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Abstract

Defined over sets of truth values V which are closed subsets of [0, 1] containing both 0
and 1, Gödel logics GV are prominent examples of many-valued logics. We investigate a
first-order fragment of GV extended with ∆ that is powerful enough to formalize important
properties of fuzzy rule-based systems. The satisfiability problem in this fragment is shown
to be NP-complete for all GV , also in presence of an additional, involutive, negation. In
contrast to the one-variable case, in the considered fragment only two infinite-valued Gödel
logics extended with ∆ differ w.r.t. satisfiability. Only one of them enjoys the finite model
property.

Keywords: First-order Gödel logics, satisfiability, monadic logic, one-variable fragment,
involutive negation

1. Introduction

Many-valued logics provide a foundation for reasoning in presence of vagueness. The
idea behind them is to extend the scope of classical logic by considering sets of truth values
larger than the usual {0, 1}. To this aim, various many-valued systems have been defined.
Among them Gödel logics GV are the only ones that are completely specified by the order
structure of the underlying set V of truth values. This fact characterizes GV as logics of
comparative truth and make them important formalizations of Fuzzy Logic, see [14].

The addition of the projection operator 4 or of the classical (involutive) negation ∼
enhances the expressive power of Gödel logics and their applicability. For instance, Gödel
logic with truth value set [0, 1] extended with ∼ is used in [9] to formalize the rules of the
fuzzy medical expert system CADIAG-2 [1].
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In contrast with the propositional case, where there is only one infinite-valued Gödel
logic w.r.t. tautologies and only one set of satisfiable formulas [5], different infinite sets of
truth values determine different first-order Gödel logics. Their number has been settled
to countable in [7], when considering the sets of tautologies. Nothing is known about the
number of different sets of satisfiable formulas, henceforth denoted by SAT-GV .

In this paper we investigate the satisfiability problem for a fragment of GV extended
with 4, which is a subset of both the monadic and the one-variable fragment FO1(V). We
call this fragment FO1

mon(V). For formulas without4, satisfiability in FO1
mon(V) is equivalent

to satisfiability in classical propositional logic.
To appreciate the usefulness of this fragment, notice that the formulas in [9] formalizing

the system CADIAG-2 belong to FO1
mon(V). The considered fragment is also interesting

from the mathematical point of view. Indeed, as shown in [4] the presence of the modality
4 (or of the negation ∼) renders the satisfiability problem for infinite-valued Gödel logics
undecidable already in the monadic case. In contrast with this result here we prove that
the satisfiability problem for FO1

mon(V) is decidable, and in fact NP-complete, for all Gödel
logics. The proof distinguishes two cases determined by a simple topological property of
the set of truth values V : 1 isolated and 1 non isolated in V . Prominent examples for the
former case being finite-valued Gödel logics (witnessed Gödel logics [15] can be treated in
the same way), while for the latter case, Gödel logic with set of truth values [0, 1]. Despite
its decidability, FO1

mon(V) with 1 non isolated in V does not enjoy the finite model property.
Our results still hold when extending Gödel logics with the involutive negation ∼. An
algorithm to actually check satisfiability in FO1

mon(V) for Gödel logics with and without ∼
is presented. The algorithm is based on a reduction of the problem to suitable propositional
finite-valued Gödel logics.

Our decidability proof also shows that for V infinite, in contrast with monadic FO1(V) for
which countably many distinct sets of satisfiable formulas do exist, FO1

mon(V) only exhibits
two different sets of satisfiable formulas.

2. Preliminaries on Gödel logics

Introduced by Gödel in 1932 to show that intuitionistic logic does not have a character-
istic finite matrix, Gödel logics naturally turn up in a number of different contexts; among
them fuzzy logic [14], Kripke frames [8], relevance logics [10], the provability logic of Heyting
arithmetic [19] and strong equivalence in logic programming [17].

To present their semantics, we consider below a standard first-order language L with
finitely or countably many predicate symbols P and finitely or countably many function
symbols f for every finite arity k. In addition to the two quantifiers ∀ and ∃ we use the
connectives ∨, ∧, → and the constant ⊥ (for ‘false’); other connectives are introduced as
abbreviations, in particular we let ¬A := (A → ⊥), > := ¬⊥ and A ↔ B := (A →
B) ∧ (B → A).

Definition 2.1 (Gödel set). A Gödel set is a closed set V ⊆ [0, 1] which contains 0 and 1.
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Let V be any Gödel set. The semantics of Gödel logic, with respect to V as truth value
set and to a fixed language L of predicate logic, is defined using the extended language LU ,
that is L extended with constant symbols for each element of the universe U .

Definition 2.2 (Semantics of Gödel logic). A V -interpretation (or simply interpretation)
ϕ into V consists of

1. a nonempty set U = Uϕ, the ‘universe’ of ϕ,

2. for each k-ary predicate symbol P , a function Pϕ : Uk → V ,

3. for each k-ary function symbol f , a function fϕ : Uk → U .

4. for each variable v, a value vϕ ∈ U .

Given an interpretation ϕ, we can naturally define a value tϕ ∈ U for any term t and
a truth value ϕ(A) ∈ V for any formula A of LU . For a term t = f(u1, . . . , uk) we define
ϕ(t) = fϕ(uϕ1 , . . . , u

ϕ
k ) (dϕ = d, for all d ∈ U). For atomic formulas A ≡ P (t1, . . . , tn), we

define ϕ(A) = Pϕ(tϕ1 , . . . , t
ϕ
n). For composite formulas A, ϕ(A) is inductively defined by:

ϕ(⊥) = 0

ϕ(A ∧B) = min(ϕ(A), ϕ(B))

ϕ(A ∨B) = max(ϕ(A), ϕ(B))

ϕ(A→ B) =

{
1 ϕ(A) ≤ ϕ(B)

ϕ(B) otherwise

ϕ(∀xA(x)) = inf{ϕ(A(u)) : u ∈ U}
ϕ(∃xA(x)) = sup{ϕ(A(u)) : u ∈ U}

(Here we use the fact that V is a closed subset of [0, 1] in order to be able to interpret ∀ and
∃ as inf and sup in V .)

