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Abstract. Cut-elimination is the most important proof transformation
in logic. Equality is a central paradigm in mathematics and plays a key
role in automated deduction. Therefore its importance awakes the neces-
sity of integrating equality into existing cut-elimination methods.
In this paper we extend the resolution-based method of cut-elimination
CERES to CERES-e by adding equality (and paramodulation to LK),
where all the advantages of CERES are preserved; in particular CERES-e
is superior to Gentzen type methods, is �exible with respect to resolu-
tion, paramodulation and its re�nements and admits a semantical use
of cut. We go even further and combine CERES-e with equational the-
ories yielding a system which adds simplicity of proof notation to the
advantages gained from equality.

1 Introduction

Due to the central importance of equality in mathematical proofs an investigation
of cut-elimination in proofs with equality is very important to the application
of cut-elimination. Resolution, paramodulation and its re�nements have been
playing a central role in automated deduction for decades. Experiments with
resolution re�nements within cut-elimination by resolution (see [4]) promise even
more rewarding results after extension of CERES by equality.

We extend the Gentzen calculus LK to LK-e by a paramodulation-type rule
allowing for a comfortable use of equality. For LK-e we introduce CERES-e, a
cut-elimination method based on resolution and paramodulation. Furthermore
we extend LK-e by the rule of semantic cut and by built-in equational the-
ories. Two non-trivial examples will outline the strength of the concepts and
demonstrate the work�ow of the methods.

2 De�nitions and Notation

In the following x, y, z, x0, y0, z0, . . . denote bound individual variables whereas
u, v, w, u0, v0, w0, . . . denote free individual variables.
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De�nition 1 (term, semi-term). Terms and semi-terms are de�ned induc-
tively in the following way:

1. Individual constants are (semi-)terms.
2. Free variables (and bound variables) are (semi-)terms.
3. If f is a function symbol of arity n and t1, . . . , tn are (semi-)terms then

f(t1, . . . , tn) is a (semi-)term.

Thus semi-terms are terms with bound variables, the analogous applies to
formulas.

De�nition 2 (formula, semi-formula). Formulas and semi-formulas are in-
ductively de�ned as follows:

1. If P is an n-ary predicate symbol and t1, . . . , tn are (semi-)terms, then
P (t1, . . . , tn) is a (semi-)formula. It is called an atomic formula or an atom.

2. If A and B are (semi-)formulas, then ¬A, A ∧ B, A ∨ B and A ⊃ B are
(semi-)formulas.

3. If A is a (semi-)formula not containing the bound variable x, then (∀x)A(u/x)
and (∃x)A(u/x) are (semi-)formulas.

Obviously semi-formulas are formulas with free occurrences of bound vari-
ables. Note that our de�nition of terms and formulas is due to Takeuti [9].

We will later be in the need to determine precisely the position of a term
or formula within another term or formula; the following de�nition helps in this
matter.

De�nition 3 (position). Let t be a (semi-)term. We de�ne positions within t
inductively as follows:

1. If t is an individual constant or a variable then 0 is the position in t repre-
senting the entire term t, i.e. t.0 = t.

2. Let t be of the form t = f(t1, . . . , tn) then again 0 is the position in t rep-
resenting the entire term t, i.e. t.0 = t. Let further ξi : (kl, . . . , k1, 0) be a
position in a ti, for 1 ≤ i ≤ n, and ti.ξi = s; then we de�ne the nested
position ξ in t such that t.ξ = s as ξ : (i, kl, . . . , k1, 0).

Let t.ξ = s then t[r]ξ denotes the (semi-)term t after replacement of s on
position ξ by r, in particular t[r]ξ = r. Moreover if Ξ is a set of positions in
t then t[r]Ξ is de�ned by replacing all sub-(semi-)terms t.ξ, for ξ ∈ Ξ, in t by
r. Positions in formulas are de�ned analogously (simply consider all formulas as
terms).

Substitutions are de�ned as usual as functions from the set of variables to
the set of terms. We write A(u) to indicate (potential) free occurrences of the
variable u in A. Let t be an arbitrary term, then A(u/t) stands for the replace-
ment of all free occurrences of u in A by t, i.e. A[t]Ξ where Ξ = {ξ |A.ξ = u}.

