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Abstract. First order Gödel logic G4
∞, enriched with the projection

operator 4—in contrast to other important t-norm based fuzzy logics,
like  Lukasiewicz and Product logic—is well known to be recursively ax-
iomatizable. However, unlike in classical logic, testing (1-)unsatisfiability,
i.e., checking whether a formula has no interpretation that assigns the
designated truth value 1 to it, cannot be straightforwardly reduced to
testing validity. We investigate the prenex fragment of G4

∞ and show
that, although standard Skolemization does not preserve 1-satisfiability,
a specific Skolem form for satisfiability can be computed nevertheless.
In a further step an efficient translation to a particular structural clause
form is introduced. Finally, an adaption of a chaining calculus is shown
to provide a basis for efficient, resolution style theorem proving.

1 Introduction

Gödel logic is a prominent example of a t-norm based fuzzy logic [12], distin-
guished by the fact that validity and satisfiability depend only on the relative
order of truth values of atomic formulas. It is sometimes also called intuitionistic
fuzzy logic, following [18]. The importance of this logic is emphasized by the fact
that one may arrive at it by different routes. Already Gödel [11] had introduced
the truth tables for what is now called the family of propositional finite valued
Gödel logics. Dummett [8] later generalized these to an infinite set of truth val-
ues and demonstrated that the set of corresponding tautologies is axiomatized
by intuitionistic logic extended by the linearity axiom (A → B) ∨ (B → A);
hence the alternative name Dummett’s LC or Gödel-Dummett logic. On the
first order level, different Gödel logics arise from differently ordered set of truth
values (see, e.g., [2]). Here, we will deal with standard first order Gödel logic G∞,
where the truth values set is the real closed unit interval [0, 1] in its natural or-
der. In fact we will focus on the natural extension G4∞ that arises from G∞ by
adding the unary propositional connective 4 that maps all formulas to 0 that do
not receive the designated value 1. Unlike other important fuzzy logics defined
over [0, 1], including  Lukasiewicz logic and Product logic (see, e.g., [12]), that
are not recursively axiomatizable, validity for G∞ and G4∞ is Σ0

1 -complete.
While, besides Hilbert type systems, also cut-free Gentzen type systems are

complete for G4∞, none of these systems provides a suitable basis for automated
deduction. In [5] it has been shown that the prenex fragment of G4∞ admits
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a Herbrand theorem and thus Skolemization. This in turn allows to translate
prenex formulas of G4∞ into a special clause form, based on the natural order
relations < and ≤. By adapting a so-called chaining calculus [7, 6] an efficient res-
olution style mechanism for testing validity of prenex G4∞-formulas is obtained.
We call a formula A valid if ‖A‖I = 1 for all interpretations I. If ‖A‖I = 1
for some interpretation I then A is satisfiable, or more precisely 1-satisfiable,
otherwise A is called 1-unsatisfiable. It is important to keep in mind that, unlike
in classical logic, validity and satisfiability are not dual to each other in most
fuzzy logics. (Compare the case of monadic  Lukasiwicz logic, for which the sat-
isfiability problem is known to be Π0

1 -complete, but where the decidability of
the validity is a well known open problem, see [16, 17, 15].) In fact, for Gödel
logic without 4 satisfiability of a formula A is equivalent to the non-validity of
¬A (see [13]). However for G4∞ the duality vanishes: e.g., ¬(B ∧ ¬4B) is not
valid, although B ∧¬4B is unsatisfiable. Therefore, if we are interested in test-
ing whether a given formula A with occurrences of 4 has a model, we cannot
rely on a mechanism for testing whether ¬A is valid. Indeed, quite differently
from classical logic, no direct and efficient reduction of the satisfiability problem
to the validity problem, or vice versa, is known for G4∞ and for other standard
fuzzy logics.

