
Realization of Prime Proof for the Three
Prime Case by ATP

Erman Acar

January 24, 2010

Contents

1 Introduction 1

2 About the language of ATP 2
2.1 Input syntax . 2
2.2 Output syntax . 3

3 About the refutation of the three primes case of Fürstenberg’s
proof 3
3.1 Encoding the language of the proof 4
3.2 Initializing the proof . 4
3.3 Axiom list . 6
3.4 Derivation Sequence for the three prime case 7
3.5 Remarks . 10

4 Difficulties engaged, modifications, bugs and fixes 12

5 Conclusion 14

6 Acknowledgements 15

1 Introduction

This report is about the work that has been done for testing the interac-
tive theorem prover ATP which was written by Tomer Libal. For testing,
an instant proof of a proof schematic version of Fürstenberg’s proof of the
infinitude of primes which has been given in [3], is chosen. This schema had

1

been used in order to provide a proof analysis showing Euclid’s argument is
in the kernel of Fürstenberg’s proof. The proof schema was based on resolu-
tion calculus [4, 1]. Beside that, this work also can be used as guide for any
ATP user with its content consisting of realization of a relevant size proof
and side remarks.

In the subsequent section, the language of ATP will be introduced. The
distinction between the input syntax and output syntax is given and the
reader is informed of how to translate the formulas which are desired to work
on to ATP prover.

The third section concerns the proof which is the three primes case of
the prime proof. In the beginning, it shows how the proof specific encoding
is done. So this part is the crucial part for reading the machine generated
proof. Next, initialization and real axioms are listed and derivation path is
provided. Crucial remarks and revelations emerged from the implementation
phase is mentioned on the section which is called remarks.

The fourth section includes a compilation of a bug which has been fixed,
information for the reader about technical difficulties encountered and counter
measurements has been taken and also some suggestions in extra.

2 About the language of ATP

2.1 Input syntax

Input syntax of ATP is based on prefix notation and is quite simple to learn.
Here, it will be explained how to encode logical formulas in ATP. In the
following, you see the basic rules about the syntax:

• constants are the strings in which starts with “a-c”.

• variables are the strings in which starts with “d-z”.

• functions/predicates are the strings starts with “d-z”.

• equality symbol is “=” itself.

And it is straight forward as follows when we encode the clause below. So,

p(a, x), g(x) = f(a) ` q(b, y)

is encoded by

2

-p(a,x) | -=(g(x),f(a)) | q(b,y).

Obviously, any predicate or function name is used in prefix notation.
Moreover, we put “-” to the beginning of the literal in order to make it a
negative literal and omit it to make it positive and also used “ |” in order to
separate them in any place in the whole formula. The point “.” must not be
forgotten in the end of the formula. This is the well-known TPTP-format.

2.2 Output syntax

Output syntax of the ATP is slightly different than its input one. Once
you entered your input data on your input file, it simplifies the formulas by
putting a dash sign “:-” (standing for “`”) to the middle of the negative and
positive literals, so the bar sign “-” in the head of the negative literals is not
needed anymore and dropped. Also “|” signs turn to “,” . Furthermore, only
the equality symbol “=” loses its prefix form, so it becomes much easier to
read the formulas in that form. For instance, the input

-p(a,x) | -=(g(x),f(a)) | q(b,y).

becomes
p(a,x) , g(x) = f(a) :- q(b,y).

Once you encoded your formulas you wanted to start with and run ATP,
in any state of the proof that you are carrying on to the end, you will be
going on with the output syntax.

3 About the refutation of the three primes

case of Fürstenberg’s proof

The proof of three prime case for Fürstenberg’s proof on ATP is based on
the proof schema presented in [1]. The schema is up to provide a refutation
based on resolution calculus in the language of first order arithmetic ([1],
[3]). Schema provides a refutation method for arbitrary (finitely) number of
the prime existence, so to speak, itself a proof for argument “finitely many
prime number exists” and in the case of three primes case instance, proof
is based on the refutation of a particular instance argument ”there are only
three primes”. So, this section will be all about this machine proof.

3

3.1 Encoding the language of the proof

Now it will be introduced how the language of proof schema in [3] is trans-
formed to the language of ATP (in output syntax). It is,

• For relation “<”, predicate name “smaller” is used.

• For binary function “+”, function name “plus” is used.

