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  In 1962 J.A. Robinson has read Prawitz's paper and 
in January 1965 the Resolution method was published

` Pa,¬Pa ` Pfa,¬Pfa ` Pffa,¬Pffa
. . .

` ¬Pa, Pffa, Pa∧ ¬Pfa, Pfa∧ ¬Pffa
∃ : r` ¬Pa, Pffa, Pa∧ ¬Pfa, ∃x.Px∧ ¬Pfx
∃ : r` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx, ∃x.Px∧ ¬Pfx
con

` ¬Pa, Pffa, ∃x.Px∧ ¬Pfx



F irst-order Unif ication

I Applications:

I Automated deduction (Resolution, Tableau, . . . )

I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )

I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )

I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)

I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )

I Linguistics (Unification-based grammars,. . . )
I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )

I Term rewriting,

pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting,

pattern matching, . . .
I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting, pattern matching,

. . .
I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting, pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting, pattern matching, . . .

I Algorithms:

I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting, pattern matching, . . .

I Algorithms:
I Robinson (1965) - exponential

I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting, pattern matching, . . .

I Algorithms:
I Robinson (1965) - exponential
I Huet (1976) - "almost" linear, infinite terms

I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication
I Applications:

I Automated deduction (Resolution, Tableau, . . . )
I Programming languages (Prolog, Constrained-based)
I Type inference (ML, Haskel, . . . )
I Linguistics (Unification-based grammars,. . . )
I Term rewriting, pattern matching, . . .

I Algorithms:
I Robinson (1965) - exponential
I Huet (1976) - "almost" linear, infinite terms
I Martelli and Montanari (1982) - linear, relatively efficient



F irst-order Unif ication - Basic Algorithm

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

decompose

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

decompose

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

decompose

bind

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

decompose

bind

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

decompose

bind

delete

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



F irst-order Unif ication - Basic Algorithm

decompose

bind

delete

V

{u .
= u} ∪ S

S delete
{f (v1, . . . , vn)

.
= f (u1, . . . , un)} ∪ S

{v1
.
= u1, . . . , vn

.
= un} ∪ S

decomp
{x .

= v} ∪ S

σ(S)
bind

Where x does not occur in v and σ = [v/x].

I Unification problems and their solutions:
I {t1

.
= s1, . . . , tn

.
= sn}

I Most general unifier σ:
I ∀θ∃δ.σ = θ ◦ δ



Higher-order Unif ication

I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )

I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )

I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )

I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)

I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )

I Linguistics (Ellipsis, . . . )
I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )

I Term rewriting,

Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting,

Meta-logic, . . .
I Example (linguistics):

I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting, Meta-logic,

. . .
I Example (linguistics):

I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".

I P(dan) .
= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(dan))

I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(z))

I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))

I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication
I Applications:

I Automated deduction (Arithmetic, Meta-physics,. . . )
I Programming languages (λ-Prolog)
I Type inference (Coq, dependent types, . . . )
I Linguistics (Ellipsis, . . . )
I Term rewriting, Meta-logic, . . .

I Example (linguistics):
I Assume that "dan likes his wife and george does too".
I P(dan) .

= likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(dan))
I P 7→ λz.likes(dan,wife-of(z))
I P 7→ λz.likes(z,wife-of(z))
I P 7→ λz.likes(z,wife-of(dan))



Higher-order Unif ication

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

imitate

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

imitate project

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

imitate project

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

imitate project

I Jensen and Pietrzykowski (1973): either
I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

imitate project

X
I Jensen and Pietrzykowski (1973): either

I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

imitate project

X
I Jensen and Pietrzykowski (1973): either

I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

imitate project

X
I Jensen and Pietrzykowski (1973): either

I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication
decompose
bind
delete

imitate project

X V
I Jensen and Pietrzykowski (1973): either

I imitation y 7→ λz.b
I projection y 7→ λz.z



Higher-order Unif ication - f lexible pairs

I xab .
= y(fa)a

I x 7→ λz1, z2.r(fz1)c; y 7→ λz1, z2.rz1c
I x 7→ λz1, z2.c; y 7→ λz1, z2.c

{u .
= u} ∪ S

S delete
{λxk.z(xk)

.
= λxk.v} ∪ S

{〈〈z, λxk.v〉〉} ∪ σ(S) ↓β
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.
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Where a ∈ Σ or a ∈ xk ; b ∈ Σ; z does not occur in v;
σ = [λxk .v/x]; t = λxn .b(ym(xn));
s = λxn .xi(yl(xn)) for 0 < i ≤ n and l = ty(xi).
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