We argue that it is in fact more important to be able to test whether a
given specification expressed by a G4∞-formula A is coherent in the sense of
admitting a model, i.e., an interpretation that assigns 1 to A, than to have a
procedure for testing whether (¬)A is valid. In this paper we address the former
problem. Like in [5] we focus on the prenex fragment of G4∞. It is shown in [5]
that Skolemization preserves validity for prenex G4∞-formulas. In contrast, we
will observe that satisfiability is not preserved by standard Skolemization. We
overcome this problem by defining a special alternative form of Skolemization
that, in addition to Skolem terms, introduces a fresh monadic predicate symbol.

The central contribution of the paper consists in showing that any conjunc-
tion A of prenex formulas of G4∞ can indeed be translated into a purely universal
form A′ that is equivalent to A with respect to 1-satisfiability. Similarly to [5]
we then translate A′ into a clausal form that is based on the underlying or-
der relation. Once more we do not simply re-use results from [5], but rather
present a more efficient version of a definitional clause form. The final part of
the suggested deduction mechanism can then be directly transfered from [5]: a
so-called chaining calculus can be straightforwardly adapted to test unsatisfia-
bility. To achieve a self contained presentation, that does not rely on familiarity
with Gödel logic or with chaining calculi we will explicitly specify all relevant
schemes and inference rules.

The paper is organized as follows. After clarifying basic notions about Gödel
logic in Section 2, a satisfiability preserving Skolemization operator is defined
and investigated in Section 3. In Section 4 we present so-called chain normal
forms. In particular we show how to translate arbitrary universal formulas into
sets of clauses where the literals express basic order relations between atomic
formulas. Section 5 describes a refutationally complete set of inference rules that



can be applied to test unsatisfiability efficiently. Section 6 summarizes the results
indicates related problems.

2 Basic notions and facts

Kurt Gödel [11] has introduced the following truth functions for conjunction,
disjunction, and implication

‖A ∧B‖I = min(‖A‖I , ‖B‖I), ‖A ∨B‖I = max(‖A‖I , ‖B‖I),

‖A→ B‖I =

{
1 if ‖A‖I ≤ ‖B‖I
‖B‖I otherwise.

While Gödel referred to a finite set of values, we consider so-called standard
Gödel logic G∞ [13, 14], where the set of truth values is the real unit interval
[0, 1]. The propositional constants ⊥ and > are specified by ‖⊥‖I = 0 and
‖>‖I = 1, respectively; ¬A abbreviates A → ⊥ and A ↔ B abbreviates (A →
B) ∧ (B → A). Therefore

‖¬A‖I =

{
1 if ‖A‖I = 0
0 otherwise

‖A↔ B‖I =

{
1 if ‖A‖I = ‖B‖I
min(‖A‖I , ‖B‖I) otherwise.

Following [1] we enrich this set of connectives by adding the unary operator 4
with the following meaning:

‖4A‖I =

{
1 if ‖A‖I = 1
0 otherwise.

Note that 4 allows to embed classical logic immediately. For propositional logic
a (standard) interpretation I is simply an assignment of values in [0, 1] to propo-
sitional variables. In first order logic atomic formulas (rather than > and ⊥) are
of the form P (t1, . . . , tn), where P is a predicate symbol and t1, . . . , tn are
terms, where terms are built up from (object) variables and constant symbols
using function symbols, as usual. An interpretation I now consists of a non-
empty domain D and a signature interpretation vI that maps constant symbols
and object variables to elements of D, as well as every n-ary predicate symbol f
to a function vI(f) of type Dn 7→ D. vI homomorphically extends to arbitrary
terms, as usual. Moreover, vI maps every n-ary predicate symbol P to a function
vI(P ) of type Dn 7→ V . The truth value of an atomic formula P (t1, . . . , tn) is
thus defined as

‖P (t1, . . . , tn)‖I = vI(P )(vI(t1), . . . , vI(tn)).