• For binary function “*”, function name “times” is used.

• For unary functions “s1”...“s7”, function names “sone”...“sseven” are
used respectively.

• For variables “k”,“l”,“m”, “j”,“t”, “m0”,“m1”,“t0”,“t1”,“j0”,“j1”,“k”,
“l”,“m”,“j”,“t”,“mzero”,“mone”,“tzero”,“tone”,“jzero”,“jone” are used
respectively.

• For primes “p0”, “p1”, “p2”, constant names “cpzero”,“cpone”,“cptwo”
are used.

• For natural numbers “0”,“1”, constant names ‘czero”,“cone” are used.

• “=” stays as it is.

It must be understood that everything is in prefix notation (except “=”)
and the names starts with “c” is for constants.

3.2 Initializing the proof

Unfortunately, ATP does not have a fixed ordering (yet), so that if you order
or modify the clauses in a different way, index number of the clauses will be
changed. Hence it is useful to notify the reader, that the derivation path
which are going to be shown next section is subject to the following ordering
of clauses. As we begin, we order the clauses like below:

(0) :- k = k
(1) :- plus(plus(k,l),m) = plus(k,plus(l,m))
(2) :- plus(k,czero) = k
(3) plus(k,l) = plus(k,m) :- l = m
(4) :- plus(czero,k) = k
(5) plus(k,l) = plus(m,l) :- k = m
(6) k = plus(l,k) :- l = czero
(7) k = plus(k,l) :- l = czero

4

(8) plus(k,l) = k :- l = czero
(9) plus(k,l) = l :- k = czero
(10) k = l :- plus(m,k) = plus(m,l)
(11) plus(cone,plus(k,cone)) = cone :-
(12) :- times(k,l) = times(l,k)
(13) plus(k,cone) = czero :-
(14) :- times(k,times(l,m)) = times(times(k,l),m)
(15) :- times(times(k,l),m) = times(k,times(l,m))
(16) :- times(k,cone) = k
(17) :- times(cone,k) = k
(18) :- times(k,plus(l,m)) = plus(times(k,l),times(k,m))
(19) :- plus(times(k,l),times(m,l)) = times(plus(k,m),l)
(20) :- times(plus(k,l),m) = plus(times(k,m),times(l,m))
(21) :- plus(times(k,l),times(k,m)) = times(k,plus(m,l))
(22) :- plus(times(k,l),k) = times(k,plus(l,cone))
(23) :- times(m*plus(k,l)) = plus(times(l,m),times(k,m))
(24) smaller(k,l), smaller(k,m), smaller(l,m), plus(k,times(i,m)) = plus(l,times(j,m))
:-
(25) cone = times(k,l) :- k = cone
(26) smaller(k,l), smaller(k,m), smaller(l,m), plus(l,times(i,m)) = plus(k,times(j,m))
:-
(27) cone = times(l,k) :- k = cone
(28) :- smaller(czero,plus(k,cone))
(29) :- k = l, smaller(k,l), smaller(l,k)
(30) smaller(plus(n,cone),m) :- smaller(n,m)
(31) smaller(cone,k), k = cone :-
(32) smaller(cone,k) :- cone = times(l,k)
(33) smaller(czero,cpzero) :- cpzero = plus(sseven(cpzero),cone)
(34) tzero = cpzero :- smaller(cone,tzero)
(35) tzero = cpone :- smaller(cone,tzero)
(36) smaller(czero,cptwo) :- cptwo = plus(sseven(cptwo),cone)
(37) smaller(czero,cpone) :- cpone = plus(sseven(cpone),cone)
(38) :- mzero = cone, times(sone(mzero),sfour(mzero)) = mzero
(39) tzero = cptwo :- smaller(cone,tzero)
(40) :- mzero = cone, sone(mzero) = cpzero, sone(mzero) = cpone, sone(mzero)
= cptwo
(41) :- smaller(cone,plus(plus(w,cone),cone))
(42) :- plus(k,l) = plus(l,k)
(43) :- plus(k,plus(l,m)) = plus(plus(k,l),m)

Most of these clauses are nothing but the axioms from the list AX which

5

is referred in [3]1 except the reflexivity axiom (first one in the list above),
34th and 35th (from Bi) and 38th (from A) in the characteristic clause set
[3].

