
Contents

1 Simplification of Herbrand Sequents 2
1.1 Simplification on the term level . . . . . . . . . . . . . . . . . 3
1.2 Simplification on the formula level . . . . . . . . . . . . . . . 5

2 Examples 9

3 Specification of the term-rewriting system 13

1



.

1 Simplification of Herbrand Sequents

Simplification of Herbrand Sequents is needed in order to improve the read-
ability of the sequent as well as to delete the information which is useless
for interpreting the mathematical meaning encoded in it. The simplification
goes through two different steps. The first one is simplification on term
level. The second one is simplification on logical (formula) level.

• In the first step we try to rewrite each term in each atom formula
to a term which is in normal form according to a given confluent
and terminating system of rewriting rules. As a result we obtain the
minimal sequent Smin, where S be the sequent to be simplified.

• The simplification in formula level takes Smin and tries to remove all
formula occurrences which are irrelevant for the validity with respect
to the background theory. The following steps are executed:

1) transforms Smin to a formula and negate it. Let the resulting for-
mula be F

2) remove all implications from F . The resulting formula F ′ contains
∧,∨ and ¬ as logical symbols only.

3) F ′ is transformed to a formula F ′′ in Negation Normal Form (NNF).

4) to each atomic formulas in F ′′ is assigned a unique label (a natural
number) and this label is encoded into the name of the corresponding
atomic formula.

5) F ′′ is transformed to a formula F ′′′ in Conjunctive Normal Form
(i.e. F ′′′ is in Clause Form).

6) F ′′′ is given to the theorem prover (Otter[1] or Prover9) which
returns a resolution refutation ρ.

7) ρ is analyzed and all atomic formulas in F ′′ which are also in ρ are
marked with a special marker (in our case ?).

8) decode the names of all atomic formulas in F ′′, i.e. remove the label
from the predicate name of each atomic formula. Keep the marker of
all marked atomic formulas. Call the sequent F ′?

9) for each formula occurrence in F ′? check whether all atomic formu-
las are NOT marked. If this is the case, remove the whole formula
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occurrence. Call the sequent F ?. This is the simplified Herbrand
sequent.

For Otter[1] and Prover9 there is already written an interface in CERES
[2] which allows manipulation and visualization of the obtained result with
the Prooftool[7].

The next two subsection describe the term and formula simplification in
details.

1.1 Simplification on the term level

The simplification of the Herbrand sequent in term level is an algorithm
which rewrites the sequent to a minimal one with respect to the ordering
≥seq. That means that we firs have to rewrite all terms to a normal form.
The rewriting of the terms is done according to a term-rewriting system. In
order to guarantee the existence of unique normal form for each term, we
assume that the term-rewriting system is confluent and terminating.

The term-rewriting algorithm is described as follows:

INPUT: a Herbrand Sequent S
OUTPUT: a minimal Herbrand Sequent with respect to ≥seq

VARIABLES:
occ : a formula occurrence in the sequent
pos : a term position in a term
P : atomic formula
l → r : a rule
σ : substitution
t : term
TRS : set of rules
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Algorithm 1.1: RewritingTermsInHerbrandSequent(S)

for each occ ∈ S

do





for each P ∈ occ

do





repeat
for each pos ∈ P

do





for each (l → r) ∈ TRS

do





t ← P.pos
if unifiable(t, l)
then{
σ ← mgu(t, l)
P.pos ← σ(r)

until noFurtherReductionIsPossble

return (S)

The implementation of the algorithm in C++ can be seen in the file
opHerbrandSequentSimiplication which contains a all operation classes. It
is a part of the prooflib library of the CERES system.

Theorem 1.1 (correctness). The algorithm for term-rewriting a Herbrand
Sequent returns the minimal sequent with respect to the ordering ≥seq.

Proof:

Since we are using a terminating and confluent term-rewriting system,
then each term has a normal form. This normal form is the minimal unique
term with respect to the ordering ≥τ .