In the following Γ,∆,Π,Λ, Γ0,∆0,Π0, Λ0, . . . denote �nite (possibly empty)
sequences of formulas.
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De�nition 4 (sequent). A �nite sequence of formulas, separated by the auxil-
iary syntactic symbol `, is called a sequent, symbolically S : Γ ` ∆. The empty
sequent is denoted by `. A sequent S is called atomic if Γ and ∆ are sequences
of atomic formulas.

De�nition 5 (axiom set). A (possibly in�nite) set A of atomic sequents is
called an axiom set if it is closed under substitution, i.e. for all S ∈ A and for
all substitutions σ we have Sσ ∈ A.

De�nition 6 (LK). An inference rule is of the form

S1

S
ρu or

S1 S2

S
ρb

where the sequents S1, S2 are called the premises and the sequent S is called the
conclusion of the inference. Unlike Gentzen's version of LK (see [7]) we use the
additive version of LK as Girard (see [8]). In the following de�nition the auxil-
iary formulas are put in bold face and the principal formulas are underlined, but
usually these markings are avoided because the auxiliary and principal formulas
are mostly uniquely identi�able by their outermost positioning (respectively the
permutations are given explicitly where needed).

1. The structural rules of
(a) Weakening:

Γ ` ∆
A1, . . . , An, Γ ` ∆ w : l Γ ` ∆

Γ ` ∆,A1, . . . , An
w : r

(b) Contraction:

A, . . . ,A, Γ ` ∆
A,Γ ` ∆ c : l

Γ ` ∆,A, . . . ,A
Γ ` ∆,A c : r

(c) Permutation:

A1, . . . , An, Γ ` ∆
Aπ(1), . . . , Aπ(n), Γ ` ∆ p(π) : l

Γ ` ∆,A1, . . . , An

Γ ` ∆,Aπ(1), . . . , Aπ(n)
p(π) : r

where π is a permutation of {1, . . . , n}. The auxiliary formulas respec-
tively the principal formulas are those Ai of the premises respectively
those Aπ(i) of the conclusions where i 6= π(i), i ∈ {1, . . . , n}, holds.

(d) Cut:
Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ cut

2. The logical rules for
(a) ¬-introduction:

Γ ` ∆,A
¬A,Γ ` ∆ ¬ : l

A, Γ ` ∆
Γ ` ∆,¬A ¬ : r
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(b) ∧-introduction:
A, Γ ` ∆

A ∧B,Γ ` ∆ ∧ : l1
B, Γ ` ∆

A ∧B,Γ ` ∆ ∧ : l2
Γ ` ∆,A Π ` Λ,B
Γ,Π ` ∆,Λ,A ∧B ∧ : r

(c) ∨-introduction:
A, Γ ` ∆ B,Π ` Λ
A ∨B,Γ,Π ` ∆,Λ ∨ : l

Γ ` ∆,A
Γ ` ∆,A ∨B

∨ : r1
Γ ` ∆,B

Γ ` ∆,A ∨B
∨ : r2

(d) ⊃-introduction:
Γ ` ∆,A B,Π ` Λ
A ⊃ B,Γ,Π ` ∆,Λ ⊃ : l

A, Γ ` ∆,B
Γ ` ∆,A ⊃ B

⊃ : r

(e) ∀-introduction:

A(x/t), Γ ` ∆
(∀x)A(x), Γ ` ∆ ∀ : l

Γ ` ∆,A(x/u)
Γ ` ∆, (∀x)A(x) ∀ : r

where t is an arbitrary term and u does not occur in the conclusion.

(f) ∃-introduction:

A(x/u), Γ ` ∆
(∃x)A(x), Γ ` ∆ ∃ : l

Γ ` ∆,A(x/t)
Γ ` ∆, (∃x)A(x) ∃ : r

where u does not occur in the conclusion and t is an arbitrary term.

De�nition 7 (proof, LK-proof). A proof ϕ of a sequent S from an axiom set
A is a directed labelled tree, where the nodes represent occurrences of sequents
and the edges are labelled according to the inference rule applications in the
calculus K. The root is labelled by the occurrence of the end-sequent S and the
leaves are labelled by occurrences of axioms, i.e. elements of A.

An LK-proof is a proof where A consists of atomic sequents and the inference
rules applied are those of LK.

