The Calculus LKS and Handy LKS Language

Cvetan Dunchev, Mikheil Rukhaia

Institute of Computer Languages, Vienna University of Technology.

Abstract. This is a draft paper, describing the calculus LKS and its
machine readable prototype, called HLKS.

1 The Calculus LKS

In this section we briefly describe an implementation of the schematic sequent
calculus in the GAPT Framework.! We implemented the schematic propositional
language in general format. It can be extended also to the first-order language
easily. Our schematic sequent calculus LKS uses usual propositional LK rules,
which was already implemented and additionally some equivalence rules to de-
rive the necessary main formulas of the inferences. We start with some basic
definitions.

Definition 1.1 (Indexed proposition) An expression of the form P,, where
a is a linear arithmetic expression built over the signature 0,s,+ and integer
variables, is called an indexed proposition. If a does not contain integer variables
then we speak about ground indezed propositions, which are called propositional
variables. Integer variables can be free or bound. Free integer variables are called
parameters.

Definition 1.2 (Formula schemata) We define formula schemata inductively
in the following way:

— An indexed proposition is an (atom) formula schema.

— If ¢1 and @9 are formula schemata, then so are ¢1 V ¢2, ¢1 A ¢p2 and —¢py.

— If ¢ is a formula schema, a,b are arithmetic expressions and i is an index
variable not bound in ¢, then /\?:agb and \/?:agb are formula schemata,
called iterations (i becomes bound under the iterations).

Definition 1.3 (Sequent schemata) An expression of the form I' = A, where
I' and A are multisets of formula schemata, is called a sequent schema. I' is
called antecedent and A a succeedent of the sequent. If I' = A = {A}, for A
being an indexed proposition, then it is called an initial sequent schema.

Definition 1.4 (Sequent Context) We say that C[A] is a sequent context, if
C[A] is a sequent which contains A either in its antecedent, or succeedent.

! Home page: http://code.google.com/p/gapt/



2 Cvetan Dunchev, Mikheil Rukhaia

Definition 1.5 (Proof links) An expression of the form 7((‘%9)7 , where ¢

is a proof name, a is an arithmetic expression and S is an end-sequent of ¢ at
iteration a, is called a proof link.

Definition 1.6 (Substitution) A substitution is a function mapping every (free)
integer variable to an arithmetic expression.

Definition 1.7 (Calculus LKS) Our sequent calculus LKS contains initial
sequent schemata or proof links as axioms and consists of the following rules:

1. Logical rules:

— = gntroduction
I'AA ATFA

- d —_
—Arra b TFA-4a "
— A introduction
ANB,TFA N ArBTFA M2

I'HAA II+=AB
rii+-AAANB
Note that A(0) = N\)_, A(G) and (NI A()) A A(n + 1) = N4 Ax).
Below we will describe corresponding equivalence rules.
— V introduction

AT

AT-A  BIIFA
AVB,TITF A, A

I'+AA J I'+AB
Traave Vit an TFAAVB
Note that A(0) = \/?:0 A(i) and (Vg AG) VAR +1) = \/?:01 A(i).
Below we will describe corresponding equivalence rules.
2. Structural rules:
— Weakening rules:

Vir2

' A I'HA .
AT A wlo end TrAA "
— Contraction rules:
AATHEA . and I'FAAA oy
ATFA & I'FAA
— Cut rule:
I'HAA Al A ;
TIIFAA e

8. Some “schortcuts” and Equivalence rules:
— A introduction left

A B, ' A .
ANBTFA N
is shortcut for
A BT+ A
Al

ANBBIFA ML
ANBANBTFA M
ANB,TFA  ©

— V introduction right



The Calculus LKS and Handy LKS Language 3

[FAAB
I'FAAVB

I'~AAB
I'FAAVB,B
I'FAAVB,AVDB
I'FAAVB

is shortcut for

Virl
Vir2

— A equivalence rules:
ClAIZa Ai) A A1)
Cl(NZs A1)
ClAIZas1 A) N A
Cl(Aiza A0)
ClAd]
ClNi=a Ail

=: N1

|
>
N

=: A3
— V equivalence rules:
Cl(Viza A0) V Api]
Cl(ViL, A0)
Cl(ViZgi1 A1) V A
ClVi=, 4]
C[Ad]
ClViza Al

An LKS-proof is called ground if it does not contain free parameters, index
variables, or proof links.

=:Vl1

=: V3

Definition 1.8 (Proof schemata) Let !, ..., ¢¥™ be proof symbols and S*,. .., S™
be sequents containing the free parameter n. Then, a proof schema ¥ is a tuple
of pairs

<(wll)asea wsltep)a R (qpkrgse? w;?ep)>
such that:

1. wéasc is a ground LKS-proof of Si{n < 0}, for alli=1,...,m,
2. Ygiep 18 an LKS-proof of S'{n < k + 1}, where k is a parameter of 1

and Yo, contains only proof links of the form:

%
step’

R At and/or - 7@}]3 @7 -

where © < j and a is an arithmetic expression.

We assume an identification between formula occurrences in the end-sequents of
VUl aser Vitep (50 that we can speak of occurrences in the end-sequents of ). We
also say that S* is the end-sequent of W.