Remark 2.3. When V = {0, 1}, ϕ is an interpretation of classical logic.

In Gödel logics, the validity of a formula depends only on the relative ordering and the
topological type of the truth values of atomic formulas, and not on their specific values. We
recall the following definition from the theory of polish spaces (see, e.g., [16])

Definition 2.4 (Non isolated point). A non isolated point of a topological space is a point x
such that for every open neighborhood U of x there is a point y ∈ U with y 6= x.

For each Gödel set we associate two sets of formulas: the set of tautologies and the set of
satisfiable formulas. We refer to the first set as logic in the traditional sense (closed under
substitution, generalization and modus ponens).
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Definition 2.5 (GV and SAT-GV ). For a Gödel set V we define the set of valid formulas
GV (referred to as Gödel logic GV ) and the set of satisfiable formulas SAT-GV as the set
of formulas A of L such that ϕ(A) = 1 for all, respectively at least one, V -interpretations ϕ.
Each such interpretation is called a model of A.

Notice that in contrast with classical logic (that is Gödel logic with truth value set
V = {0, 1}), in Gödel logics validity and satisfiability are not dual concepts4.

Equivalence between formulas of Gödel logics are defined in the usual way, i.e., two
formulas A and B are equivalent in GV (A ≡GV

B, in symbols) if for all V -interpretations
ϕ, ϕ(A) = ϕ(B). The expression A

SAT≡ GV
B indicates that A is satisfiable in GV if and

only if so is B. (Henceforth we use ≡ and
SAT≡ when the considered logic is clear from the

context.)

Proposition 2.6. Let V be any Gödel set. The following properties hold in each GV :

1. (A ∧ (B ∨ C)) ≡ ((A ∧B) ∨ (A ∧ C))

2. ∃x(A(x) ∧Bx) ≡ (∃xA(x) ∧Bx), where x does not occur free in Bx

3. ∀x(A(x) ∧B(x)) ≡ (∀xA(x) ∧ ∀xB(x))

2.1. Some extensions
Interesting extensions of Gödel logics GV are obtained by adding to L the unary operator

4 of [2] or a classical, involutive negation ∼, see e.g., [11, 12]. We denote these extensions
by G∆

V and G∼V , respectively. The semantics of G∆
V and G∼V extend that of GV as follows

(notice that the Gödel set V in G∼V has to be symmetric with respect to 1/2).

ϕ(4A) =

{
1 if ϕ(A) = 1

0 otherwise.

ϕ(∼A) = 1− ϕ(A)

Definitions and terminology for GV also apply to G∆
V and G∼V .

Remark 2.7. In G∼V the operator 4 is derivable (4A ≡ ¬∼A).
G∆
V and G∼V are strictly more expressive than GV . E.g., unlike GV , in G∆

V we can express
‘strict linear order’ as

¬4(B → A) (1)
Henceforth we denote by A ≺ B the formula above. It is easy to see that for every interpre-
tation ϕ of G∆

V one has ϕ(A ≺ B) = 1 if and only if ϕ(A) < ϕ(B).

Proposition 2.8. Let V be any Gödel set, then ∀xB(x)
SAT≡ GV

∀x4B(x).

Notice that the corresponding statement does not hold for the existential quantifier. E.g.,
let B(x) be the formula A(x) ∧ ∀x¬4A(x); ∃xB(x) is satisfiable in any G∆

V in which 1 is
non isolated in V while ∃x4B(x) is not.

4The duality holds instead when considering the notion of positive satisfiability : a formula A is positive
satisfiable if there exists a V -interpretation ϕ such that ϕ(A) > 0.
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2.2. (Un)decidability of the monadic fragment
Monadic logic is the fragment of first-order logic with no function symbol and in which all

predicates are unary. A general investigation of the (un)decidability status for the validity
and the satisfiability problem in monadic Gödel logics was carried out in [3, 4], respectively.

[3] proved that with the possible exception of Gödel logic with truth values set V↑ =
{1} ∪ {1 − 1

k
| k ≥ 1} (whose (un)decidability status is left open), validity is undecidable

when V is infinite.
[4] identified suitable conditions on the topological type of V which determine the de-

cidability or undecidability of SAT-GV in monadic Gödel logics. SAT-GV is decidable
when 0 is an isolated point in V (i.e., 0 has Cantor-Bendixon rank |0|CB = 0, see e.g., [16]).
In the remaining monadic Gödel logics the presence of at least three predicate symbols,
one of which is a constant different from 0 or 1, makes SAT-GV undecidable. Moreover
without this constant predicate, the problem remains undecidable for all monadic Gödel
logics in which 0 is a limit point of limit points in V (i.e., |0|CB ≥ 2). Gödel logic G[0,1],
with V = [0, 1] (also known as Intuitionistic Fuzzy Logic [18]) being a prominent example.
Only one Gödel logic is left out from the classification; this is the logic with truth value set
V↓ = {0} ∪ { 1

k
| k ≥ 1} for which the (un)decidability status of SAT-GV↓ is left open.

The addition of 4 renders both the validity and the satisfiability problem undecidable
for all monadic G∆

V (and therefore G∼V ) with V infinite, in presence of at least two predicate
symbols. The problems remain undecidable even when we restrict to prenex formulas5 [3, 4].

3. The fragment FO1
mon(V)

We introduce the class FO1
mon(V) of formulas of Gödel logics and provide a suitable

normal form for them. The defined normal form will be crucial for the decidability proof in
Section 4.2.

Definition 3.1 (FO1
mon(V)). The class FO1

mon(V) consists of all closed formulas in the first-
order language L extended with 4, of the form

n∨
i=1

(∃xAi1(x) ∧ . . . ∧ ∃xAini
(x) ∧ ∀xBi

1(x) ∧ . . . ∧ ∀xBi
mi

(x))

where each Aik, B
i
k is a monadic and quantifier-free formula containing no function and

constant symbol.