De�nition 8 (ancestor). Let

S1 : Π1, Γ1 ` ∆1, Λ1 S2 : Π2, Γ2 ` ∆2, Λ2

S : Π,Γ1, Γ2 ` ∆1,∆2, Λ
ρ

be an inference rule in an LK-proof ϕ, where Πi and Λi respectively Π and Λ
denote the (possibly empty) sequences of auxiliary formulas of the (one or two)
premises respectively principal formulas of the conclusion; let further µk be the
occurrence of the k-th principal formula in S and νij be the occurrence of the
j-th auxiliary formula in Si, i ∈ 1, 2 and j, k ∈ IN. Then all νij are ancestors of
all µk.

The ancestor relation in ϕ is de�ned as the re�exive and transitive closure
of the above relation.

If Ω is a set of formula occurrences in ϕ then by S(ν,Ω) respectively S̄(ν,Ω)
we denote the subsequent of S at the node ν of the LK-proof ϕ consisting of all
formulas which are respectively are not ancestors of a formula occurrence in Ω.
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De�nition 9 (LK-p). LK-p is the calculus obtained from LK by adding the
semantic cut rule (p− cut), also called pseudo-cut, to the existing rules of LK.

Γ ` ∆,A B,Π ` Λ
Γ,Π ` ∆,Λ

p− cut

if A ⊃ B is valid.

By comparison of the semantic cut rule with an implication introduction rule

Γ ` ∆,A B,Π ` Λ
A ⊃ B,Γ,Π ` ∆,Λ ⊃ : l

it is easy to see that A ⊃ B can only be cut out if it is valid or in other words,
that Γ,Π ` ∆,Λ is equivalent to A ⊃ B,Γ,Π ` ∆,Λ if A ⊃ B is valid.

The introduction of the semantic cut rule is more ore less a replacement of
the existing cut rule, which is just the speci�c case of the semantic cut rule where
A is syntactically equivalent to B, i.e. A ≡ B.

De�nition 10 (LK-p-proof). An LK-p-proof is a proof where A consists of
atomic sequents and the inference rules applied are those of LK-p.

De�nition 11 (clause). A clause is an atomic sequent, i.e. a sequent of the
form Γ ` ∆, where Γ and ∆ are sequences of atomic formulas.

The paramodulation rule for the resolution calculus, which we will be using
in this paper, is de�ned as follows.

De�nition 12 (paramodulation). Let C : Γ ` ∆, s = t and D : Γ `
∆,A[s′]Ξ , D′ : A[s′]Ξ ,Π ` Λ,A[s′] be variable disjoint clauses and σ be the
most general uni�er of {s, s′} then the paramodulation rule for the resolution
calculus is de�ned as follows:

C D
(Γ,Π ` ∆,Λ)σ

p : σ resp.
C D′

(Γ,Π ` ∆,Λ)σ
p : σ

where s and t are arbitrary terms.
The �ipped paramodulation rule (p′) is de�ned analogous by replacing C with

the clause C ′ : Γ ` ∆, t = s.

Note that the particular de�nition of the paramodulation rule does not mat-
ter, again all re�nements of paramodulation such as ordered paramodulation or
superposition might be used (see [5] or [6] for more details on paramodulation
and its re�nements).

De�nition 13 (PR-deduction). A deduction of a set of clauses using resolu-
tion and paramodulation is called a PR-deduction.
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3 Extension of CERES to Equality

The cut-elimination method by resolution (CERES) will be de�ned roughly in
this paper, in the sense that only some basic parts and the necessary parts for
the extension by equality will appear in the following subsection. You can �nd
in-depth further explanation of the method in [3], [2] and on the CERES web
page1.

In the second part of this section we will introduce the cut-elimination
method by resolution using equality CERES-e. An extensive example will demon-
strate the method CERES-e and mark out its advantages in comparison to
CERES.

3.1 CERES

To facilitate understanding, we give an overview how cut-elimination is done in
CERES. First of all we have to skolemize the proof, i.e. to replace all eigen-
variables by suitable Skolem terms which occur in ancestors of the end-sequent.
Then all occurrences of ancestors of cut-formulas of the proof are used to build
a refutable clause set, called the characteristic clause set of the proof. In the
next step the clause set is refuted by resolution using arbitrary re�nements. The
grounded refutation is nothing less than a proof of the empty sequent contain-
ing only atomic cuts where the initial sequents are elements of the characteristic
clause set. Serving as a skeleton, CERES augments the grounded resolution
proof with cut-free parts of the original proof related only to the end-sequent,
that is why the initial skolemization is needed to avoid violations of eigenvari-
able conditions within these proof parts. Finally we obtain a proof of the original
end-sequent, and after re-skolemization of the original statement, with atomic
cuts only.