3.3 Axiom list

Here we give a list of axioms. This list is important by the purely mathe-
matical point of view for answering the question of “what are the relevant
axioms to prove the theorem”.

1. n + 1 < m ` n < m

2. ` 0 + k = k

3. 1 < k, k = 1 `

4. ` k < l, k < m, l < m, k + (i ∗m) = l + (j ∗m)

5. ` k ∗ l = l ∗ k

6. ` k ∗ (l ∗m) = (k ∗ l) ∗m

7. ` (k ∗ l) ∗m = k ∗ (l ∗m)

8. ` (k + l) ∗m = (k ∗m) + (l ∗m)

9. ` k ∗ (l + m) = (k ∗ l) + (k ∗m)

10. ` 1 ∗ k = k

11. ` k ∗ 1 = k

12. ` k + (l + m) = (k + l) + m

13. 1 < (w + 1) + 1

14. ` (k + l) ∗m = (l ∗m) + (k ∗m)

15. ` (k + l) ∗m = (k ∗m) + (l ∗m)

16. ` k ∗ (l ∗m) = (k ∗ l) ∗m

Once the proof has been done, the derivation sequence tells us which ax-
ioms in the sense of initial clauses has been used. Even though the reflexivity
axiom ` k = k, Bi and A clauses were used in initial input, we did not cover
them in our list of axioms above.

1Axiom list can be found at http://www.logic.at/ceres/examples/primeproof/prime3-
ce.pdf

6

3.4 Derivation Sequence for the three prime case

In this section, a whole derivation will be given to the user of ATP. Before
doing this , a simple notation will be introduced . Let us denote the clauses
by their numbers in the resolution (or paramodulation) as following:

ATP(28,4)

then let it denote, resolution or paramodulation of the clauses indexed
with 28 and 4 and from the generated clauses to show the one with index 1
is chosen is shown by our notation:

C[1].

Enter tX for automated X steps, sX for displaying all clauses containing X or
Please choose two clauses to process: 28 4
Please choose one clause for insertion (0 for inserting nothing):
(1) :- smaller(czero,cone)
(2) :- plus(czero,smaller(czero,plus(k 2,cone)))
(3) :- smaller(plus(czero,czero),plus(k 2,cone))
(4) :- smaller(czero,plus(czero,plus(k 2,cone)))
(5) :- smaller(czero,plus(k 2,plus(czero,cone)))
1

So the “ATP(28,4) with C[1]” denotes the action which is shown above
in ATP interface, hence it is pressed by the user on the last line.

So the derivation expression proceeds in that fashion. We are at the point
right after the initial clauses are read by ATP (so the last clause is number
43).2

(44) ATP(28,4) with C[1].0 < 1
(45) ATP(34,0) with C[5]. III0

(46) ATP(30,4) with C[2].
(47) ATP(46,45) with C[1].II0

(48) ATP(35,0) with C[5].III1

(49) ATP(46,48) with C[1].II1

(50) ATP(39,0) with C[5]. III2

(51) ATP(50,46) with C[1].II2

(52) ATP(38,31) with C[6].
(53) ATP(40,31) with C[4].

2Some clauses has comments to it pointing out which clauses are the in the schema [3]

7

(54) ATP(52,53) with C[8].
(55) ATP(52,54) with C[8].
(56) ATP(52,55) with C[4].D2

(57) ATP(24,4) with C[4].
(58) ATP(57,12) with C[1].
(59) ATP(58,12) with C[2].V
(60) ATP(59,14) with C[2].V ∗

(61) ATP(60,15) with C[2].
(62) ATP(61,56) with C[32].V I
(63) ATP(62,44) with C[1].
(64) ATP(63,45) with C[1].
(65) ATP(64,47) with C[1].F0

(66) ATP(65,12) with C[4].
(67) ATP(66,15) with C[2].
(68) ATP(67,59) with C[1].
(69) ATP(68,44) with C[1].
(70) ATP(69,49) with C[1].
(71) ATP(70,48) with C[1].
(72) ATP(71,14) with C[3].
(73) ATP(72,12) with C[9].
(74) ATP(73,59) with C[1].
(75) ATP(74,44) with C[1].
(76) ATP(75,51) with C[1].
(77) ATP(76,50) with C[1].F2

(78) ATP(33,47) with C[2].by B0

(79) ATP(37,49) with C[2].by B1

(80) ATP(36,51) with C[2].by B2

(81) ATP(77,78) with C[1].
(82) ATP(81,20) with C[1].
(83) ATP(79,82) with C[2].
(84) ATP(83,20) with C[1].
(85) ATP(84,18) with C[1].
(86) ATP(85,17) with C[1].
(87) ATP(86,17) with C[1].
(88) ATP(87,17) with C[3].
(89) ATP(88,80) with C[2].
(90) ATP(89,18) with C[1].
(91) ATP(90,16) with C[1].
(92) ATP(91,80) with C[3].
(93) ATP(93,17) with C[1].
(94) ATP(94,17) with C[3].

