finite.
I Several problems:

I Incomplete - bound must be big enough.
I Inefficient - bound must be as small as possible.
I Some problems cannot have bounds.

I This part: a second-order pre-unification procedure.
I Sound and complete.
I Same complexity as Huet’s pre-unification procedure.
I Terminates on more problems than Huet’s.

I including all problems generated by LEO-III
for Cantor’s theorem.

Non-termination

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination
imitateproject

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination
imitateproject

bind bind

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination
imitateproject

bind bind

decompose

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

X

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

X

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

X
X

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

X
X

regular inf inite tree

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

X
X

regular inf inite tree

I Semi-decidable: possible non-termination only if not unifiable.

I Levy (’98): possible non-termination only if we can encounter
cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

X
X

regular inf inite tree

I Semi-decidable: possible non-termination only if not unifiable.
I Levy (’98): possible non-termination only if we can encounter

cycles.

I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

X
X

regular inf inite tree

I Semi-decidable: possible non-termination only if not unifiable.
I Levy (’98): possible non-termination only if we can encounter

cycles.
I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.

I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Non-termination

X
X

regular inf inite tree

I Semi-decidable: possible non-termination only if not unifiable.
I Levy (’98): possible non-termination only if we can encounter

cycles.
I Lemma 1: e is unifiable iff ∃i > 0 P(i) is unifiable.
I Lemma 2: ∀i, j > 0 P(i) is unifiable if P(j) is.

Cyclic equations - monadic signature

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

Lemma 1 Lemma 2

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

Lemma 1 Lemma 2

V

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

Lemma 1 Lemma 2

V V

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

Lemma 1 Lemma 2

V V

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

Lemma 1 Lemma 2

V V
I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

Lemma 1 Lemma 2

V V

simpler

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.

I Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer ’88 for full monadic SOU)

Cyclic equations - monadic signature

Lemma 1 Lemma 2

V V

simpler

I Theorem: e is unifiable iff ∃0 ≤ i ≤ m s.t. P(i) is unifiable.
I Corollary:Unification over monadic "cyclic equations" is

decidable. (Farmer ’88 for full monadic SOU)

Non-monadic cyclic equations

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

X

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1X

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

X

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
X

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2 is it regular?

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V ?

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V ?

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V ?
Lemma 2*

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V ?
Lemma 2*

V

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V ?
Lemma 2*

V

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V
Lemma 2*

VV

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V
Lemma 2*

VV
I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Non-monadic cyclic equations

+1

+2
+1

+2
Lemma 1 Lemma 2

V
Lemma 2*

VV

simpler?

I Theorem: e is unifiable only if ∃0 ≤ i ≤ 3m s.t. P−(i) is unifiable.

Decidable fragements of Projected Cycles
I P− unifiable?

I Simple such decidable classes
I Stronger classes: regular tree automata
I Idea: P \P− are freely generated
I Regular tree language + unifier for P− = decidability

Decidable fragements of Projected Cycles
I P− unifiable?
I Simple such decidable classes

I Stronger classes: regular tree automata
I Idea: P \P− are freely generated
I Regular tree language + unifier for P− = decidability

Decidable fragements of Projected Cycles
I P− unifiable?
I Simple such decidable classes
I Stronger classes: regular tree automata

I Idea: P \P− are freely generated
I Regular tree language + unifier for P− = decidability

Decidable fragements of Projected Cycles
I P− unifiable?
I Simple such decidable classes
I Stronger classes: regular tree automata
I Idea: P \P− are freely generated

I Regular tree language + unifier for P− = decidability

Decidable fragements of Projected Cycles
I P− unifiable?
I Simple such decidable classes
I Stronger classes: regular tree automata
I Idea: P \P− are freely generated
I Regular tree language + unifier for P− = decidability

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.

I Applications:

I Proof assistants and Logical frameworks
I λProlog
I . . .

I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks
I λProlog
I . . .

I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks

I λProlog
I . . .

I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks
I λProlog

I . . .
I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks
I λProlog
I . . .

I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks
I λProlog
I . . .

I variables are applied to a distinct list of bound variables:

I Pattern: λz1z2.xz1
.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks
I λProlog
I . . .

I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks
I λProlog
I . . .

I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks
I λProlog
I . . .

I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Pattern unif ication
I Most usefull subclass: higher-order unitary unification.
I Applications:

I Proof assistants and Logical frameworks
I λProlog
I . . .

I variables are applied to a distinct list of bound variables:
I Pattern: λz1z2.xz1

.
= fyz1z2

I Non-pattern: λz1z2.xz1z1
.
= a

I Idea: Determinism between (Project) and (Imitate)

I Higher-order patterns (Miller ’91): same complexity as FOU

Extending Pattern unif ication
I Many examples are unitary but are not patterns

I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t

I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog

I . . .
I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation

I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Extending Pattern unif ication
I Many examples are unitary but are not patterns
I Example:

I Coq ssreflect:bigop (foldr)
I λz.x(fz) .

= t
I λProlog
I . . .

I Remember: Determinism between (Project) and (Imitate)

I Class: restricting terms and subtle subterm relation
I Examples:

I Extended patterns: λz1, z2.x(fz1)(gz1z2)
.
= y(fz1)

I Non E-patterns: λz1, z2.x(fz1)(gz1z2)
.
= yz1

Conclusion
I Active research:

I Define tree automata class

I Add abstractions to extended patterns

I Implementation:

I Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, λProlog,
theorem provers.

I Improved termination: theorem provers

I Comparisons:

I theorem provers with variations of the two unification
procedures

Conclusion
I Active research:

I Define tree automata class

I Add abstractions to extended patterns
I Implementation:

I Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, λProlog,
theorem provers.

I Improved termination: theorem provers

I Comparisons:

I theorem provers with variations of the two unification
procedures

Conclusion
I Active research:

I Define tree automata class
I Add abstractions to extended patterns

I Implementation:

I Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, λProlog,
theorem provers.

I Improved termination: theorem provers

I Comparisons:

I theorem provers with variations of the two unification
procedures

Conclusion
I Active research:

I Define tree automata class
I Add abstractions to extended patterns

I Implementation:

I Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, λProlog,
theorem provers.

I Improved termination: theorem provers

I Comparisons:

I theorem provers with variations of the two unification
procedures

Conclusion
I Active research:

I Define tree automata class
I Add abstractions to extended patterns

I Implementation:
I Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, λProlog,

theorem provers.

I Improved termination: theorem provers
I Comparisons:

I theorem provers with variations of the two unification
procedures

Conclusion
I Active research:

I Define tree automata class
I Add abstractions to extended patterns

I Implementation:
I Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, λProlog,

theorem provers.
I Improved termination: theorem provers

I Comparisons:

I theorem provers with variations of the two unification
procedures

Conclusion
I Active research:

I Define tree automata class
I Add abstractions to extended patterns

I Implementation:
I Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, λProlog,

theorem provers.
I Improved termination: theorem provers

I Comparisons:

I theorem provers with variations of the two unification
procedures

Conclusion
I Active research:

I Define tree automata class
I Add abstractions to extended patterns

I Implementation:
I Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, λProlog,

theorem provers.
I Improved termination: theorem provers

I Comparisons:
I theorem provers with variations of the two unification

procedures