For quantification we define the distribution of a formula A with respect to a
free variable x in an interpretation I as distrI(A(x)) = {‖A(x)‖I[d/x] | d ∈ D},
where I[d/x] denotes the interpretation that is exactly as I, except for insisting



on vI[d/x](x) = d. (Similarly we will use I[d/x] for the interpretation arising
form I by assigning for all 1 ≤ i ≤ n the domain element di in d = d1, . . . , dn
to the variable xi in x = x1, . . . , xn.) The universal and existential quantifiers
correspond to the infimum and supremum, respectively, in the following sense:

‖∀xA(x)‖I = inf distrI(A(x)) ‖∃xA(x)‖I = sup distrI(A(x)).

By G4∞ we mean the just defined (standard) first order Gödel logic with 4. A
G4∞-formula A is valid if ‖A‖I = 1 for all interpretations I; A is 1-satisfiable if
there exists an interpretation I such that ‖A‖I = 1. The set of all 1-satisfiable
formulas will be denoted by 1SAT. As already mentioned in the introduction,
1-satisfiability is not dual to non-validity in G4∞. But as for G∞, both problems
are Π0

1 -complete according to [13, 14].
Like in intuitionistic logic, also in Gödel logic (with or without 4) quantifiers

cannot be shifted arbitrarily. While we have

– |=G4
∞
∃x(A→ B)→ (∀xA→ B) and

– |=G4
∞
∃x(B → A)→ (B → ∃xA),

the converse implications are not valid. As a consequence arbitrary formulas are
not equivalent to prenex formulas, in general. Nevertheless the prenex fragment
of G4∞ is quite expressive. E.g., classical logic, where formulas can be reduced
to prenex form without loss of generality, can straightforwardly be embedded
into prenex G4∞ using 4 as indicated above. We list a few further valid schemes
of G4∞ that will be used in later sections.

– |=G4
∞
4A→ A

– |=G4
∞

((A ∧B) ∨ C)↔ (A ∨ C) ∧ (B ∨ C))
– |=G4

∞
4(A→ B) ∨ ¬4(A→ B)

– |=G4
∞
A(t)→ ∃xA(x), where x does not occur in A(t)

– |=G4
∞
4∀xA↔ ∀x4A

Since G4∞ does not contain the identity predicate, the following version of the
Löwenheim-Skolem theorem is straightforwardly obtained, just like for classical
or intuitionistic logic.

Proposition 1. Every 1-satisfiable formula of G4∞ has a model with countably
infinite domain.

3 A non-standard form of Skolemization

In [5] it is shown that the prenex fragment of G4∞ admits Skolemization with
respect to validity : we have |=G4

∞
A⇐⇒ |=G4

∞
sko(A), where the operator sko(·)

replaces universally quantified variables by Skolem terms in the usual manner.
However, standard Skolemization for satisfiability (where existentially quantified
variables are replaced by Skolem terms) does not preserve 1-satisfiability, as
seen in the following simple example. A model I with domain {d1, d2, . . .} for



∃xA(x) ∧ ∀x¬4A(x) is obtained by setting supi∈ω ‖A(x)‖I[di/x] = 1, without
admitting ‖A(x)‖I[di/x] = 1 for any domain element di. But the Skolemized
form A(c)∧∀x¬4A(x) is not 1-satisfiable. The example can obviously be made
prenex by moving the second quantifier to the front. However, we will slightly
widen our focus to conjunctions of prenex formulas, anyway.

We demonstrate that Skolem forms with respect to satisfiability can never-
theless be achieved by a nice trick, involving an additional monadic predicate
symbol.

Definition 1. Let E be a new monadic predicate symbol. The operator ΨE(·),
to be applied to prenex formulas from outside to inside, is defined by

– ΨE(∀xA(x)) = ∀xΨE(A(x));
– ΨE(∃xA(x)) = ∀x(E(x)→ ΨE(A(f(x, y))), where f is a new (Skolem) func-

tion symbol and y are the free variables in ∃xA(x);
– ΨE(A) = A, if A is quantifier free.

The Skolem form SKOE(A) of A is obtained by moving all (universal) quantifiers
in ΨE(A) to the front and inserting an occurrence of 4 immediately after the
quantifiers. More precisely,

SKOE(A) = ∀x4(ΨE(A)−)

where x are the variables in ΨE(A) and ΨE(A)− denotes ΨE(A)− after removal
of all quantifier occurrences.