Details regarding skolemization and re-skolemization can be found here [1]
and are omitted in this paper.

De�nition 14 (characteristic clause set). Let ϕ be an LK-proof of the se-
quent S and let Ω be the set of all occurrences of cut formulas in ϕ. The char-
acteristic clause set Θ(ϕ) is de�ned inductively as follows.

If the proof-node ν is the occurrence of an initial sequent S in ϕ, then the
characteristic clause set of S at the node ν corresponds to the subsequent of S
consisting of all formulas which are ancestors of an occurrence in Ω, i.e.

Θ(ϕ)/ν = {S(ν,Ω)}.

Let us assume that the clause sets Θ(ϕ)/ν are already constructed for all
nodes ν in ϕ with depth(ν) ≤ n. Now let ν be a node with depth(ν) = n+1. We
distinguish the following cases:

1 The documentation of the method respectively the system and an online version of
the system CERES are available at http://www.logic.at/ceres/.
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1. ν is the immediate consequent of µ, i.e. a unary rule applied to µ gives ν.
Then we simply de�ne

Θ(ϕ)/ν = Θ(ϕ)/µ.

2. ν is the immediate consequent of µ1 and µ2, i.e. a binary rule ρ applied to
µ1 and µ2 gives ν. Then we distinguish between
(a) all of the auxiliary formulas of ρ are ancestors of Ω, i.e. the auxiliary

formulas occur in S(µ1, Ω) respectively S(µ2, Ω). Then

Θ(ϕ)/ν = Θ(ϕ)/µ1 ∪Θ(ϕ)/µ2,

(b) none of the auxiliary formulas of ρ is an ancestor of Ω, i.e. the auxiliary
formulas do not occur in S(µ1, Ω) and S(µ2, Ω). Then

Θ(ϕ)/ν = Θ(ϕ)/µ1 ×Θ(ϕ)/µ2

where

{Γ1 ` ∆1, . . . , Γn ` ∆n} × {Π1 ` Λ1, . . . ,Πm ` Λm} =
{Γi,Πj ` ∆j , Λj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Finally, the characteristic clause set Θ(ϕ) of ϕ is de�ned as Θ(ϕ)/ν where
ν is the root node of ϕ.

Note that in a binary LK-inference either all auxiliary formulas are ancestors
of Ω or none of them.

Remark 1. If ϕ is a cut-free LK-proof then there are no occurrences of cut
formulas in ϕ hence Θ(ϕ) = {`}.

Theorem 1. Let ϕ be an LK-proof. Then Θ(ϕ) is unsatis�able, i.e. there exist
a resolution refutation of Θ(ϕ).

Proof. In [2] or [3].

Proposition 1. CERES also eliminates semantic cuts, i.e. is a cut-elimination
method for LK-p.

Proof. In [2].

Note that standard methods of cut-elimination (e.g. Gentzen's method) are
not capable of eliminating semantic cuts.

3.2 Extension to Equality

There exist various substantial di�erent approaches how to integrate equality
into LK. Some of them are solely based on axiomatization, i.e. adding equal-
ity axioms to the existing axioms, without any extension of the rules (e.g. see
Takeuti [9] for more details). This kind of equality integration would of course

7



be possible in CERES without any changes (note that we allow arbitrary atomic
sequents as axioms), but has at least two major drawbacks. On the one hand it is
mathematically a very unnatural way of using equality within a proof, concerning
formalization and interpretation of proofs. On the other hand the computational
expense is much higher, e.g. by inheriting the used axioms throughout the entire
proof to the end-sequent. In addition it would not be possible to use the existing
paradigm of paramodulation within CERES-e which is especially designed to
handle equality reasoning within resolution, which is a special design goal for us.

This disadvantages are overcome by introducing the theory of equality to LK
by means of rules. Some might argue that this is a tradeo� against the loss of
the sub-formula property and depending on the speci�c rules the introduction
of implicit cuts. Loosing the sub-formula property is not avoidable if you intend
to use equality in a mathematically natural and intuitive way. The argument of
implicit cuts is immediately dismantled in CERES as we only intend to eliminate
non-atomic cuts (since we are not using axioms of the form A ` A - which of
course also applies to the approach by axiomatization).

Again there are many di�erent variants how to extend LK by equality with
help of rules (e.g. see [10]). We will now de�ne the best suitable version for our
needs (similar to [6]).