Once all terms in all atomic formulas in a formula occurrence are in
normal form, then according to the definition of =f

E , the whole formula
corresponding to this formula occurrence is the minimal one with respect
to >f= {(P (t1, . . . , tn), P (s1, . . . , sn))| si is the normal form of ti, for i =
1, . . . , n, s, t ∈ T, P ∈ PS}.

Since each formula corresponding to each formula occurrence is the min-
imal one, then Smin is the smallest sequent according to. the ordering
>seq= {(S, S′)| S′ is the result of substitution a formula with the mini-
mal one}. ¤
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1.2 Simplification on the formula level

Simplifying a sequent in logical (formula) level consists in removing all for-
mula occurrences in a Herbrand sequent which are irrelevant for the validity
of the sequent as well as marking these atom formulas that are not essential
for the validity of the sequent but which can not be deleted. A formula occur-
rence can be deleted only in the case that all atom formulas in it are marked
by the algorithm. Formally, let S = A1, . . . , An ` C1, . . . , Cm be a Herbrand
sequent. Our goal is to find a sequent Socc

min = Ai1 , . . . , Aik ` Cj1 , . . . , Cjr ,
{i1, . . . , ik} ⊆ {1, . . . , n} and {j1, . . . , jr} ⊆ {1, . . . , m}, such that Socc

min is
minimal with respect to the number of formula occurrences and is still a
valid sequent. Hence, according to the definition, it is also a Herbrand se-
quent. The general idea is that we negate the extracted Herbrand sequent
S and transform it into a formula ϕ = A1 ∧ · · · ∧An ∧ (¬C1) ∧ · · · ∧ (¬Cm).
Then, we transform ϕ into equivalent formula ϕ′ in Negation Normal Form
(NNF). For this purpose we apply the De-Morgan rules to each disjunct in
ϕ pushing the negation as much as possible according to the following rules
(we apply them to each conjunct in ϕ till no further reduction is possible):

1)(F1 → F2) ⇒ (¬F1 ∨ F2)

2)¬(F1 ∧ F2) ⇒ (¬F1 ∨ ¬F2))

3)¬(F1 ∨ F2) ⇒ (¬F1 ∧ ¬F2))

4)¬¬F ⇒ F

The formulas F , F1 and F2 are quantifier-free and only conjunction,
disjunction and negation signs can appear. The cases for quantifier for-
mula are omitted because the extracted Herbrand sequent contains grounded
quantifier-free formulas only.

The last transformation applies the distributivity laws. The obtained
formula in clause form, i.e. ϕCNF = H1 ∧ · · · ∧ Hp, such that each Hi,
i ∈ {1, . . . , p} is a clause, i.e. Hi = Bk1 ∨ · · ·∨Bkq , where each Bj is a literal
(atom formula or its negation). In fact this is exactly the conjunctive-normal
form of ϕ.

Then, we transform ϕCNF to a clause set. Then we give this clause
set and the axioms of the background theory to the theorem prover. The
result of the theorem prover is a refutation tree. The atom formulas in the
Herbrand sequent which occur in formulas which are used in a particular
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refutation are marked. All non-marked formula can be removed from the
Herbrand sequent, in the following two cases:

1)if the corresponding formula occurrence consists of only this atom for-
mula

2)if all atom formulas in a corresponding formula occurrence are not
marked. Then the whole formula occurrence can be dropped.

