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Abstract. The paper presents the methodology and the results of check-
ing consistency of the knowledge base of CADIAG-2, a large-scale med-
ical expert system. Such knowledge base consists of a large collection of
rules representing knowledge about various medical entities (symptoms,
signs, diseases...) and relationships between them. The major portion of
the rules are uncertain, i.e., they specify to what degree a medical entity
is confirmed by another medical entity or a combination of them. Given
the size of the system and the uncertainty it has been challenging to vali-
date its consistency. Recent attempts to partially formalise CADIAG-2’s
knowledge base into decidable Gödel logics have shown that, on that for-
malisation, CADIAG-2 is inconsistent. In this paper we verify this result
with an alternative, more expressive formalisation of CADIAG-2 as a
set of probabilistic conditional statements and apply a state-of-the-art
probabilistic logic solver to determine satisfiability of the knowledge base
and to extract conflicting sets of rules. As CADIAG-2 is too large to be
handled out of the box we describe an approach to split the knowledge
base into fragments that can be tested independently and prove that
such methodology is complete (i.e., is guaranteed to find all conflicts).
With this approach we are able to determine that CADIAG-2 contains
numerous sets of conflicting rules and compute all of them for a slightly
relaxed version of the knowledge base.

1 Introduction

CADIAG-2 (Computer Assisted DIAGnosis) is a well-known rule-based expert
system aimed at providing support in diagnostic decision making in the field of
internal medicine. Its design and construction was initiated in the early 80’s at
the Medical University of Vienna by K.P. Adlassnig – see [1], [2], [3] or [4] for
more on the origins and design of CADIAG-2.

CADIAG-2 consists of two fundamental pieces: the inference engine and the
knowledge base. The inference engine — see [5] or [6] for alternative formalisa-
tions and analyses of CADIAG-2’s inference — is based on methods of approxi-
mate reasoning in fuzzy set theory, in the sense of [7] and [8]. In fact CADIAG-2
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is presented in some monographs as an example of a fuzzy expert system — see
[9], [10]. The knowledge base consists of a set of IF-THEN rules — known in
the literature as production rules — intended to represent relationships between
distinct medical entities: symptoms, findings, signs and test results on the one
hand and diseases and therapies on the other. The vast majority of them are bi-
nary (i.e., they relate single medical entities) and only such rules are considered
in this paper. The one that follows is an example of a binary rule of CADIAG-2
(taken from [3]):

IF suspicion of liver metastases by liver palpation
THEN pancreatic cancer
with degree of confirmation 0.3

The degree of confirmation refers, intuitively, to the degree to which the
antecedent (i.e., ’suspicion of liver metastases by liver palpation’ in the example
above) confirms the consequent (i.e., ’pancreatic cancer ’ above).

In this paper we present a formalisation of a coded version of the binary
fragment of CADIAG-2’s knowledge base (i.e., that contains only codes for the
identification of the distinct medical entities) as a probabilistic logic theory.
We then check the satisfiability of that formalisation with Pronto, our proba-
bilistic Description Logic (DL) reasoner, which we briefly introduce. We find
that CADIAG-2 is highly unsatisfiable (confirming the results of an alternative,
weaker formalisation, [11]) and analyse the sources of unsatisfiability.

To our knowledge, the probabilistic version of CADIAG-2 is the largest PSAT
(Probabilistic SATisfiability) problem to be solved by an automated reasoner and
is certainly the largest non-artificial one. This is, perhaps, a bit misleading as it is
comparatively easy to detect unsatisfiability by first heuristically detecting small
but likely unsatisfiable fragments, and then performing a satisfiability check on
each fragment. While this might suffice to validate that the knowledge base
is unsatisfiable it is not sufficient, without further qualification, to detect all
conflicting sets of rules, nor can it ensure that a satisfiable fragment is so in the
context of the entire knowledge base. As CADIAG-2 is too large (the number of
rules in the binary fragment we are concerned with is over 18000) we describe
an approach to split the knowledge base into comparatively large fragments
that can be tested independently and prove that such methodology is complete
(i.e., is guaranteed to find all conflict sets). With this methodology we are able
to determine that CADIAG-2 contains numerous sets of conflicting rules and
compute all of them for a slightly relaxed interpretation of the knowledge base.

2 Notation and preliminary definitions

Throughout we will be working with a finite set L = S ∪ D = {P1, ..., Pn} of
unary predicates in a first-order language, for some n ∈ N. L is intended to
represent the set of medical entities occurring in the inference rules of the expert
system CADIAG-2, with S the set of symptoms, findings, signs and test results
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(to which we will commonly refer as symptoms) and D the set of therapies and
diseases (to which we will commonly refer as diseases).

Definition 1. An interpretation I of L is a pair (DI , V I), where DI is a finite,
non-empty set and V I is a map from L ×DI to [0, 1].

An interpretation I is said to be classical if V I(P, a) ∈ {0, 1} for all (P, a) ∈
L ×DI . It is said to be rational if V I(P, a) ∈ [0, 1] ∩Q for all (P, a) ∈ L ×DI .

Given an interpretation I of L, we will refer to the elements in DI by latin
characters a, b, c... and to the elements in L by uppercase latin characters P,Q...
(possibly with suffices).