Obviously SKOE(·) does not preserve logical equivalence. However it does
preserve 1-satisfiability as the shown in the following.

Theorem 1. Let A1, . . . , Am be prenex formulas. Then( ∧
1≤i≤m

Ai
)
∈ 1SAT ⇐⇒

(
∃xE(x) ∧

∧
1≤i≤m

SKOE(Ai)
)
∈ 1SAT

Proof. (⇐) We show that SKOE(Ai) together with ∃xE(x) implies Ai. Note
that SKOE(Ai) is of the form

∀x1 . . . ∀xn4(E(x1)→ . . . (E(xn)→ Aski ) . . .)

where Aski denotes the quantifier free part of Ai with all existentially bound vari-
able replaced by Skolem terms, as specified in Definition 1. Since |=G4

∞
4∀xB ↔

∀x4B and |=G4
∞
4B → B for all formulas B, we can remove the indicated oc-

currence of 4 in SKOE(Ai). Then we use |=G4
∞
A(f(x, y)→ ∃vA(v), where v is

a new variable, to replace the Skolem terms by existentially quantified variables.
Next we use |=G4

∞
∀x(E(x) → ∃vA(v)) → (∃xE(x) → ∃vA(v)), where x does

not occur in ∃vA(v)), to move existial quantifiers immediately in front of all
occurrences of E. Finally we use the assumption that ∃xE(x) to detach all these
occurrences. The resulting formula is Ai, as required.



(⇒) Suppose I satisfies Ai for 1 ≤ i ≤ m. To obtain a model J of the formula
at the left hand side from we may augment I by a freely chosen interpretation of
E and of the Skolem function symbols. In particular, to achieve ‖∃xE(x)‖J = 1
we use Proposition 1 and assign vJ (E)(di) = vi for di ∈ DJ in such a manner
that supi vi = 1, but vi 6= 1 for all i ∈ ω.

In interpreting the Skolem functions we have to make sure that

‖E(x)→ ΨE(Ai(f(x, y)))‖J [d/x,e/y] = 1,

for all d ∈ DJ and all e ∈ Dn
J , where n is the number of free variables in

∃xAi(x). To this aim we use the assumption that ‖∃xAi(x)‖I[e/y] = 1. This
means that for any d ∈ DI = DJ there is a further domain element d′ such that
‖E(x)‖J [d/x] ≤ ‖Ai(x)‖I[d′/x,e/y]. We assign vJ (f)(d, e) = d′. If there is no more
existential quantifier in Ai then we are done, since then ΨE(Ai) = Ai and there-
fore ‖Ai(x)‖I[d′/x,e/y] = ‖ΨE(Ai(f(x, y))))‖J [d/x,e/y]. Otherwise we proceed by
induction on the number of existential quantifiers replaced by applying ΨE , with
(essentially) the presented argument as inductive step. �

Remark 1. We have seen that only our alternative form of Skolemization is
needed to preserve 1-satisfiability for prenex formulas A of G4∞, in general.
However standard Skolemization (where no additional predicate symbol is intro-
duced) suffices if the quantifier free part of A is preceded by 4. This observation
can be exploited to achieve more efficient translations. Those conjuncts of the
formula in question that are of the form Qx4B can be Skolemized in the tra-
ditional manner, i.e., existentially quantified variables x are replaced by Skolem
terms f(y), where y denotes the variables bound by universal quantifiers in the
scope of which x occurs. Only the remaining conjuncts will be treated using the
fresh monadic predicate symbol E, as described above.

Note that the price we had to pay for preserving 1-satisfiability consists not
only in the additional occurrences of the new predicate symbol E in the an-
tecedents of universally quantified implications, but also in adding the conjunct
∃xE(x). To obtain a purely universal formula that is ready for translation to
chain normal form, we have to replace also ∃xE(x) by a conjunction of univer-
sal formulas. To this aim we first introduce notation that will be useful also in
defining chain normal forms in Section 4, below.