8

(95) ATP(95,43) with C[2].
(96) ATP(96,43) with C[2].
(97) ATP(97,41) with C[1].
(98) ATP(98,78) with C[1].
(99) ATP(99,20 with C[1].
(100) ATP(100,79) with C[2].
(101) ATP(101,20) with C[1].
(102) ATP(102,18) with C[1].
(103) ATP(103,17) with C[8].
(104) ATP(104,17) with C[1].
(105) ATP(105,17) with C[3].
(106) ATP(106,80) with C[2].
(107) ATP(107,18) with C[1].
(108) ATP(108,16) with C[1].
(109) ATP(109,80) with C[3].
(110) ATP(110,17) with C[1].
(111) ATP(111,17) with C[3].
(112) ATP(112,43) with C[2].
(113) ATP(113,43) with C[2].
(114) ATP(114,17) with C[8].
(115) ATP(115,17) with C[2].
(116) ATP(116,17) with C[1].
(117) ATP(117,80) with C[2].
(118) ATP(118,18) with C[1].
(119) ATP(119,16) with C[1].
(120) ATP(120,80) with C[3].
(121) ATP(121,17) with C[1].
(122) ATP(122,17) with C[1].
(123) ATP(123,43) with C[2].
(124) ATP(124,43) with C[2].
(125) ATP(125,98) with C[1].
(126) ATP(126,78) with C[1].
(127) ATP(127,20) with C[1].
(128) ATP(128,79) with C[2].
(129) ATP(129,20) with C[1].
(130) ATP(130,18) with C[1].
(131) ATP(131,17) with C[8].
(132) ATP(132,17) with C[1].
(133) ATP(133,17) with C[1].
(134) ATP(134,78) with C[2].
(135) ATP(135,23) with C[1].

9

(136) ATP(136,17) with C[1].
(137) ATP(137,80) with C[3].
(138) ATP(138,12) with C[3].
(139) ATP(139,14) with C[1].
(140) ATP(140,80) with C[3].
(141) ATP(141,43) with C[2].
(142) ATP(142,43) with C[1].
(143) ATP(143,98) �

A prooftool readable3 output.xml file is generated after the refutation has
been done, and it is totally informative, so the interested reader can check
the above proof steps form prooftool on output.xml file frankly.

3.5 Remarks

Because of the interplay between theoretical stipulations and practical issues
shows itself in following the schema which is presented in [3] with a program,
it can make the user encountering some little surprises sometimes. As this
work is based on main paper [3], implementing the proof revealed some small
facts about the work itself. Despite the things have been found are not
carrying any level of contradiction to the emphasized ideas lying behind the
work [3] but they might stand as interesting small side details. However they
can become non-trivial problems if one decides to implement the schema
instance with a theorem prover software.

The first one does come from the subsumption. Now we have to point out
the reason why the subsumption is disabled. As you go through the schema
with the subsumption deletion you won’t be able to generate some clauses
in the schema. Many of them are caused by multiple associativity following
distributivity operations. As an example we can give the derivation sequence
in page 12 of [3] between lines 5 and 13. Its not possible at all to derive from
clause V to Er with the subsumption deletion, because after V ′ clauses that
you are looking for will not be generated by ATP and you will be informed
by it that it is not added to clauses because of its subsumption by a previous
clause. Thus, it does not take the opportunity away from reaching resolution
refutation since its still complete theoretically but user has two choices at
that point; either still trying to follow scheme by trying to figure it out with
adaptation of what he has, to the schema. If one is lucky enough, he can turn
back to the schema later on with less efforts. Another choice which can be
chosen is to try to modify the schema itself, and making it shorter and more

3Reader may find enough information about it on [2]

10

preferable. One another choice which is the easiest obviously is deactivating
the subsumption and going on with the schema which is believed to be true.4

Another remark with the proof is about its very last part. On page 13
line 29 of [3], its been said that ` 1 < (k + 1) + 1 can be derived from the
axioms and for sure once you get it you do the last resolution step and getting
resolution refutation finally. Some persisting efforts which was spent by me,
has revealed that actually that is not the case, so that the clause has been
itself imported as an axiom to the proof.