De�nition 15 (LK-e). LK-e is the calculus obtained from LK by adding the
following equality introduction (or paramodulation) rules to the existing rules of
LK:

Γ ` ∆, s = t A[s]Ξ ,Π ` Λ
A[t]Ξ , Γ,Π ` ∆,Λ = : l

Γ ` ∆, s = t Π ` Λ,A[s]Ξ
Γ,Π ` ∆,Λ,A[t]Ξ

= : r

where s and t are arbitrary terms.

For practical reasons we will additionally use the following rules in LK-e:

Γ ` ∆, t = s A[s]Ξ ,Π ` Λ
A[t]Ξ , Γ,Π ` ∆,Λ =′ : l

Γ ` ∆, t = s Π ` Λ,A[s]Ξ
Γ,Π ` ∆,Λ,A[t]Ξ

=′ : r

Note that this rules could also be derived from the ones above using an additional
paramodulation inference.

De�nition 16 (LK-e-proof). An LK-e-proof is a proof where A consists of
atomic sequents including the axiom set of re�exitivity, i.e.

{ ` t = t | t a term },

and the inference rules applied are those of LK-e.

De�nition 17 (LK-ep). LK-ep is the calculus obtained from LK-e by again
adding the semantic cut (see de�nition 9) rule to the existing rules of LK-e.
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For the extension of CERES to CERES-e no rede�nition of the characteristic
clause set and its computation is necessary; the paramodulation rule is treated
as "ordinary" binary rule. The projections are built in exactly the same manner,
hence also the necessity of skolemization a priori and re-skolemization a posteriori
remains.

Therefore the only thing that remains to be shown is the following theorem.

Theorem 2. Let ϕ be an LK-e-proof. Then Θ(ϕ) is unsatis�able, i.e. there
exist a refutation with resolution and paramodulation of Θ(ϕ).

Proof. As in [2] we show that, from the set Θ(ϕ)/ν for any node ν in ϕ we can
derive S(ν,Ω) (the subsequent of S at ν consisting just of the ancestors of a
cut). As there is no ancestor of a cut in the end sequent, we obtain an LK-e
derivation of ` from Θ(ϕ). The = : l and = : r rules behave like any other binary
rule in LK, and the construction goes through like for LK. As LK-e is sound
and we have derived `, Θ(ϕ) must be unsatis�able.

De�nition 18 (LK-ep-proof). An LK-ep-proof is a proof where A consists of
atomic sequents including the re�exitivity axiom and the inference rules applied
are those of LK-ep.

Proposition 2. CERES is a cut-elimination method for LK-ep.

Proof. By theorem 2 Θ(ϕ) is unsatis�able. As PR-deduction is complete there
exists a PR-refutation γ of Θ(ϕ). Let γ′ be any ground projection of γ. Then γ′

is an LK-e derivation of ` from the axiom set de�ned by Θ(ϕ). γ′ contains only
atomic cuts. By inserting the proof projections on every leaf of γ′ we obtain a
proof of the original sequent with only atomic cuts.

Now we will demonstrate the strength of this method on a well-known ex-
ample from group theory. The proof ϕ below veri�es that a 2-nilpotent group
is commutative using the cancellation principle as a lemma. Therefore we need
to extend the set of axioms by all instances of the necessary group theoretic
axioms:

` (u ◦ v) ◦ w = u ◦ (v ◦ w), (A)

` e ◦ u = u ` u ◦ e = u, (El), (Er)

` u−1 ◦ u = e ` u ◦ u−1 = e, (Il), (Ir)

` u ◦ u = e, (N2)

where u−1 denotes the inverse element of u.

Since the original proof of ` (∀x)(∀y)x ◦ y = y ◦x contains strong quanti�ers
it has to be skolemized in advance and the resulting cut-free proof re-skolemized
afterwards.
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We only give the skolemized proof (of the sequent ` a ◦ b = b ◦ a for two
individual constant symbols a and b). The proof of ` (∀x)(∀y)x ◦ y = y ◦ x can
be directly obtained by generalizing a to u and b to v and by afterwards applying
∀ : r twice on ` u ◦ v = v ◦ u.

Within this section the following formula abbreviations are used:

P : (a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b),

C : a ◦ b = b ◦ a,

S : u ◦ w = v ◦ w.

Then, let the main proof ϕ be de�ned as follows.