Definition 2. A E B def= 4(A→ B) and ACB def= ¬4(B → A).

It is straightforward to check that the suggestive symbols are justified by

‖AEB‖I =

{
1 if ‖A‖I ≤ ‖B‖I
0 otherwise

and ‖ACB‖I =

{
1 if ‖A‖I < ‖B‖I
0 otherwise.

Definition 3. Let P1, . . . , Pk be the predicate symbols occurring in SKOE(A),
where A is conjunction of prenex formulas. (Note that E ∈ {P1, . . . , Pk}.)

H∃(E,A) def=
∧

1≤i≤k

∀yi(> E Pi(yi) ∨ Pi(yi)C E(fPi
(yi)),



where yi is a sequence of fresh variables, according to the arity of Pi.

Lemma 1. Let A =
∧

1≤i≤mAi where for 1 ≤ i ≤ m Ai is of the form ∀xi4A−i
for some is quantifier free formula A−i . Then(

∃xE(x) ∧A
)
∈ 1SAT ⇐⇒

(
H∃(E,A) ∧

∧
1≤i≤m

SKOE(Ai)
)
∈ 1SAT

Proof. (⇒) Let I be a model of ∃xE(x) ∧ A. For every d ∈ Dn
I , where n is

the arity of Pi the following holds. Either ‖Pi(yi)‖I[d/yi]
= 1, implying that the

first disjunct > E Pi(yi) of the relevant conjunct in H∃(E,A) evaluates to 1.
Otherwise, since we have ‖∃xE(x)‖I = 1, we can extend I by an interpretation
of the new function symbols fPi in such a manner that ‖E(fPi(yi)‖I[d/yi]

>

‖Pi(yi)‖I[d/yi]
holds. But this implies that the second disjunct in H∃(E,A) is

evaluated to 1.
(⇐) Let I be a model of H∃(E,A)∧

∧
1≤i≤m SKOE(Ai). If ‖E(x)‖I[d/x] = 1

for some d ∈ DI then nothing remains to prove. Otherwise remember that
E ∈ {P1, . . . , Pk}, the set of predicate symbols occurring in SKOE(A). There-
fore ‖H∃(E,A)‖I = 1 implies that for every d ∈ DI we have ‖E(x)‖I[x/d] <
‖E(fE(x))‖I[x/d], since ‖> E E(x)‖I[x/d] < 1. Consequently there must exist
some v < 1 such that supd∈DI ‖E(x)‖I[x/d] = v, but ‖E(x)‖I[x/d] 6= v for all
d ∈ DI . ‖H∃(E,A)‖I = 1 also implies that for every d ∈ Dn

I , where n is the
arity of Pi, we have either ‖Pi(yi)‖I[d/yi]

= 1 or ‖Pi(yi)‖I[d/yi]
< v. In other

words: no atomic formula is assigned a value in the interval [v, 1) by I. We
may therefore define a new interpretation J over the same domain DI by set-
ting ‖Pi(yi)‖J [d/yi]

= ‖Pi(yi)‖I[d/yi]
+ (1 − v), whenever ‖Pi(yi)‖I[d/yi]

6= 1.
Otherwise the corresponding truth value remains 1.

It remains to show that J is a model of ∃xE(x) ∧ A. By definition of J we
have supd∈DI ‖E(x)‖J [x/d] = 1. To complete the argument remember that Ai is
the form ∀x4A−i for 1 ≤ i ≤ m. Therefore ‖A−i ‖I[d/x] = 1 for every appropriate
tuple d of domain elements. This means that the evaluation essentially reduces to
that of a propositional formula of G4∞. But an inspection of the truth functions
for the propositional connectives shows that whether a given interpretation I
satisfies a formula only depends on the relative order of assigned truth values
below 1, but not on their absolute values. Therefore, just like I, also J is a
model of Ai for 1 ≤ i ≤ m. �

4 Chain normal form

The results of the last section imply that the satisfiability problem for prenex
G4∞ can be reduced to checking satisfiability of conjunctions of purely universal
formulas. To define so-called chain normal forms [3, 4] let us use, in addition to
C, also A , B as an abbreviation for 4(A ↔ B). Clearly ‖A , B‖I = 1 iff
‖A‖I = ‖B‖I .