Otherwise we just keep the marked formula. The algorithm in pseu-
docode for the simplification in formula level looks as follows:

INPUT: a Herbrand Sequent S with terms in normal form
OUTPUT: minimal Herbrand Sequent
VARIABLES:
S = A1, . . . , An ` C1, . . . , Cm : a sequent with quantifier-free grounded

formulas only
S′ : the empty sequent
ϕ,ϕ′F1, F2, F

′
1, F

′
2 : quantifier-free ground formulas

clauseSet, axiomClauseSet : sets of clauses
resProof : a resolution proof
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Algorithm 1.2: SequentToClause(S)

ϕ ← A1 ∧ · · · ∧An ∧ (¬C1) ∧ · · · ∧ (¬Cm)
for each (i ∈ {1, n}, j ∈ {1,m})
do

{
Ai ← RemoveImplication(Ai)
Cj ← RemoveImplication(Cj)

for each (i ∈ {1, n}, j ∈ {1,m})
do

{
Ai ← TransformToNNF(Ai)
Cj ← TransformToNNF(Cj)

ϕ′ ← LabelingAtomFormulas(ϕ)

ϕ′ ← RenameAtomFormulasToLabels(ϕ′)

clauseSet ← makeEqualities(ϕ,ϕ′)

ϕCNF ← TransformToCNF(ϕ′)

clauseSet ← union(clauseSet,TransformToClauseSet(ϕCNF ))

resProof ← theoremProver(clauseSet)

axiomClauseSet ← getAxiomClauses(resProof)

ϕ′ ← markAtomFormulas(axiomClauseSet, ϕ′)

ϕ′′ ← un-renameAtomFormulas(ϕ′)

S′ ← TransformFormulaToSequent(ϕ′′)

for each (occ ∈ S′)

do
{
if (allAtomFormulasInOccurrenceAreMarked(occ))
then delete(occ, S′)

return (S′)

Now we give an explanation about the function which are called in the
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pseudo-code above. Function RemoveImplication applies the De Morgan’s
rules to transform a formula to a formula containing only conjunction, dis-
junction and negation.

Function TransformToNNF transforms a formula into a negation-normal
form applying the rules described above.

Function LabelingAtomFormulas sets unique labels to all atom formulas.
The labels are set linearly with respect to the formula seen as a linear text,
not as a binary tree.

The function RenameAtomFormulasToLabels renames all atom formulas
in a way such that the corresponding label is coded into the new predicate
name. The reason for this renaming is because we want to keep an eye
on each atom formula in the returned from the theorem prover refutation
tree. Since it is quite possible the same atom formula to occur in formulas in
different formula occurrences, it is impossible to understand where a formula
in the refutation tree comes from if there are many such formulas in the
Herbrand sequent. We illustrate this with the following simple example.
Assume that this is a Herbrand sequent :

(A → B), A ` ¬A,B, where A and B are atomic formulas. We can
see that the formulas A and B occur in different occurrences. We can only
notice that there is a redundancy of the formula A in the first and in the
second formula occurrences in the antecedent part of the sequent. How can
we decide which A could be removed and the sequent to be still a Herbrand
sequent? According to the Herbrand sequent definition, only whole formula
occurrences can be removed. So, we have to see whether the second formula
occurrences A in the antecedent part can be removed. Indeed, it can be
removed. To see this, we transform the sequent to a formula (¬A ∨ B) ∧
A ∧ A ∧ ¬B. The theorem prover produces a refutation from the clauses
(¬A ∨ B), A,¬B. But now the system does not know where the second A
comes from. Exactly for this reason we label the atom formulas and encode
the labels into their names. Then of course, we add the clauses which say
that if a formula has two labels, then the renamed formulas are equivalent.

The function makeEqualities returns a set of clauses representing an
equalities between all renamed formulas which have the same un-renamed
origin formula.

The function TransformToCNF transforms a formula to a conjunctive-
normal form. This is needed in order to obtain it as a set of clauses. Each
conjunct is a clause. The atom formulas with negative polarity in each con-
junct go to antecedent part of the sequent and those with positive polarity
go in the consequent part of the sequent.

The function union performs a union of the two sets of clauses.
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The function theoremProver calls the theorem prover and returns the
refutation tree.

The function getAxiomClauses takes the axioms from the resolution refu-
tation tree. In fact we take only axioms because all other nodes of the
resolution refutation are subsequents of the axioms.