ϕ =

` e = e
` b ◦ b = e

` e ◦ b = b

` a ◦ a = e

` (a ◦ a) ◦ b = a ◦ (a ◦ b) ϕ′

e = b ◦ ((a ◦ a) ◦ b) ` C =′ : l

e = b ◦ (e ◦ b) ` C = : l

e = b ◦ b ` C = : l

e = e ` C = : l

` a ◦ b = b ◦ a cut

ϕ′ =

` (b ◦ a) ◦ (a ◦ b) = b ◦ (a ◦ (a ◦ b))
` (a ◦ b) ◦ (a ◦ b) = e ϕ′′

e = (b ◦ a) ◦ (a ◦ b) ` C = : l

e = b ◦ (a ◦ (a ◦ b)) ` C = : l

ϕ′′ =
ϕc ϕp

(a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b) ` C
p− cut

This is the sub-proof of the cancellation lemma used in ϕ:

ϕc =

` v ◦ e = v
` u ◦ e = u

` w ◦ w−1 = e

` (v ◦ w) ◦ w−1 = v ◦ (w ◦ w−1) ϕ′c

S ` u ◦ (w ◦ w−1) = v ◦ (w ◦ w−1)
= : r

S ` u ◦ e = v ◦ e
= : r

S ` u = v ◦ e
= : r

u ◦ w = v ◦ w ` u = v
= : r

` u ◦ w = v ◦ w ⊃ u = v
⊃ : r

` (∀z)(u ◦ z = v ◦ z ⊃ u = v)
∀ : r

` (∀y)(∀z)(u ◦ z = y ◦ z ⊃ u = y)
∀ : r

` (∀x)(∀y)(∀z)(x ◦ z = y ◦ z ⊃ x = y)
∀ : r
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ϕ′c =

` (u ◦ w) ◦ w−1 = u ◦ (w ◦ w−1)

S ` u ◦ w = v ◦ w ` (u ◦ w) ◦ w−1 = (u ◦ w) ◦ w−1

S ` (u ◦ w) ◦ w−1 = (v ◦ w) ◦ w−1
= : r

S ` u ◦ (w ◦ w−1) = (v ◦ w) ◦ w−1
= : r

ϕp =

P ` (a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b) a ◦ b = b ◦ a ` C
(a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b) ⊃ a ◦ b = b ◦ a, P ` C ⊃ : l

(∀z1)((a ◦ b) ◦ (a ◦ z1) = (b ◦ a) ◦ (a ◦ z1) ⊃ a ◦ b = b ◦ a), P ` C ∀ : l

(∀z0)(∀z1)((a ◦ b) ◦ (z0 ◦ z1) = (b ◦ a) ◦ (z0 ◦ z1) ⊃ a ◦ b = b ◦ a), P ` C ∀ : l

(∀y)(∀z0)(∀z1)((a ◦ b) ◦ (z0 ◦ z1) = y ◦ (z0 ◦ z1) ⊃ a ◦ b = y), P ` C ∀ : l

(∀x)(∀y)(∀z0)(∀z1)(x ◦ (z0 ◦ z1) = y ◦ (z0 ◦ z1) ⊃ x = y), P ` C ∀ : l

Hence for the characteristic clause set Θ(ϕ) of ϕ we obtain

{ C1 : a ◦ b = b ◦ a `, C2 : (a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b) ` (a ◦ b) ◦ (a ◦ b) = (b ◦ a) ◦ (a ◦ b),

C3 : ` (u ◦ w) ◦ w−1 = (u ◦ w) ◦ w−1, C4 : u ◦ w = v ◦ w ` u ◦ w = v ◦ w,

C5 : ` (u ◦ w) ◦ w−1 = u ◦ (w ◦ w−1), C6 : ` (v ◦ w) ◦ w−1 = v ◦ (w ◦ w−1),

C7 : ` w ◦ w−1 = e, C8 : ` u ◦ e = u, C9 : ` v ◦ e = v, C10 : ` (a ◦ b) ◦ (a ◦ b) = e,

C11 : ` (b ◦ a) ◦ (a ◦ b) = b ◦ (a ◦ (a ◦ b)), C12 : ` (a ◦ a) ◦ b = a ◦ (a ◦ b),
C13 : ` a ◦ a = e, C14 : ` e ◦ b = b, C15 : ` b ◦ b = e, C16 : ` e = e }.