Definition 4. Let F be a quantifier-free formulas of G4∞ and A1, . . . , An the
atoms occurring in F . A 4-chain over F is a formula of the form

(⊥ on0 Aπ(1)) ∧ (Aπ(1) on1 Aπ(2)) ∧ · · · ∧ (Aπ(n−1) onn−1 Aπ(n)) ∧ (Aπ(n) onn >)

where π is a permutation of {1, . . . , n}, oni is either C or ,, and at least one of
the oni’s stands for C.

By Chains(F ) we denote the set of all 4-chains over F .

The following follows immediately from Theorem 17 of [5].

Theorem 2. Let F be of the form
∧

1≤i≤n ∀xi4Fi, where Fi is quantifier free.
Then there exist Γi ⊆ Chains(Fi) for all 1 ≤ i ≤ n such that

|=G4
∞
F ↔

∧
1≤i≤n

∨
C∈Γi

C.

While Theorem 2 can be used, in principle, to reduce Skolemized formulas to
clausal form, the result might be exceedingly complex, since Chains(F ) contains
a super-exponential number of different elements (with respect to the length of
F ) in general. Therefore we present an alternative structural translation that
results in clause forms of linear size.

Definition 5. For any quantifier free formula F of form F1 ◦ F2, where ◦ ∈
{∧,∨,→}, let

df(F ) def= [pF (x) , (pF1(x1) ◦ pF2(x2))]

where pF , pF1 , pF2 are new predicate symbols and x, x1, x2 are the tuples of vari-
ables occurring in F, F1, F2, respectively. If F is of form 4F1 then

df(F ) def= [pF (x) , 4pF1(x1)].

If F is atomic then pF (x) is simply an alternative denotation for F .
For any quantifier free formula G the definitional normal form is defined as

DEF(G) def= 4pG(x) ∧
( ∧
F∈nsf(G)

df(F )
)

where nsf(G) is the set of all non-atomic subformulas of G, x is the tuple of
variables occurring in G, and pG is a new predicate symbol.

The following is straightforwardly obtained from simple equivalences.

Proposition 2. A quantifier free formula F is 1-satisfiable iff its definitional
normal form DEF(F ) is 1-satisfiable.

Definition 6. A literal is a formula of the form ACB or A E B, where A and
B are atomic formulas (including > and ⊥). A clause is a finite set of literals,
denoting a disjunction of its elements. A set of clauses is called satisfiable if the
universal closure of the corresponding conjunction of disjunction of literals is
1-satisfiable in G4∞.



For the following it does not matter, whether we think of a clause as a
disjunction of formulas built up using → and 4; or rather as ‘logic free’ syntax,
where the semantics is fixed according to the indicated correspondence to G4∞.

Definition 7. Let A, B, and C be atomic formulas.

cl(C , (A ∧B)) def= {{C E A}, {C E B}, {A E C,B E C}}
cl(C , (A ∨B)) def= {{A E C}, {B E C}, {C E A,C E B}}
cl(C , (A→ B)) def= {{A E B,C E B}, {> E C,B CA},

{> E C,C E B}, {B E C}}
cl(C , 4A) def= {{C C>,> E A}, {> E C,AC>}}

For a quantifier free formula G the definitional clause form is defined as

CFd(G) def= {{> E pG(x)}} ∪
⋃

F∈nsf(G)

cl(df(F ))
)

where nsf(G) denotes the set of all non-atomic subformulas of G, x is the tuple
of variables occurring in G, and pG is a new predicate symbol.

Theorem 3. Let A =
∧

1≤i≤mAi where, for 1 ≤ i ≤ m, Ai is a G4∞-formula of
the form ∀xi4A−i for some is quantifier free formula A−i . Then A is 1-satisfiable
iff CFd(A) =

⋃
1≤i≤m CFd(A−i ) is satisfiable.