The function markAtomFormulas marks with a marker those atom for-
mulas in the renamed Herbrand sequent which occur in the set of axioms
obtained from the resolution refutation.

The function un-renameAtomFormulas renames the renamed atom for-
mulas with their original names. It keeps the marker of all marked formulas.

The function TransformFormulaToSequent transforms the negation of
the formula to a sequent. In this way we obtain the original Herbrand
sequent but with marked atom formulas. This allows us to remove those
formula occurrences of the Herbrand sequent whose atom formulas are all
marked.

allAtomFormulasInOccurrenceAreMarked is a predicate which checks
whether all atom formulas in a formula occurrence are marked.

The function delete deletes the whole formula occurrences from the se-
quent.

2 Examples

Consider the following two examples:

Example 2.1. Let S = P (0), P (0), P (0) → P (1) ` P (1), P (1) ∧ P (2)

Construct the negation of S and transform it to a formula:

F = P (0) ∧ P (0) ∧ (P (0) → P (1)) ∧ (¬P (1)) ∧ ¬(P (1) ∧ P (2))

Labeling and renaming of the atom formulas:

F ′ = P1(0) ∧ P2(0) ∧ (P3(0) → P4(1)) ∧ (¬P5(1)) ∧ ¬(P6(1) ∧ P7(2))

Transform F ′ to a NNF and then to CNF:

F ′′ = P1(0) ∧ P2(0) ∧ (¬P3(0) ∨ P4(1)) ∧ (¬P5(1)) ∧ (¬P6(1) ∨ ¬P7(2))
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Transform F ′′ to a clause set:

C = {P1(0) `; P2(0) `; P3(0) ` P4(1);P5(1) `;P6(1), P7(2)) `}

Create the set of equivalences (”;” is the separator instead of ”,”):

C′ = {P1(0) ` P2(0); P2(0) ` P1(0); P2(0) ` P3(0); P3(0) ` P2(0);

P4(1) ` P5(1); P5(1) ` P4(1); P5(1) ` P6(1); P6(1) ` P5(1)}

The set C ∪ C′ is given to theorem prover and the following refutation is
returned:
{P2(0), ¬P2(0) ∨ P3(0), P3(0), ¬P3(0) ∨ P4(1),

P4(1), ¬P4(1) ∨ P5(1), P5(1),¬P5(1), ¤}

Hence, we mark the following atom formulas in F ′:

F = P1(0) ∧ PF
2 (0) ∧ (PF

3 (0) → PF
4 (1)) ∧ (¬PF

5 (1)) ∧ ¬(P6(1) ∧ P7(2))

The next step is to unlabel the formulas, negate it and transform it back
to a sequent :

S = P (0), PF(0), PF(0) → PF(1) ` PF(1), P (1) ∧ P (2)

The last step is to delete the formula occurrences which can be deleted :

PF(0), PF(0) → PF(1) ` PF(1)

Example 2.2. This example shows the simplification of a Herbrand sequent
in formula level as well as in term level. The signature Σ consists of one
constant symbol 0 interpreted as a 0 ∈ N, a unary function symbol s inter-
preted as a succesor function over N, and two binary function symbols +
and ∗ interpreted as a sum and multiplication operation over N respectively.
The sequent is :

S : A1, A2, A3, A4 ` C1, C2, where

A1 : P ((s(0) + s(0)) + s(0))
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A2 : P (s(0) + s(s(s(0) + s(0))))
A3 : P (s(0) + s(s(s(0) + s(0)))) → P (s(s(0)) ∗ s(s(0) + s(0)))
A4 : P (s(s(0) + s(0)) ∗ s(s(0) + 0)) → P (s(s(s(0)) ∗ s(s(s(0)))))
C1 : P (s(s(0)) ∗ s(S(0)))
C2 : P (s(s(s(s(0))) ∗ s(s(0))))

In this case the term-rewriting system consists of the following rules:

• x + 0 → x

• x ∗ 0 → 0

• x + s(y) → s(x + y)

• x ∗ s(y) → x ∗ y + x

The sequent can be taught of as P (3), P (4), P (4) → P (5), P (5) → P (7) `
P (4), P (7). The idea is to show that P (3) from the antecedent part and P (4)
from the consequent part are irrelevant for the validity of the sequent.