Since resolution admits subsumption and deletion of tautologies we obtain
a reduced characteristic clause set by omitting the clauses C2, C4, C6, C9 and
C16:

Θ(ϕ) = {C1, C3, C5, C7, C8, C10, C11, C12, C13, C14, C15}.
A PR-refutation of Θ(ϕ) is given by the following derivations.

Derivation of C17:

(C7)

` w ◦ w−1 = e
(C8)

` u ◦ e = u

` u ◦ (w ◦ w−1) = u
p′ (C5σ1)

` (u′ ◦ w′) ◦ w′−1 = u′ ◦ (w′ ◦ w′−1)

` (u ◦ w) ◦ w−1 = u
p : σ2

(C17)

where σ1 = {u 7→ u′, w 7→ w′} and σ2 = {u′ 7→ u,w′ 7→ w}.

Derivation of C18:

(C13)
` a ◦ a = e

(C14)
` e ◦ b = b

` (a ◦ a) ◦ b = b
p′ (C12)

` (a ◦ a) ◦ b = a ◦ (a ◦ b)
` b = a ◦ (a ◦ b)

p
(C18)
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Derivation of C19:

(C18)
` b = a ◦ (a ◦ b)

(C15)
` b ◦ b = e

` b ◦ (a ◦ (a ◦ b)) = e
p (C11)

` (b ◦ a) ◦ (a ◦ b) = b ◦ (a ◦ (a ◦ b))
` (b ◦ a) ◦ (a ◦ b) = e

p
(C19)

Derivation of C20:

(C17)

` (u ◦ w) ◦ w−1 = u

(C17σ3)

` (u′ ◦ w′) ◦ w′−1 = u′

` u ◦ (w−1)−1 = u ◦ w
p : σ4

(C20)

where σ3 = {u 7→ u′, w 7→ w′} and σ4 = {u′ 7→ u ◦ w,w′ 7→ w−1}.

Derivation of C21:

(C10)
` (a ◦ b) ◦ (a ◦ b) = e

(C17)

` (u ◦ w) ◦ w−1 = u

` e ◦ (a ◦ b)−1 = a ◦ b
p : σ5

(C21)

where σ5 = {u 7→ a ◦ b, w 7→ a ◦ b}.

Derivation of C22:

(C20)

` u ◦ (w−1)−1 = u ◦ w

(C7σ6)

` w′ ◦ w′−1 = e

(C17)

` (u ◦ w) ◦ w−1 = u

` e ◦ (w′−1)−1 = w′
p : σ7

` e ◦ w = w
p : σ8

(C22)

where σ6 = {w 7→ w′}, σ7 = {u 7→ w′, w 7→ w′−1} and σ8 = {u 7→ e, w′ 7→ w}.

Derivation of C23:

(C22)
` e ◦ w = w

(C21)

` e ◦ (a ◦ b)−1 = a ◦ b
` (a ◦ b)−1 = a ◦ b

p : σ9

(C23)

where σ9 = {w 7→ (a ◦ b)−1}.

Derivation of C24:

(C22)
` e ◦ w = w

(C23)

` (a ◦ b)−1 = a ◦ b

(C19)
` (b ◦ a) ◦ (a ◦ b) = e

(C17)

` (u ◦ w) ◦ w−1 = u

` e ◦ (a ◦ b)−1 = b ◦ a
p : σ10

` e ◦ (a ◦ b) = b ◦ a
p

` a ◦ b = b ◦ a
p : σ11

(C24)
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where σ10 = {u 7→ b ◦ a,w 7→ a ◦ b} and σ11 = {w 7→ a ◦ b}.

And �nally we have a refutation:

(C24)
` a ◦ b = b ◦ a

(C1)
a ◦ b = b ◦ a `

`
r

Let ψ be the PR-refutation de�ned above (in form of a tree). By computing
a ground projection ψ′ of ψ we obtain a derivation of ` in LK-e from instances
of Θ(ϕ). There is only one non-trivial proof projection ψ′1 required, namely this
to the clause C1. The proof of ` a◦b = b◦a with only atomic cuts ϕ∗ is therefore:

a ◦ b = b ◦ a ` a ◦ b = b ◦ a
(ψ′1)

a ◦ b = b ◦ a `
` a ◦ b = b ◦ a cut

By re-skolemizing ϕ∗ we obtain a proof ϕ̂ of ` (∀x)(∀y)x ◦ y = y ◦ x with
only atomic cuts (and clearly without use of the cancellation principle).