Proof. In light of Proposition 2 we only need to check that the clauses specified
in Definition 7 are equivalent to the corresponding definitional forms. (Note that,
by the way they involve 4, every interpretation I evaluates the clauses to either
0 or 1.)

– C , (A→ B): We have

‖4(C ↔ (A→ B))‖I = ‖(A E B ∧4C) ∨ (B CA ∧ C E B ∧B E C)‖I .

By applying the law of distribution to the formula at the right hand side we
obtain the conjunction of the following six formulas:

A E B ∨ B CA (1)
A E B ∨ C E B (2)
A E B ∨ B E C (3)
4C ∨ B CA (4)
4C ∨ C E B (5)
4C ∨ B E C (6)

Note that conjunct (1) is valid and that B E C is entailed by (6). B E C
in turn entails conjuncts (3) and (6). Moreover we can express 4C by the



equivalent literal > E C. Thus we obtain the following four conjuncts that
directly correspond to cl(C , (A→ B)):

A E B ∨ C E B
> E C ∨ B CA
> E C ∨ C E B
B E C

– C , (A ∧ B): 4(C ↔ (A ∧ B)) is easily seen to be equivalent to the con-
junction of the three disjunctions

C E A
C E B
A E C ∨ B E C

that directly correspond to cl(C , (A ∧B)).
– C , (A ∨B): 4(C ↔ (A ∨B)) is to be equivalent to the conjunction of

A E C
B E C
C E A ∨ C E B

that directly correspond to cl(C , (A ∨B)).
– C , 4A: 4(C ↔4A) is equivalent to the conjunctions of the following two

disjunctions
C C> ∨ > E A
> E C ∨ AC>

that directly correspond to cl(C , 4A). �

Remark 2. A somewhat different structural clause form has been described in [5].
The fact that the language there is directly referring to order claims relating
terms instead of formulas is rather irrelevant. Also the context of testing validity
is immaterial. But the definitional clauses in [5] contain redundancies that are
eliminated here. Moreover the description of clauses is only indirect in [5], due
to the fact that {A = B} ∪E is used to represent the set containing the clauses
{A E B} ∪ E and {B E A} ∪ E. This has to be iterated for each occurrence of
an identity to obtain, e.g., 6 clauses for conjunction as well as for disjunction
where we need only 3 clauses in each case. Similarly only 4 instead of 5 clauses
are needed here for implication.

5 Chaining resolution

There are different methods to test the unsatisfiabilty of the sets of clauses
CFd(A) obtained for a conjunction A of prenex G4∞-formulas as described in the
previous sections. In the following literals are understood to be of the form s < t
or s ≤ t, for arbitrary first order terms s and t. This means that atomic formulas



are considered as terms now and the order relation is directly expressed in the
syntax, not indirectly using logical connectives. Note that by this final move
we have reduced the 1-satisfiabilty problem for prenex G4∞ to the satisfiabilty
problem for sets of clauses referring to a dense total order with endpoints.

One possibility to proceed with CFd(A) is to add clausal forms of axioms D<
that express that C and E refer to a total denses order with endpoints ⊥ and >.
The resulting set of clauses can be feeded to any first order resolution theorem
prover to CFd(A) to check whether the empty clause, signalling unsatisfiabilty,
can be derived.

Another, more efficient method, that has been presented in [5], is to employ
a so-called chaining calculus [7, 6] for this purpose. We will briefly describe this
mechanism also here.

For the resulting order clauses we consider the following inference rules.

Irreflexivity Resolution:
C ∪ {s < t}

Cσ

where σ is the mgu of s and t
Factorized Chaining:

C ∪ {u1 C1 s1, . . . , um Cm sm} D ∪ {t1 C′1 v1, . . . , tn C′n vn}
Cσ ∪Dσ ∪ {uiσ Ci,j vjσ | 1 ≤ i ≤ m, 1 ≤ n}

where σ is the mgu of s1, . . . , sm, t1, . . . , tn and Ci,j is < if and only if either
Ci is < or C′j is <. Moreover, t1σ occurs in Dσ only in inequalities v C t1σ.