Notice that FO1
mon(V) is contained in the one-variable fragment (FO1(V)). The satis-

fiability problem for formulas in FO1
mon(V) without 4 is classically decidable. The proof

proceeds as in the case of monadic GV in which 0 is isolated in V (see [4]). Indeed

Proposition 3.2. Let V be any Gödel set. Formulas in FO1
mon(V) without 4 are satisfiable

in GV if and only if they are satisfiable in classical logic.

5In general Gödel logics do not admit equivalent prenex formulas, see e.g. [6].
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Proof. Let Q =
∨n
i=1(∃xAi1(x)∧ . . .∧ ∃xAini

(x)∧ ∀xBi
1(x)∧ . . .∧ ∀xBi

mi
(x)) be any formula

in FO1
mon(V) without 4. If Q is satisfiable in classical logic then clearly Q is satisfiable in

GV . For the converse direction, consider any V -interpretation such that ϕG(Q) = 1. An
interpretation ϕCL of classical logic such that ϕCL(Q) = 1 is defined as follows: for any
atomic formula P

ϕCL(P ) =

{
1 if ϕG(P ) > 0

0 otherwise.

Indeed, let Qi be any quantifier-free (sub)formula of Q. By induction on the complexity of
Qi we can prove that ϕG(Qi) = 0 if and only if ϕCL(Qi) = 0 and ϕG(Qi) > 0 if and only if
ϕCL(Qi) = 1. The claim easily follows.

Notice that each formula in FO1
mon(V) is equivalent in G∆

V to a prenex formula with prefix
∃∗∀∗. Therefore, by Proposition 3.2, FO1

mon(V) without4 is contained in the Bernays-Schön-
finkel class6 that, for classical logic is known to be effectively propositional, i.e., its formulas
can be effectively translated into propositional logic formulas by replacing all existing vari-
ables by Skolem constants and then grounding the universally quantified variables.

3.1. Chain Normal Form
A normal form similar to the disjunctive normal form of classical logic was introduced

in [2] for formulas of propositional Gödel logic. This normal form (called chain normal
form) is extended below to formulas of FO1

mon(V). The idea behind it is to enumerate all the
orderings of unary predicates over the same variable in a way similar to how one constructs a
disjunctive normal form by enumerating all possible truth value assignments of propositional
atoms. Notice that, unlike GV , these orderings are expressible by formulas of G∆

V . We use
below the following abbreviations (cf. Equation 1)

A ≺ B for ¬4(B → A), and
A ≡∆ B for 4(A→ B) ∧4(B → A).

Definition 3.3 (4-chain). Let F be any formula in FO1
mon(V) and P1, . . . , Pn be the predi-

cates occurring in F . A 4-chain over F is any formula of the form

(⊥ on0 Pi1(x)) ∧ (Pi1(x) on1 Pi2(x)) ∧ (Pi2(x) on3 Pi3(x)) ∧ · · · ∧ (Pin(x) onn+1 >)

where {Pi1 , . . . , Pin} = {P1, . . . , Pn}, i.e., every predicate symbol occurs exactly twice in the
above formula, oni is either ≺ or ≡∆, and at least one of the oni’s is ≺.

Every 4-chain describes a possible ordering of the values of predicates of F . Let CF be
the set of all 4-chains over F , i.e., CF = {C1, . . . , CN} for N = (2n+1 − 1)n! (n! from the
number of permutations of the predicate symbols, and 2n+1− 1 from the number of possible
combinations of ≺ and ≡∆).

6The Bernays-Schönfinkel class consists of formulas of the form ∃∗∀∗A where A is quantifier-free and no
function symbol occurs.
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Every4-chain Ci induces equivalence classes over the predicates of F . These are ordered
as

[⊥] = α0 ≺ α1 ≺ . . . ≺ αn = [>] with αi = {P i
1(x), . . . , P i

ki
(x)}

where P i
n(x) ≡∆ P i

m(x) for all n,m ∈ {1, . . . ki} in Ci and at least one element in αi is
related to at least one element in αi+1 with ≺. Notice that the union of all αi is the set of
all predicate symbols (plus > and ⊥) occurring in F , and the intersection of any two αi is
empty.

Furthermore, every interpretation uniquely defines a 4-chain induced by the natural
order of the valuations in the reals.

Lemma 3.4.
∨
C∈CF C is a tautology in G∆

V .

Every4-chain over F in FO1
mon(V) induces a ‘syntactic evaluation’ of the (quantifier-free)

formulas in F .

Definition 3.5 (Syntactic evaluation). Let F be a formula in FO1
mon(V) and A(x) any

quantifier-free subformula of F . Its evaluation ΦC
A(x) with respect to a 4-chain C over F is

defined inductively as follows:
Base case:
• for predicate symbols, > and ⊥ define ΦC

P (x) as

ΦC
P (x) =


> if P (x) ∈ [>]

⊥ if P (x) ∈ [⊥]

P (x) otherwise

Compound formulas:
• ΦC

4A(x) is > if ΦC
A(x) = > and ΦC

4A(x) is ⊥, otherwise.
• ΦC

Ak(x)∧Al(x) is either ΦC
Ak(x) or ΦC

Al(x) depending on which of the two occurs earlier in
the chain.
• ΦC

Ak(x)∨Al(x) is either ΦC
Ak(x) or ΦC

Al(x) depending on which of the two occurs later in the
chain.
• ΦC

Ak(x)→Al(x) is > if ΦC
Ak(x) occurs earlier than ΦC

Al(x) in the chain, otherwise it is ΦC
Al(x)

The syntactic evaluation of A(x) is a predicate symbol, > or ⊥ (when A(x) is a formula
prefixed by 4, then ΦC