Another remark that must be mentioned before starting the proof, is that
subsumption must be disabled in order to follow the proof path which will be
given.It can be done by the setup.xml file of ATP. We don’t want subsumption
because we do not want to deal with any surprise or complication which may
occur during walkthrough with the proof schema in parallel given in [3].5.
Also the axiom which was added later (41th) which stands for 1 < (w+1)+1.6

Another issue related to ATP’s inner design which is making the proof
longer is no factorization is being done on the resolvent. As a result of this,
actual D2 in ATP becomes the following:

1 < k, 1 < k, 1 < k, 1 < k ` p0 ∗ s4(k) = k, p1 ∗ s4(k) = k, p2 ∗ s4(k) = k

So as it seems, on the further evolution of this clause k’s on the left
hand side will be modified concurrently till Fr and it does not creates a real
problem. So your actual Fr is

1 < t3, 1 < t3, 1 < t3, 1 < t3 `

but after it with the sequences of distributivity, commutativity and associa-
tivity operations has to be repeated four times on it on the very last part of
the proof.7 It makes almost half of the proof. So its a serious lack of proof
efficiency on length.8

4After both of these ways have been tried, it has been realized that these little mod-
ifications caused the change propagated more and more on long rest of the proof, and
the rest also had to be redesigned. So personally I took the decision to deactivate the
subsumption, obviously the easiest choice.

5In particular cases, there are subsumptions between different clauses on schema.
6The reason will be explained in the next section dedicated to problems and fixes.
7According to the proof schema on [3].
8Despite this is the case here, on particular cases it might improve the efficiency.

11

4 Difficulties engaged, modifications, bugs and

fixes

During the time resolution refutation was tried to be captured, ATP had its
evolution in many levels from bug fixing to new designs aiming better usabil-
ity, triggered by the problems faced up with. In this section, the problems
and difficulties encountered and counter changes will be reported.
Lets start with the impracticalities related to its early design. In the be-
ginning, ATP’s interactive part was working like below, let us use the same
short example used previously and see what is actually going on:

Enter tX for automated X steps, sX for displaying all clauses containing X or
Please choose two clauses to process: 28 4
(44) :- smaller(czero,cone)
(45) :- plus(czero,smaller(czero,plus(k 2,cone)))
(46) :- smaller(plus(czero,czero),plus(k 2,cone))
(47) :- smaller(czero,plus(czero,plus(k 2,cone)))
(48) :- smaller(czero,plus(k 2,plus(czero,cone)))

For reminding, this resolution step was us to reach clause number 44 in
which stands for ` 0 < 1. Lets call it goal clause. Now as you might rec-
ognized first, there is no indentation, so the user has to improve his reading
skills in order to find the goal clause easily, it both consumes time and energy
of the user when one consider some resolutions generating eighty new clauses
occupying many lines. Beside this, another disadvantage is without asking
which clause do we wanted, it just added whatever it could generate and
less probably that we will use the rest of the clauses generated again and in
each step we proceed in the console, these clauses will come and come again.
Despite the fact that it was complete, it was messy and way too exhausting
work to try to go on with it.

A necessary side remark is, search engine of ATP wouldn’t also help for
the cases that the new variables generated by the machine. So you wouldn’t
be able to make a search on ATP for the clause that you are looking for but
don’t know how it looks like! Obviously. Hopefully that had been changed.
So in that sense it is obvious that todays ATP is much simpler and quite
easier to use.

A bug which has been found was basically an absurdity on difference
between the forms of clauses which had to be variants at worst, when each
was done by different lengths of derivation steps done based on paramodu-
lation. On example what had been going on will be more obvious, so the

12

exact samples which had exploited the bug will be given. Assume you have
the following clauses: 9:

1. 1 < k ` p0 ∗ s4(k) = k, p1 ∗ s4(k) = k, p2 ∗ s4(k) = k

2. 0 < l, 0 < m, l < m,m ∗ i = l + m ∗ j1 ∗ j2 `

3. 0 < 1

4. 0 < p0

5. 1 < p0

6. k ∗ (l ∗m) = (k ∗ l) ∗m

So the derivation is:

(7) ATP(2,3).
(8) ATP(3,7).
(9) ATP(4,8).
(10) ATP(5,9).
(11) ATP(1,10).