This background theory can be turned into a Term-rewriting system. Fur-
thermore, this term-rewriting system is confluent and terminating. Once
we have all terms in normal form, we do not need the background the-
ory anymore. We orient the equation from left to right and add them in
the data structure which is a list of TermRewritingRules. Then we call
the operation class OpSimplifyingSequentInTermLevel which apply the
rewrite rules till no further reduction is possible. The result is a sequent
Strw : A′1, A

′
2, A

′
3, A

′
4 ` C ′

1, C
′
2, where

A′1 : P (s3(0))
A′2 : P (s5(0))
A′3 : P (s5(0)) → P (s6(0))
A′4 : P (s6(0)) → P (s7(0))
C ′

1 : P (s4(0))
C ′

2 : P (s7(0))

Now we transform the formulas in Conjunctive-normal forma and label
the atom formulas. After that, we rename the sequent in such a way that we
encode the labels of the atom formulas into the names of the same atom for-
mulas calling the operation OpRenameFormaulasToLabelsInSequent.
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The result is the sequent:

P1(s3(0)),
P2(s5(0)),
¬P3(s5(0)) ∨ P4(s6(0)),
¬P5(s6(0)) ∨ P6(s7(0))
`
P7(s4(0)),
P8(s7(0))

Now we negate the sequent and transform in to a set of clauses calling
the transformNegatedSequentToClauseSet operation. The result is the
following set of clauses:

{` P1(s3(0)),` P2(s5(0)), P3(s5(0)) ` P4(s6(0)), P5(s6(0)) ` P6(s7(0)),
P7(s4(0)) `, P8(s7(0)) `}

Since the formula pairs P2(s5(0)) and P3(s5(0)), P4(s6(0)) and P5(s6(0))
and P6(s7(0)) and P8(s7(0)) are renamed version of the formulas P (s5(0)),
P (s6(0)) and P (s7(0)) respectively, we construct the union of the set of
clauses above with the following set of clauses representing the equivalence
of the formulas in each pair:

{P2(s5(0)) ` P3(s5(0)), P3(s5(0)) ` P2(s5(0)), P4(s6(0)) ` P5(s6(0)),
P5(s6(0)) ` P4(s6(0)), P6(s7(0)) ` P8(s7(0)), P8(s7(0)) ` P6(s7(0))}

Now we are ready to give the new set of clauses as an input to the the-
orem prover. The outcome is a refutation tree from which we collect all the
axioms. The marked sequent is:

P (s3(0)), P ?(s5(0)), P ?(s5(0)) → P ?(s6(0)), P ?(s6(0)) → P ?(s7(0))
`
P (s4(0)), P ?(s7(0))

The unmarked formulas P (s3(0)) and P (s4(0)) correspond to formula
occurrence that can be dropped. Hence, the simplified Herbrand sequent is:

P ?(s5(0)), P ?(s5(0)) → P ?(s6(0)), P ?(s6(0)) → P ?(s7(0)) ` P ?(s7(0))
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3 Specification of the term-rewriting system

The term-rewriting system is specified by the user and should be a confluent
and terminating one. The syntax is as follows:

V ar := x|y|z

Const := s1|s2|s3|s4

Term := V ar|Const|f(Term1, . . . , T ermn)

trsRule := Term− > Term

The term-rewriting system is stored as a string in a file. The string is a
sequence of rules separated by comma.
For example: +(x, 0)-> 0, +(x, s(y))-> s(+(x, y)), ∗(x, s(y))-> +(∗(x, y), x)
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