A(x) is either > or ⊥). ΦC
A(x) is a syntactic evaluation of A(x) in the

following sense

Proposition 3.6. Let F be a formula in FO1
mon(V) and A(x) be any quantifier-free subfor-

mula of F . For each interpretation ϕ of G∆
V and 4-chain C over F

ϕ(C ∧ A(x)) = ϕ(C ∧ ΦC
A(x))

Proof. Let C be (⊥ on0 Pi1(x))∧(Pi1(x) on1 Pi2(x))∧· · ·∧(Pin(x) onn >) where {Pi1 , . . . , Pin} =
{P1, . . . , Pn}. If for some conjunct R on S in the chain C, ϕ(R) on∗ ϕ(S) where on∗ is = when
on = ≺ or on∗ is < when on = ≡∆, then ϕ(C) = 0. The rest follows by Definition 3.5.
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4. Decidability Results

We show that the satisfiability problem for FO1
mon(V) is decidable for all Gödel logics. We

consider two cases, distinguished by the property that 1 is isolated in the truth value set V
or it is not. All finite V being prominent examples of the first case, while V = [0, 1] belongs
to the second case. Though both cases are decidable, only FO1

mon(V) in which 1 is isolated
in V enjoys the finite model property. These results also hold in presence of the additional
negation ∼.

4.1. 1 isolated in V
In presence of 4, the satisfiability problem for FO1

mon(V) is not anymore equivalent to
SAT in classical logic.

Example 4.1. The formula ∃x(¬¬A(x)∧¬4A(x)) is not satisfiable in classical logic while
it is satisfiable in G∆

V , for any Gödel set V 6= {0, 1}.

We show below that for any Gödel set V in which 1 is isolated (i.e., 1 has Cantor-
Bendixon rank |1|CB = 0) the decidability proof of the satisfiability problem for FO1

mon(V)
proceeds similarly to that for classical formulas: by a process of grounding and instantiation.

Lemma 4.2. Let V be any Gödel set in which 1 is isolated and Ai and Bj be quantifier free
formulas of G∆

V . Then

n∧
i=1

∃xAi(x) ∧ ∀xB(x) ∈ SAT-G∆
V ⇔

n∧
i=1

Ai(di) ∧
n∧
i=1

B(di) ∈ SAT-G∆
V

where the di are new constant symbols (Skolem constants).

Proof. (⇒) Assume that there is an interpretation ϕ such that ϕ(
∧n
i=1 ∃xAi(x)∧∀xB(x)) =

1. Then all the instances of B(u) for u ∈ U will be evaluated to 1 under ϕ. Furthermore,
due to ϕ(∃xAi(x)) = 1 for all i, and the isolation of 1 in V , for every i there exists an
object ui ∈ U such that ϕ(Ai(ui)) = 1. Thus, the interpretation that evaluates the Skolem
constants di to the elements ui, respectively, is a model for

∧n
i=1 Ai(di) ∧

∧n
i=1 B(di).

(⇐) The n-element universe together with the interpretation satisfying
∧n
i=1Ai(di) ∧∧n

i=1B(di) is a model of
∧n
i=1 ∃xAi(x) ∧ ∀xB(x).

Theorem 4.3. The satisfiability problem for FO1
mon(V) in which 1 is isolated in V is decid-

able.

Proof. Let V be any Gödel set in which 1 is isolated and P be any formula in the class
FO1

mon(V). P is satisfiable in G∆
V if and only if so is one of its disjuncts. This has the general

form
∃xA1(x) ∧ . . . ∧ ∃xAni

(x) ∧ ∀xB1(x) ∧ . . . ∧ ∀xBmi
(x). (2)

and it is equivalent to ∃xA1(x) ∧ . . . ∧ ∃xAni
(x) ∧ ∀x(B1(x) ∧ . . . ∧ Bmi

(x)) by Proposition
2.6. The claim follows by Proposition 2.8 and Lemma 4.2.
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4.2. 1 non isolated in V
When 1 is non isolated in V , the satisfiability of an existential formula ∃xD(x) under any

interpretation ϕ does not imply anymore that there exists an element u of the domain such
that ϕ(D(u)) = 1. Therefore the grounding process in Lemma 4.2 does not work and the
decidability proof is more involved. This is also to be expected, as formulas in FO1

mon(V),
with 1 non isolated in V , are not finitely controllable, that is not all satisfiable formulas have
a finite model.

Example 4.4. The formula F in FO1
mon(V)

∃xA(x) ∧ ∀x¬4A(x)

is satisfiable in G∆
V where 1 is non isolated in V but it has no finite model (see Example 6.5).

Theorem 4.5. The satisfiability problem for FO1
mon(V) in which 1 is non isolated in V is

decidable.

Proof. Let V be any Gödel set in which 1 is non isolated and F be any formula in the class
FO1

mon(V). First recall that F is satisfiable if and only if so is one of its disjuncts, which
has the general form of Equation 2 (cf. Theorem 4.3). Consider, to fix ideas, the case
ni = mi = 1. The general case follows by easy adaptations. Let F be ∃xA(x)∧∀xB(x). We
first transform F into a suitable equivalent formula using the chain-normal form. Consider
∃xA(x). By Lemma 3.4:

∃xA(x) ≡ ∃x((
∨
C∈CF

C) ∧ A(x))

now we push in the existential quantifier (cf. Proposition 2.6)

≡
∨
C∈CF

∃x(C ∧ A(x))

and evaluate the formula A(x) with respect to the chain C (cf. Proposition 3.6), syntactic
evaluation

≡
∨
C∈CF

∃x(C ∧ ΦC
A(x))

Some of the ΦC
A(x) might be ⊥. We delete these disjuncts (keeping equivalence of satisfia-

bility). The chains Ci leading to ‘syntactic evaluations’ ΦCi

A(x) different from ⊥ are collected
into the set

Γ = {Ci : i ∈ I} (3)

Consider now the universal conjunct ∀xB(x) of F . By Proposition 2.8:

∀xB(x)
SAT≡ ∀x4B(x)
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Similarly as above, by using Lemma 3.4, Proposition 2.6 and Proposition 3.6 we obtain:

≡ ∀x((
∨
C∈CF

C) ∧4B(x)) ≡ ∀x(
∨
C∈CF

(C ∧4B(x))) ≡ ∀x(
∨
C∈CF

(C ∧ ΦC
4B(x)))

As a formula with leading 4 can only evaluate syntactically to ⊥ or > (cf. Definition 3.5),
we remove the disjuncts with ⊥ and arrive at

SAT≡ ∀x(
∨
C∈Σ

C) (4)

where Σ ⊆ CF is the set of chains for which ΦC
4B(x) = >.

