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» xab = y(fa)a
> X Az1,20.7(fz1) ¢y — Azy, 20.121C
> X AZ1,20.CY > AZ1,20.C

{u = u} us {/\XikZ(JTk) = /\XTCU} us .
———— delete — bind
S {{{z A% o)) U (S) Ig
{Axca(Ty) = Axpa(iy } US Lecom
{AXg.v1 = AXug, ..., AX0y = ARy JUS P
Wey(m) = Mmbius ATy (i) = \Ga(an)} US
- — imitate - —
{y Ty=t Ty, A%y () = Axe.b(0n)} US {y 1y= s Ty, Ay () = Axa(om) } US

Wherea € X ora € x; b € X; z does not occur in v;
o = [A%gv/x]; t = A%b(ym (¥n));
s = AXy.x;(y; (%)) for 0 < i <mand | = ty(x;).

project
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» Can be infinite:

» x(fa) = f(xa):

» x— Azf"zforalln > 0.

» Second-order unification problem is undecdiable (Goldfarb
1981)

» Higher-order unification problem is semi-decidable
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@t’cm@ termination

» Search space is prunned to be finite.

» Several problems:
» Incomplete - bound must be big enough.
» Inefficient - bound must be as small as possible.
» Some problems cannot have bounds.

» This part: a second-order pre-unification procedure.

» Sound and complete.
» Same complexity as Huet’s pre-unification procedure.
» Terminates on more problems than Huet’s.

> including all problems generated by LEO-III
for Cantor’s theorem.
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m(QV \3(2)

5‘3 Yy = "y xoY = Ty
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r - -

oy = Ty
P(1) N\ I
=y Ty = Ty
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Non-termination "
xOy = _‘xoy
‘13(1)/ \j(l)
Y = Y :Uly = _‘:Uly
T(2), 7 N\ I 2
5‘3 Yy = "y Toy -

v

v

cycles.

v

v

Lemma 2: Vi,j > 0B(i) is unifiable if B (j) is.

.. TEYALAr Infinite tree

Semi-decidable: possible non-termination only if not unifiable.
Levy ('98): possible non-termination only if we can encounter

Lemma 1: e is unifiable iff 37 > 0 (i) is unifiable.
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Cyclic equations -~ monadic signature

xgt = C(xzqgs)

:not N C’(:Bos) ............................
(m) LIm) T _
_ >t =C(s ) :cmtiC(xms) .‘

simpler \ P (2m) } ‘ 3 (2m)

t = C(s) Tomt = C(:Bzms)
Lenmal  Lemma 2

Vv VvV

» Theorem: e is unifiable iff 30 < i < m s.t. (i) is unifiable.

» Corollary:Unification over monadic "cyclic equations" is
decidable. (Farmer '88 for full monadic SOU)
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Oecidable fragements of Prjected Cycles

B~ unifiable?
Simple such decidable classes

v

v

v

Stronger classes: regular tree automata

v

Idea: P \ P~ are freely generated

v

Regular tree language + unifier for ‘B~ = decidability



Tattem unification

» Most usefull subclass: higher-order unitary unification.



Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:



Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:
» Proof assistants and Logical frameworks



Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog



Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI



Tattem unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

» variables are applied to a distinct list of bound variables:



atterm unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

» variables are applied to a distinct list of bound variables:
» Pattern: Azyzp.xz1 = fyz12o



atterm unification

>

>

v

v

v

Most usefull subclass: higher-order unitary unification.
Applications:

» Proof assistants and Logical frameworks
» AProlog

variables are applied to a distinct list of bound variables:
Pattern: Azjzp.xz1 = fyz1zo
Non-pattern: Azyzp.xz1z1 = a



atterm unification

» Most usefull subclass: higher-order unitary unification.
» Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

v

variables are applied to a distinct list of bound variables:

v

Pattern: Azjzp.xz1 = fyz1zo

v

Non-pattern: Azyzp.xz1z1 = a

v

Idea: Determinism between (Project) and (Imitate)



atterm unification

>

>

v

v

v

v

v

Most usefull subclass: higher-order unitary unification.
Applications:

» Proof assistants and Logical frameworks
» AProlog

> DRI

variables are applied to a distinct list of bound variables:
Pattern: Azjzp.xz1 = fyz1zo

Non-pattern: Azyzp.xz1z1 = a

Idea: Determinism between (Project) and (Imitate)
Higher-order patterns (Miller ‘91): same complexity as FOU
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» Coq ssreflect:bigop (foldr)
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» AProlog

> CECEY
» Remember: Determinism between (Project) and (Imitate)
» Class: restricting terms and subtle subterm relation
» Examples:

» Extended patterns: Azy, z0.x(fz1)(gz122) = y(fz1)
» Non E-patterns: Azq,25.x(fz1)(gz122) = yz1
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» Active research:
» Define tree automata class
» Add abstractions to extended patterns
» Implementation:
» Extended patterns: Coq, Matita, Isabelle, Abella, Twelf, AProlog,
theorem provers.
» Improved termination: theorem provers
» Comparisons:

» theorem provers with variations of the two unification
procedures