These two rules constitute a refutationally complete inference system for the
theory of all total orders with endpoints ⊥ and > in presence of set EqF of
clauses

{xi < yi, yi < xi | 1 ≤ i ≤ n} ∪ {f(x1, . . . , xn) ≤ f(y1, . . . , yn)}

where f ranges the set F of function symbols of the signature.
To achieve more efficient proof search, we impose the following conditions on

the rules rules. These conditions refer to a complete reduction order � (see[6])
declared on the set of terms. We write s 6� t if ¬(s � t) and s 6= t.

Maximality Condition for Irreflexivity Resolution:
– sσ is a maximal term with respect to � in Cσ.

Maximality Condition for Chaining:
– uiσ 6� s1σ for all 1 ≤ i ≤ n,
– viσ 6� t1σ for all 1 ≤ i ≤ m,
– uσ 6� s1σ for all terms u such that uC s ∈ C or sC u ∈ C, and
– vσ 6� t1σ for all terms v such that v C s ∈ C or sC v ∈ C.

It is convenient to view the resulting inference system MC� as a set operator.



Definition 8. MC�(C) is the set of all conclusions of Irreflexivity Resolution
and Maximal Chaining where the premises are (variants of) members of the set
of clauses C. Moreover, MC0

�(C) = C, MCi+1
� (C) = MC�(MCi�(C)) ∪MCi�(C),

and MC∗�(C) =
⋃
i≥0 MCi�(C).

The set consisting of the three clauses {⊥ ≤ x}, {x ≤ >}, and {⊥ < >}, cor-
responding to the endpoint axioms, is called Ep. Let d be a frech binary function
symbol. The set {{y ≤ x, d(x, y) < y}, {y ≤ x, x < d(x, y)}}, corresponding to
the density axiom, is called Do.

The following completeness result follows directly from Theorem 2 of [6].

Theorem 4. A set of clause C has a dense total order with endpoints ⊥ and >
as a model iff MC∗�(C ∪ EqF ∪ Ep ∪ Do) does not contain the empty clause.

Remark 3. Yet more refined versions of chaining calculi are investigated in [6,
7]. However, standard breadth-first proof search based on MC� seems to be
quite appropriate in our context; in particular, since the problem of “variable
chaining” does not occur for the sets of clauses obtained using CFd(·).

6 Conclusion

Remember that for testing whether a given specification expressed in fuzzy
logic G4∞ has a model we cannot rely on proof procedures for checking validity
in G4∞. As demonstrated in this paper, one can nevertheless apply a resolution
style method for testing (1-)satisfiability for prenex G4∞-formulas. While prenex
G4∞ admits Skolemization with respect to validity in a standard manner [5], this
result does not transfer to satisfiability. However, we have shown that a new non-
standard form of Skolemization that involves the introduction of a fresh monadic
predicate symbol preserves satisfiability. This in turn can be used to translate
prenex G4∞-formulas into a clausal form combining a definitional (structural)
clause form translation with a generalized notion of literals that refers to the
underlying order on the set of truth values [0, 1]. Finally efficient resolution style
proof search, based on a so-called chaining calculus for the theory of dense total
orders with endpoints, can be employed.

A number of related problems arise naturally. Can a similar method be found
that covers full G4∞, not only its prenex fragment? What about other t-norm
based fuzzy logics, including other forms of Gödel logic? Instead of generalizing,
it might also be interesting to go the other direction and focus on subclasses of
prenex G4∞. Of particular interest is the monadic class, where formulas contain
only monadic predicate symbols. In fact, given the above results, it is straight-
forward to adapt the undecidability proof in [5] for the validity problem of the
prenex monadic fragment of G4∞ to the 1-satisfiability problem for this class.
Nevertheless it is likely that more refined proof search methods will allow to
demonstrate the decidability of subclasses of G4∞ in the style of, e.g., [9, 10].
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1. M. Baaz. Infinite-valued Gödel logics with 0-1-projections and relativizations. In
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