4 Cvetan Dunchev, Mikheil Rukhaia
2 The Language HLKS

In this section we describe the Handy LKS language in left-linear grammar. We
use the following conventions: an expression |[...] is used to denote the optional
part of a definition, but expressions [...]* or [...]T has the standard notion
of a regular expression. In the first case we have zero or more repetitions. In
the second case - at least one repetition. Also we use 0 — 9, a — z and A — Z
expressions, to denote the range of digits, lowercase letters and uppercase letters
respectively. Braces such as (, ), { and } are part of the syntax and omitting them
will throw an exception. LK-proofs can also be specified using this grammar.
For this reason the step block of a proof definition should be empty, i.e. only the
base block of a proof definition will be used. Finally, the HLKS-parser which
parses this grammar is not sensitive to white spaces and new lines.

(lks_file) ::= [(lks_statement)]*
(lks_statement) ::= (definition)
| (proo)

(definition) ::= (formula) := (formula)
(proof) ::= proof (proof_name) proves (sequent)

base { (inference_list) }

step { (inference_list) }

{proof name) ::= [\][a — 2,0 — 9]*

(sequent) ::= [(formula list)] | — [{formulalist))

(formula_list) := (formula)

{(inference)]™
= (id): (rule)
| root: (rule)
= [0 —-9,a— z]+

=

=

(formula), ( formula_list)
(inference_list) ::=|
(i

(inference) :

(i

d)
(int_var) ::
(int_const) ::
(predicate_name) :=[A — Z]"[a — 2,0 — 9]*
(indexed_predicate) ::= (predicate_name)({arithm_expr_list))
(formula) ::= (indexed_predicate)
~ (formula)
(formula) /\ {formula))
(formula) \/ {formula))

iteration)(formula)

|

| (
| (
| |
(

(iteration) ::= (iter_symbol)({int_var) = (arithm_expr)..(arithm_expr))



The Calculus LKS and Handy LKS Language

(iter_symbol) ::= BigAnd

(arithm_expr_list) := (arithm_expr)
(arithm_expr), (arithm_expr_list)

(arithm_expr) ::= (int_var)

| (int_const)

\ (int_vary + (int_const)

:= ax((sequent))

\ pLink(({proof_name), (index))(sequent))

| negL((id), (formula))

| negR((id), (formula))

| andL1({(id), (formula), {formula))

| andL2((id), (formula), { formula))

| andL({id), {formula), (formula))

| andR({id), (id), { formula), (formula))

| orL((id), (id), { formula), (formula))

| orR1((id), (formula), (formula))

| orR2((id), {formula), (formula))

| orR((id), (formula), (formula))

| weakL((id), (formula))

| weakR((id), (formula))

| contrL((id), (formula))

| contrR((id), (formula))

| cut({id), (id), (formula})

| andEqL1({id), (formula), (formula))

| andEqRI1({(id), (formula), (formula))

| andEqL2({id), (formula), { formula))

| andEqR2({id), (formula), { formula))

| andEqL3({(id), { formula), (formula))

| andEqR3((id), (formula), (formula))

| orEqL1({(id), { formula), {formula)

|

|

|

|

|

orEqR1((id), { formula), { formula)

(
orEqL3((id), { formula), ( formula)

)
)
orEqL2((id), { formula), ( formula))
)
)
orEqR3((id), ( formula), (formula))

(
(
orEqR2((id), ( formula), ( formula)
(
(



Cvetan Dunchev, Mikheil Rukhaia

All the inferences, but the aziom and the proof-link has an id for unary-
inferences and two id’s for binary inferences which are the corresponding upper
sub-proofs. The formula(s) in the inferences are the auxiliary formula(s).

3 An Example

To better understand the calculus and grammar described above, we illustrate it

with simple example. Let’s consider the following proof schema ¥ =

<(¢base ) '(/)step )>

of a sequent P, /\fzo(—\Pi V Pit1) b Py, where g is:

Py - Py
-Py, P+
Py, PyV P + Py

P+ P

5 =: N3
Py, /\7‘,:0 -P; VP11 Py
and Ygtep is:
Ppi1 - Prga
,,,,,, (IE’E), o “Pgi1, Pry1 b Prio b Pyyo il
Po, Nf_o(=P;i V Piy1) F Pogy Pry1,7Pry1V Pyya b Pryo . ’
cu
Po, Nf_o(=Pi V Piy1), = Piy1 V Poga - Py
AN UL AN 12,¢:
Po, Nf_o(=Pi V Piy1) A (=Piy1 V Poga) b Prago — A

Pm/\]bC (=P; V Piy1) = Py

Then this proof can be written in our grammar in the following way:

proof \psi proves P(0), BigAnd(i=0..k) (~
base {
1: ax(P(0) |- P(0))
2: negL(1, P(0))
3:ax(P(1) |- P(1))
4: orL(2, 3, ~ P(0), P(1))
root: andEqL3(4, (~ P(0) \/ P(1)), BigAnd(i=
}
step {

: pLink((\psi, k) P(0), BigAnd(i

ax(P(k+1) |- P(k+1))

: negl(2, P(k+1))

ax(P(k+2) |- P(k+2))

s orL(3, 4, ~ P(k+1), P(k+2))

s cut(l, 5, P(k+1))

: andL(6, BigAnd(i=0 P@H) \/

root: andEqL1(7, (BlgAnd( =0..k) (~
BigAnd(i= O..k—|-1) (~P@)\/

=0.k) (~

P(i
P(i)
P(i+1))

k) (~

P@i) \/ P(i+1)) |- P(k+1)

0..0) (~ P(i) \/ P(i+1)))

P(i) \/ P(i+1)) |- P(k+1))

1
\
)

+1)), (~

)
/

P(k+1) \/ P(k+2)))

P(i+1)) /\ (~ P(ct1) \/ P(k+2)),