The original formula ∃xA(x) ∧ ∀xB(x) has a model if and only if this holds for its
SAT-equivalent formula (where Γ arises from ∃xA(x), cf. Equation 3)

F ′ :=
∨
C∈Γ

∃x(C ∧ ΦC
A(x)) ∧ ∀x

∨
C∈Σ

C (5)

Claim: ∃xA(x) ∧ ∀xB(x) is satisfiable if and only if there is a 4-chain C ∈ Γ ∩ Σ.
We will refer to this condition as satisfiability condition.

(=⇒) Let ϕ be an evaluation satisfying the original formula. The 4-chain ‘induced’ by
this evaluation naturally satisfies the condition above.

(⇐=) We show below that if the satisfiability condition holds, we can construct an
interpretation ϕ of G∆

V that is a model for F ′ (and hence for the original formula F ).
Indeed, let C be a 4-chain matching the satisfiability condition above. Consider the

equivalence classes over the predicates of F induced by C. Assume that they are ordered as

[⊥] = α0 ≺ α1 ≺ . . . ≺ αn = [>] with αi = {P i
1(x), . . . , P i

ki
(x)}

Furthermore assume that the equivalence class of ΦC
A(x) is αk, i.e., ΦC

A(x) ∈ αk.
By the property that 1 is non isolated in the truth value set, we can define the evaluation

of atomic formulas on the universe of natural numbers in a way that the following properties
are fulfilled (for simplicity below we omit the subscripts in P i

j (x), and indicate only the
respective equivalence class by the superscript):

(1) ϕ(P 0(c)) = 0, for all c, which is necessary as all the P 0(x) are in α0 = [⊥].

(2) if i < j then for all P i ∈ αi and P j ∈ αj and for all c, ϕ(P i(c)) < ϕ(P j(c)).

(3) if i ≥ k and P i ∈ αi, then limc→∞ ϕ(P i(c)) = 1

As an example, for V = [0, 1] a satisfying evaluation ϕ can be defined as

ϕ(P i(c)) = 1− 1

(c+ 2)i
(6)

10



c = 0

0 = r0
0 < r1

0 < . . . < rk−1
0 < rk0 < . . . < rn−1

0 < < rn0 = 1

c = 1

0 = r0
1 < r1

1 < . . . < rk−1
1 < < rk1 < . . . < rn−1

1 < < rn1 = 1

c = 2

0 = r0
2 < r1

2 < . . . < rk−1
2 < < rk2 <. . .<r

n−1
2 < < rn2 = 1

c→∞

Figure 1: Model construction, rk
c = ϕ(P k(c)) for P k ∈ αk

For truth value sets other than [0, 1] (with 1 non isolated) we define the evaluation ϕ itera-
tively (cf. Figure 1): for c = 0 select the evaluations in the truth value set such that condi-
tions (1) and (2) are satisfied. Having defined the evaluations of P i(c) select the evaluations
of P i(c+1) (for i ≥ k) above all the evaluations P i(c), i.e., above max{ϕ(P i(c)) : 0 ≤ i ≤ n}.
This is possible due to the fact that 1 is non isolated. Furthermore, we can again ensure
conditions (1) and (2). Continuing this way we only have to make sure that for all predi-
cates P i with i ≥ k the maximums of the evaluations for c are actually having 1 as the limit
(condition (3)). This is again possible being 1 non isolated in V .

We now evaluate in ϕ the formula F ′ that is SAT-equivalent to F . Due to conditions (1)
and (2) the 4-chain C is satisfied, that is for all c, ϕ(C(c)) = 1. From this and the fact
that C ∈ Σ (satisfiability condition) it follows that

ϕ(∀x
∨
C∈Σ

C) = 1,

Considering that ΦC
A(x) cannot be member of α0 = [⊥] (otherwise the 4-chain C would not

be part of Γ) and by (3) we have limc→∞ ϕ(ΦC
A(x)(c)) = 1, thus

ϕ(∃x(C ∧ ΦC
A(x)(x))) = 1.

Hence ϕ is a model for F ′ and therefore F is satisfiable.

The extension of the proof to the general case, i.e., to formulas of the form ∃xA1(x) ∧
. . .∧∃xAn∧∀xB1(x)∧. . .∧∀xBm (cf. Equation 2) is easy. As in the restricted case we obtain
sets Γ1, . . . , Γn from each of the Ak, and sets Σ1, . . . ,Σm from the Bj. The satisfiability
condition for the general case is therefore

∃C ∈
⋂

1≤i≤n

Γi ∩
⋂

1≤j≤m

Σj

11



i.e., there has to be a common chain in all the solutions. The proof in the forward direction
is trivial as a satisfying evaluation provides one chain that fulfills this condition. For the
reverse direction we proceed exactly as in the basic case.

The decidability of the satisfiability problem for FO1
mon(V) follows from the fact that the

satisfiability condition is a finite check over finite objects (i.e. 4-chains).

Example 4.6. Consider the formulas

F := ∃xA(x) ∧ ∀x¬4A(x) and F := ∃x4A(x) ∧ ∀x¬4A(x)

F is satisfiable in G[0,1]. Indeed, ΓF = {A(x) ≡∆ >, ⊥ ≺ A(x) ≺ >} while ΣF = {⊥ ≺
A(x) ≺ >, A(x) ≡∆ ⊥}. The chain C := ⊥ ≺ A(x) ≺ > meets the satisfiability condition.