So the resulting clause is:

1 < t ` p1 ∗ s4(t) = t, p2 ∗ s4(t) = t

where
t = 1 + p0 ∗ (j1 ∗ j2)

Lets call the clause 11, so if we perform

ATP(6,11)

we have to get one which is

1 < t ` p1 ∗ s4(t) = t, p2 ∗ s4(t
′) = t′

where 10

t′ = 1 + (p0 ∗ j1) ∗ j2

9Normal logical notation instead of machine code will make the example easier to
understand.

10Or necessarily the other right literal t becoming t′

13

So the problem is we were able to get the clause 12 if we directly perform
ATP(6,11) but unable if we make the derivation required above to get the
clause 11. Finally this hardly recognizable bug has been fixed.

Another problem which must be told about the use of ATP is the order
of input clauses has no unique ordering, so anytime you modify your input
file, you have to built new proof paths. An ordering (lexicographic) would
make the prover much declarative and simpler in use.

One last deficiency and a difficulty in this project is again with the in-
terface of ATP which is prefix notation. It makes long bulk strings on the
screen such as the one below and makes the users job much harder.

(88) times(cone,smaller(cone,plus(cone,plus(times(sseven(cpzero), plus(times(cp
one, m 57), times(cpone,m 57))),times(cone,times(plus(sseven(cpone),cone),tim
es(plus(cone, cone),m 57))))))), smaller (cone,plus(cone,times(cpzero,times(cpon
e,times(plus(cone, cone), m 57))))), smaller(cone,plus(cone, times(cpzero,times(c
pone,times(plus(cone,cone),m 57))))), smaller(cone,plus(cone,times(cpzero,time
s(cpone,times(plus(cone,cone),m 57))))), plus(cone,times(cpzero,times(cpone,ti
mes(plus(cone, cone),m 57)))) = plus(cone,times(cptwo,j 15)) :-

Once you spend much time, certainly you develop much speed and tricks
to deal with it because of eye training but that shouldn’t be the case. Symbols
like “+”, “*”, “¡” and natural numbers are in common use of almost every
logical systems, so the prover parsers must recognize them and print exactly
how it is in normal notation, and also term reading can be easier in a way
exactly like we do on previous section. 11

5 Conclusion

The three primes case of the proof schema based on first order formalization
of Fürstenberg’s proof represented on [3] has been realized in the ATP theo-
rem prover, in order to test it. During the realization phase, different levels
of problems have been encountered such as, impracticality of pre-designed
interface,a bug in the paramodulation engine and the misleading reference
by [3] . Because many modifications of the software, fixing of bug and cor-
rection of argument in main work ([3]) took place, improvements obtained
and the refutation has been succeeded.

In doing so, formalization of the schema has been transformed to ATP
language, axiom list (initialization file) has been redetermined and also a
reported bug in paramodulation could be fixed. Issues concerning all this

111 < t ` p1 ∗ s4(t) = t, p2 ∗ s4(t) = t with declaration t = 1 + p0 ∗ (j1 ∗ j2)

14

work; testing and realization also embodied suggestions from the gained ex-
periences on machine based theorem proving. This work must be understood
as a small contribution in which is promised in conclusion part of [3] , which
is the development of a semi-automated proof analysis method.

6 Acknowledgements

I would like to thank to my supervisor Alexander Leitsch, in this project for
his kind help, patience and specially understanding that he showed on the
long time completion of this project and also to Tomer Libal, author of the
ATP, for being ready to help and give it any time it is needed with so much
patience.

References

[1] http://www.logic.at/ceres.

[2] http://www.logic.at/prooftool.

[3] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and
Hendrik Spohr. Ceres: An analysis of fürstenberg’s proof of the infinity
of primes. Theor. Comput. Sci., 403(2-3):160–175, 2008.

[4] Alexander Leitsch. The resolution calculus. Springer-Verlag New York,
Inc., New York, NY, USA, 1997.

15