Note that the above PR-refutation was found by use of the automatic the-
orem prover Otter. Remarkable is also the fact that the left-neutrality appears
as lemma within the resolution refutation based on the clause set Θ(ϕ).

4 Equational Theories

De�nition 19 (equational axiom set). A (possibly in�nite) set E of term
equations, i.e.

E = {s1 = t1, s2 = t2, s3 = t3 . . . },

is called an equational axiom set if it is closed under substitution, i.e. for all
E ∈ E and for all substitutions σ we have Eσ ∈ E.

De�nition 20 (equational theory). Let E be an equational axiom set. An
equational theory is de�ned as a congruence relation on E in the following way:

s =E t ⇔ E � s = t.

Based on equational theories the presented calculi can be rede�ned to use
the equational theory at every inference. We illustrate this principle by de�ning
extended ⊃ rules; the extension for the other rules is analogous.

Γ ` ∆,A∗ B∗,Π ` Λ
A ⊃ B,Γ,Π ` ∆,Λ ⊃ : l

A∗, Γ ` ∆,B∗

Γ ` ∆,A ⊃ B
⊃ : r

if A =E A
∗ and B =E B

∗.
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The following example demonstrates the usage of the concept of equational
theories within LK-ep. In this example we will use LK-ep-inferences modulo
groups, i.e. the underlying equational theory is the theory of groups G (the
binary connective of G is ◦, the neutral element is e).

We de�ne the following axioms:

A1 : (∀x)(x 6= s(x) ∧ x 6= s(s(x))),
A2 : (∀x)(∀y)(x = s(y) ∨ y = s(x) ∨ x = y),
A3 : (∀x)(∀y)(s(x) = s(y) ⊃ x = y) and the conclusion

C : (∀x)(∀y)x ◦ y = y ◦ x

and use the following abbreviation Ax : A1, A2, A3 for the entire axiom set.

We consider the following proof with G-pseudo-cuts:

φ
Ax ` (∀y)(y = e ∨ y = s(e) ∨ y = s(s(e)))

ψ
(∃z, z1, z2)(∀y)(y = z ◦ z1 ∨ y = z ◦ z2 ∨ y = z) ` C
Ax ` C

p− cut

Informal proof φ: From A2 we get:

(∀y)(e = s(y) ∨ y = s(e) ∨ e = y). (*)

and setting y to s(s(e)) we get

e = s(s(s(e))) ∨ s(s(e)) = s(e) ∨ e = s(s(e)).

From A1 we infer e = s(s(s(e))). By e = s(s(s(e))) and A3 we get

(∀y)(e = s(y) ↔ y = s(s(e))).

Therefore, from (∗) we obtain the left cut-formula

(∀y)(y = e ∨ y = s(e) ∨ y = s(s(e))). (I)

Note that no group theoretic inferences are required in φ.

Informal proof ψ: From the left cut-formula

(∃z, z1, z2)(∀y)(y = z ◦ z1 ∨ y = z ◦ z2 ∨ y = z) (II)

it follows that the structure consists of three elements only. As the underlying
structure is G we have a group with 3 elements. But there is only one such group
and this is commutative. Therefore (II) and G imply C.

Moreover we have a pseudo-cut w.r.t. G. In fact (I) ⊃ (II) is valid under G:
just choose z = e, z1 = s(e), and z2 = s(s(e)). This cut can be eliminated with
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CERES-e under use of G.

Note that, within the example, the subproof ψ, i.e. the proof of the group
containing only 3 elements, demonstrates also the expressional power of the
combined method since it would not be possible to be proven without having
equality also as a rule.

The example above should be treated as an appetizer for what is possible by
means of the CERES-e method using equational theories.

5 Conclusion

The extensions of CERES described in this paper lay the foundations for cut-
elimination of mathematically relevant proofs in LK with equality. The formal-
ization of proofs containing cuts as well as the representation of proofs with
only atomic cuts bene�t from these extensions. Another important aspect of the
results of this paper is a computational one. CERES has been shown to yield
non-elementary speedups w.r.t. other cut-elimination methods like Gentzen or
Schütte-Tait and is therefore the best choice for such extensions, especially from
the implementational point of view. Additionally the use of numerous frequently
used paradigms like paramodulation and its re�nements admits the application
of a variety of existing tools like Otter, SPASS or Vampire. Last but not least
CERES-e, especially using the concept of equational theories, allows for handling
(even more complex) proofs in a mathematically natural way.
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