F is not satisfiable in G[0,1]. Indeed, ΓF = {A(x) ≡∆ >} while ΣF = ΣF .

Remark 4.7. In constructing the satisfying evaluation ϕ, the interpretations of the formulas
P i(c) in all equivalence classes (but [⊥]) could have been shifted closer and closer to 1 with
increasing c. We instead did that only for formulas in the equivalence classes αi with i ≥ k
(cf. condition (3)), as this is used in the next section to make a similar proof working in
presence of ∼.

4.3. Adding the involutive negation
The presence of the involutive negation does not change the decidability results for the

satisfiability problem for FO1
mon(V). The proof for the case 1 isolated in V proceeds exactly

as that in Section 4.1. We show below how to modify the decidability proof in Section 4.2
to deal with ∼.

To define a chain normal form for formulas in FO1
mon(V) with ∼ we allow the constant 1

2

as predicate constant in the language and fix its evaluation under every interpretation to
be 1/2.

Definition 4.8 (Literal). Let P (x) be an atomic formula. Both P (x) and ∼P (x) are called
literals. We denote with Atom(L) the atomic formula for the literal L, i.e., if L = P (x) or
L = ∼P (x), then in both cases Atom(L) = P (x).

Recall that when considering ∼ we require that the Gödel set V is symmetric with respect
to the rational number 1/2. The notion of 4-chains is extended to ∼-4-chains as follows:

Definition 4.9 (∼-4-chain). Let F be any formula in FO1
mon(V) with ∼, let P1, . . . , Pn be

the predicates occurring in F . A ∼-4-chain over F is any formula of the form

(⊥ onn Ln)∧ (Ln onn−1 Ln−1)∧ . . .∧ (L1 on1
1

2
)∧ (

1

2
on1 M1)∧ (M1 on2 M2)∧ . . .∧ (Mn onn >)

such that
• for all 1 ≤ i ≤ n, Atom(Li) and Atom(Mi) are in {P1, . . . , Pn}, i.e., all the Li and
Mi are literals made from the P1, . . . , Pn,

12



• for all i, Li and Mi are dual literals, i.e., if Li = P (x), then Mi = ∼P (x), and
if Li = ∼P (x), then Mi = P (x), with P ∈ {P1, . . . , Pn},
• {Atom(L1), . . . ,Atom(Ln)} = {P1, . . . , Pn} (and thus also {Atom(M1), . . . ,Atom(Mn)} =
{P1, . . . , Pn}),
• oni is either ≺ or ≡∆, and at least one of the oni’s is ≺.

Note that in ∼-4-chains each oni is mirrored on the left and right side w.r.t. 1
2
. This

reflects the relation between dual literals.
Furthermore, the definition of syntactic evaluation (Def. 3.5) has to be extended for ∼

by letting

• ΦC
∼A(x) = ∼ΦC

A(x)

As a consequence the structure of the equivalence classes induced by a∼-4-chain changes
as follows

[⊥] = βn ≺ . . . ≺ β1 ≺ [
1

2
] ≺ α1 ≺ . . . ≺ αn = [>]

where for all 1 ≤ i ≤ n, if αi = [Lk], then βi = [Mk], i.e., dual literals are representatives of
equivalence classes with the same index, but on different side of [1

2
].

Proposition 4.10. Let F be any formula in FO1
mon(V) with ∼ and A(x) any quantifier-free

subformula of F . For each interpretation ϕ of G∼V and each ∼-4-chain C over F

ϕ(C ∧ A(x)) = ϕ(C ∧ ΦC
A(x))

Proof. Similar to the proof of Proposition 3.6.

Theorem 4.11. The satisfiability problem for FO1
mon(V) in G∆

V extended with ∼ is decidable
for all V .

Proof. The case 1 isolated in V proceeds as in the proof of Theorem 4.3.
Assume that 1 is non isolated in V and F is the formula ∃xA(x) ∧ ∀xB(x) of FO1

mon(V)
in G∼V . As in the proof of Theorem 4.5 (cf. Equation 5) F is satisfiable if and only if so is

F ′ =
∨
C∈Γ

∃x(C ∧ ΦC
A(x)) ∧ ∀x

∨
C∈Σ

C

where Γ and Σ contain all ∼-4-chains leading to ‘syntactic evaluations’ ΦCi

A(x) and ΦCi

4B(x),
respectively, different from ⊥.

Claim: (satisfiability condition) F ′ is satisfiable if and only if

(sata) there is a ∼-4-chain C ∈ Γ ∩ Σ.
Moreover let

[⊥] = βn ≺ . . . ≺ β1 ≺ [
1

2
] ≺ α1 ≺ . . . ≺ αn = [>]

be the equivalence classes induced by this ∼-4-chain C,
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(satb) the equivalence class of ΦC
A(x) is αk for some 1 ≤ k ≤ n, i.e., [ΦC

A(x)] > [1
2
].

(⇐=) Condition (sata) is proved as in Theorem 4.5. Due to the fact that the valuations
satisfies the existential quantifier, the equivalence class of the syntactic evaluation of A(x)
needs to be between (the equivalence class of) 1

2
and (the equivalence class of) >, which

gives (satb).
(=⇒) When conditions (sata) and (satb) hold we can define an interpretation ϕ∼ that is

a model for F ′ (and hence for F ) similarly to the interpretation ϕ in the proof of Theorem
4.5. Indeed let [ΦC

A(x)] = αk. As in the case without ∼, the idea is to push to 1 all the
equivalences classes αi greater or equal to αk, i.e., for which i ≥ k (see Remark 4.7). Due
to the presence of the constant 1

2
this can be achieved only if [ΦC

A(x)] is strictly greater than
[1
2
]. This is guaranteed by condition (satb).
For the case V = [0, 1] we present below an explicit definition of the interpretation

ϕ∼(P (c)), whose domain is the set of natural numbers plus 1
2
(and n is the number of

equivalence classes on each side of 1
2
arising from the satisfiability condition above)

ϕ∼(
1

2
) = 1/2

ϕ∼(P (c)) = 1/2(1− i/n) if P (x) ∈ βi, i < k

ϕ∼(P (c)) = 1/ci · 1/2(1− i/n) if P (x) ∈ βi, i ≥ k

ϕ∼(P (c)) = 1− ϕ∼(∼P (c)) if P (x) ∈ αi

It is easy to see that the following properties hold:

(1)’ ϕ∼(P (c)) = 0, for all c, if P (x) ∈ βn(= [⊥]).

(2)’ if i < j then for all P i ∈ αi and P j ∈ αj and for all c, ϕ∼(P i(c)) < ϕ∼(P j(c)) (and,
symmetrically if i > j then for all P i ∈ βi and P j ∈ βj, ϕ∼(P i(c)) < ϕ∼(P j(c))).

(3)’ if P (x) ∈ αi with i ≥ k, then limc→∞ ϕ
∼(P (c)) = 1

From the above properties easily follows that ϕ∼(F ′) = 1.
In the case of arbitrary (but symmetric) truth value sets we use the construction given

in the proof of Theorem 4.5 for the αi’s (with i ≥ k) and define the evaluations for all
predicates in the symmetric equivalence classes βi by 1 minus the evaluation of those in αi.
Finally, the evaluations of the predicates in the remaining equivalence classes are chosen to
satisfy conditions (1)′ and (2)′.

The extension of the proof to the general case proceeds as in Theorem 4.5.

Remark 4.12. The results in this section also hold when 1/2 is not in the Gödel set V . In
this case we still require that V is symmetric with respect to 1/2 and we define a ∼-4-chain
as (⊥ onn Ln) ∧ . . . (L2 on2 L1) ∧ (L1 < M1) ∧ (M1 on2 M2) ∧ . . . ∧ (Mn onn >).
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5. On the number of SAT-G∆
V

Consider the two sets of formulas associated to each truth value set V (cf. Definition 2.5).
In propositional logic the choice of any infinite subset of [0, 1] leads to the same set of valid
formulas. The same holds for the set of satisfiable formulas, see [5]. At the first-order
level different infinite Gödel sets V induce instead different sets of valid and of satisfiable
formulas. For (validity) Gödel logics their number has been settled to countable in [7].
Nothing is known about the number of sets SAT-G∆

V of satisfiable formulas with infinite
Gödel set V and 4. We show below that these are at least countable, as this is already the
case when we restrict to monadic formulas of G∆

V only containing one variable. In contrast
with this result, the decidability proofs in Section 4 also reveals that in FO1

mon(V) only two
infinite-valued Gödel logics extended with 4 (or ∼) differ w.r.t. satisfiability.

Proposition 5.1. There are countably many distinct monadic and one-variable SAT-G∆
V ,

with infinite Gödel set V .

Proof. For n ≥ 1 let Vn be the truth value set:

Vn = {0, 1} ∪
{

k

n+ 1
: 1 ≤ k ≤ n

}
∪
{

k

n+ 1
+

1

l(n+ 1)
: 1 ≤ k ≤ n, l ≥ 2

}
Vn has exactly n accumulation points k

n+1
strictly between 0 and 1. Each of them is the

infimum of the points k
n+1

+ 1
l(n+1)

. We show that SAT-G∆
Vn
, for n ≥ 1, are all different.

Consider indeed the following formula

INFk := 4(Ck ↔ ∀xPk(x)) ∧ ∀x(Ck ≺ Pk(x))

(where ↔ and ≺ are defined as in Section 2). INFk expresses that Ck is a proper infimum
in the sense that under a given evaluations ϕ, INFk evaluates to 1 if and only if the truth
value of Ck is the infimum but not a minimum of the truth values of Pk(c).

Using INFk we can now define the formulas

Fn := ⊥ ≺ C1 ∧ C1 ≺ C2 ∧ · · · ∧ Cn−1 ≺ Cn ∧ Cn ≺ > ∧
n∧
k=1

INFk

that distinguish SAT-G∆
Vm

. For each n ≥ 1, Fn expresses indeed the fact that there are at
least n proper infimum in the open interval (0, 1). It is easy to see that Fm ∈ SAT-G∆

Vn
,

i.e., there is a Vn-interpretation satisfying Fm, if and only if n ≥ m. The if part follows
by the existence of more than m accumulation points in Vn while for the only if part notice
that every Vn-interpretation with n < m assigns to one of the INFk a value less than 1.

In contrast with the above result, as an immediate consequence of Proposition 3.2 and
the fact that there is only one set of classically satisfiable formulas, the following corollary
holds

Corollary 5.2. There is only one SAT-GV in FO1
mon(V) without 4.
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The decision methods given in Theorems 4.3 and 4.5 show that the only difference be-
tween the sets of formulas SAT-G∆

V in FO1
mon(V) is the isolation of 1, which gives the

following corollary:

Corollary 5.3. There are only two different SAT-G∆
V in FO1

mon(V).

6. Reduction to propositional satisfiability

We reduce the satisfiability problem for FO1
mon(V) to satisfiability in suitable proposi-

tional finite-valued Gödel logics. As a corollary it follows that the satisfiability problem for
FO1

mon(V) is NP-complete for all Gödel sets V , with or without the involutive negation ∼.

Definition 6.1 (Propositional reduct). Let A be any formula in FO1
mon(V) with or without

∼. The propositional reduct Ap of A is inductively defined as follows:

Pi(x)p = Pi (∗)p = ∗ for ∗ ∈ {0, 1, 1

2
}

(∀xA)p = Ap (∃xA)p = Ap

(A ∗B)p = Ap ∗Bp for ∗ ∈ {∧,∨,→}
(∗A)p = ∗Ap for ∗ ∈ {¬,∼,∆}

Henceforth we denote by G?
∞ the propositional infinite-valued Gödel logic7 extended with

? ∈ {4,∼}. The following theorem reduces SAT for (first-order) formulas in FO1
mon(V ) to

SAT for propositional formulas.

Theorem 6.2. Let V be any infinite Gödel set,

F = ∀xA1(x) ∧ . . . ∧ ∀xAm(x) ∧ ∃xB1(x) ∧ . . . ∧ ∃xBn(x)

be any formula in FO1
mon(V ) (with or without ∼) and A = ∀x4(A1(x) ∧ . . . ∧ Am(x)).

1. If 1 is isolated in V, we have

F ∈ SAT-G?
V if and only if Ap ∧ (∃xB1(x))p ∈ SAT-G?

∞

AND . . . AND
Ap ∧ (∃xBn(x))p ∈ SAT-G?

∞

2. If 1 is non isolated in V, we have

F ∈ SAT-G?
V if and only if Ap ∧X1 ∈ SAT-G?

∞

AND . . . AND
Ap ∧Xn ∈ SAT-G?

∞

where Xi = ¬¬(∃xBi(x))p, if ? = 4 and Xi = ¬∼((∃xBi(x) → 1
2
) → ∃xBi(x))p,

when ? = ∼.

7Recall that for propositional formulas all infinite-valued Gödel logics coincide.
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3. If 1 is non isolated in V and F ∈ SAT-G?
V, then

F is satisfiable in a finite model↔ Ap ∧ (∃xBi(x))p ∈ SAT-G?
∞ for all i = 1, . . . , n.

Proof. 1. Immediately follows by Lemma 4.2.
2. The satisfiability conditions in the proof of Theorem 4.5 and 4.11 correspond, on the

propositional side, to the satisfiability of Ap∧¬¬(Bi(x))p (i.e., the syntactic evaluation ΦC
Bi(x)

evaluates to an atom not in the equivalence class of ⊥), for the case ? = 4, and to Xi =
¬∼((∃xBi(x) → 1

2
) → ∃xBi(x))p (i.e. the syntactic evaluation ΦC

Bi(x) evaluates to an atom
in an equivalence class bigger than [1

2
]), for the case ? = ∼.

3. By Proposition 2.8, F is satisfiable in G∼V if and only if so is A∧∃xB1(x)∧. . .∧∃xBn(x).
(=⇒) Let ϕf be a finite interpretation that is a model for F . Then for each j = 1, . . . n there
exists cj in its domain such that ϕf (Bj(cj)) = 1. Therefore all4(A1(ci)∧. . .∧Am(ci))∧Bi(ci)
for 1 ≤ i ≤ n are satisfiable in ϕf which induces the propositional evaluations satisfying
each Ap ∧ (∃xBi(x))p in G?

∞. (⇐=) Assume that each Ap ∧ (∃xBi(x))p ∈ SAT-G?
∞ and ϕ∞i

is a model in G?
∞. Let P1, . . . , Pl be the atomic formulas in Ap ∧ Bp

i , for all i = 1, . . . , n.
A (finite) model for F in G?

V is simply defined by taking c1, . . . , cn as domain elements and
assigning to each Pi(cj) a value in V which respects the ordering of the values ϕ∞j (Pi) for
all i = 1, . . . , l.

The above theorem together with the proposition below allow us to reduce the satisfiabil-
ity problem for FO1

mon(V) to a check on propositional finite-valued Gödel logics. Henceforth
Gk will stand for propositional Gödel logic with k truth values.

Lemma 6.3. Let A be a propositional formula containing n distinct variables.

A ∈ SAT-G?
∞ iff A ∈ SAT-G∆

n+2

If A contains ∼ then
A ∈ SAT-G?

∞ iff A ∈ SAT-G∆
2n+3

Proof. In presence of ∼ we have to consider, for each of the (n + 2) values, their negation
w.r.t. ∼, i.e. for each x, also 1−x. These are 2n+ 2 (notice that 0 is the negation of 1, and
vice versa) with in addition the value 1/2.

Corollary 6.4. Let F be a formula in FO1
mon(V ) containing n different predicates. F is

satisfiable in G∆
V (G∼V , respectively) if and only if the corresponding propositional formulas

in Theorem 6.2 are satisfiable in G4n+2 (G∼2n+3, respectively).

Example 6.5. Consider the formula F = ∃xA(x)∧∀x¬4A(x) of Example 4.4. If 1 is non
isolated in V , then F is satisfiable in GV iff (4¬4A) ∧ ¬¬A is satisfiable in G4∞. The
satisfiability of the propositional formula can be checked in G43 . Note that F has no finite
models being (4¬4A) ∧ A not satisfiable in G4∞.

Corollary 6.6. The satisfiability problem for FO1
mon(V) with and without ∼ is NP-complete.

Proof. The inclusion in the class NP follows by Corollary 6.4 and e.g., [13]. For the NP-
completeness note that SAT in propositional classical logic can be expressed as SAT in G4∞
by prefixing with 4 each variable in the classical formula.

17



Final Remark
CADIAG-2 (Computer Assisted DIAGnosis) is a ‘MYCIN-like’ expert system assisting in the
differential diagnosis in internal medicine, developed at the Medical University of Vienna. Its
knowledge base contains more than 20.000 IF-THEN rules expressing relationships between
medical entities, e.g., patient’s symptoms and diagnoses. In most cases, the relationships and
the involved entities are not boolean (yes/no). To check the representation of the medical
knowledge in the system, CADIAG-2’s rules were formalized in [9] as suitable formulas of
G∼[0,1] belonging to the class FO1

mon(V). The resulting formalization is consistency preserving,
that is the unsatisfiability in G∼[0,1] of the logical formulas implies the existence of errors in the
system’s rules. The (un)decidability status of the satisfiability problem for these formulas
was left open. Theorem 4.11 provides an answer to this question. Furthermore, Corollary 6.4
can be used to actually check the rules of CADIAG-2. This calls first for the development
of suitable provers and SAT solvers for propositional finite-valued Gödel logics extended
with ∼, capable of handling the large set of logical formulas representing the system’ rules.
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