Let L = {p1, ..., pn} be a finite propositional language, for n ∈ N, and SL its
closure under boolean connectives.

Definition 2. Let w : SL −→ [0, 1]. We say that w is a probability function on
L if the following two conditions hold, for all θ, φ ∈ SL:

– If |= θ then w(θ) = 1.
– If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).1

We can restrict probability functions on L to values in [0, 1]∩Q. We will call
such probability functions rational.

A probability distribution w on L can be characterized by the values it assigns
to the expressions of the form ±p1 ∧ ... ∧ ±pn, which we call states or worlds,
where +p and −p stand for p and ¬p respectively. We denote the set of states
in L by W and define, for φ ∈ SL, Wφ as follows:

Wφ = {s ∈W | s |= φ}.

We define conditional probability from the notion of unconditional probabil-
ity on conditional statements in L in the conventional way.

3 The knowledge base in CADIAG-2

We can classify CADIAG-2’s binary rules (ΦCB) into three different types: rules
in which both antecedent and consequent are medical entities in S (symptom-
symptom, ΦS|S), rules in which both antecedent and consequent are medical
entities in D (disease-disease, ΦD|D) and those in which the antecedent is a
medical entity in S and the consequent an entity in D (symptom-disease, ΦD|S).2

The degree of confirmation in a rule of the first two types is a value in the set
{0, 1} and it is in this sense that we say that rules of these types are classical.

1 Here (and throughout) |= is classical entailment.
2 CADIAG-2’s knowledge base formally contains values for conditional relations with

a medical entity in D as the antecedent and a medical entity in S as the consequent.
However, such rules are not used by CADIAG-2’s inference mechanism and therefore
are not taken into account in this paper.
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Let 〈P,Q, η〉 ∈ ΦCB be a rule in CADIAG-2’s binary knowledge base, with
P,Q ∈ L and η ∈ [0, 1] ∩ Q. The value η is intended to quantify the degree to
which P (the antecedent) confirms Q (the consequent) and claimed in most of
the literature on CADIAG-2 (see, for example, [2] or [3]) to have been calculated
from a certain database or interpretation I as follows:3∑

a∈DI min{V I(P, a), V I(Q, a)}∑
a∈DI V I(P, a)

= η (1)

Notice that this expression generalises the concept of conditional probability
or frequency that one gets when restricting the model to classical interpretations.
Under such a restriction η becomes a probability (in the sense of frequency) and
its meaning is intuitive and formally well understood. However, when allowing
in (1) valuations other than classical the intuitive meaning of η is lost. Certainly,
(1) would benefit from a serious attempt to clarify its meaning when allowing
valuations other than classical but it is not the purpose of this paper to do
so. As we will see later, whether the interpretation of (1) is assumed in terms
of any valuations or in terms of only classical valuations (i.e., a probabilistic
interpretation) will be indifferent to our satisfiability-checking purposes.

Throughout we will use the expression Q/IP = η to abbreviate (1). Some-
times, in order to generalise results, we will be considering an interval, say
Ω ⊆ [0, 1], instead of a single value (i.e., η in (1)) and we will be using the
expression Q/IP ∈ Ω to abbreviate the corresponding modification of (1). Such
modification is motivated by the possibility of alternative, suitable interpreta-
tions of the rules in ΦCB that one could consider interesting in the view of some
theoretical or practical aspects. Among these alternative interpretations we con-
sider replacing η in equation (1) by the interval [η, 1] (i.e., consider η a lower
bound for the degrees of confirmation instead of a precise one) or replacing η
whenever η ∈ (0, 1) by an interval of the form [η − ε, η + ε], for ε small (i.e., a
slightly relaxed interpretation of ΦCB).

We will denote the collection of real intervals in [0, 1] by I. We will normally
refer to intervals of the form [η, η] ∈ I by η itself.

For the next definition and proposition let I be an interpretation of L and
Φ ⊆ RL, for

RL = {〈P,Q,Ω〉 | P,Q ∈ L, Ω ∈ I}.

Definition 3. We say that I is a model of Φ (denoted |=I Φ) if Q/IP ∈ Ω for
all 〈P,Q,Ω〉 ∈ Φ.

Proposition 1. Φ has a classical model if and only if it has a rational model.

Proof. The right implication follows trivially from the fact that every classical
interpretation is also rational. In order to prove the left implication let us assume
that I = (DI , V I) is a rational interpretation such that |=I Φ.
3 We say in most of the literature. There are some references in which the interpre-

tation suggested for η in 〈P,Q, η〉 is different. For example in [1] it is claimed that
η can be interpreted as a frequency and thus 〈P,Q, η〉 as a probabilistic conditional
statement.
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Let C be the set given by the values V I(P, a), for (P, a) ∈ L × DI . It is
assumed that all the values in C are rational. Let us consider the minimum
common multiple of the denominators of all the elements of C, say q ∈ N. We
next construct a new interpretation J from I such that |=J Φ.4

We first define DJ from DI . For each element a ∈ DI we set q elements in
the domain DJ , labelled as follows: {a1, ..., aq}. Let us consider now P ∈ L and
a ∈ DI and assume that V I(P, a) = p

q . We define V J on L ×DJ from V I as
follows, for i ∈ {1, ..., q}:

V J (P, ai) =
{

1 if i ≤ p
0 otherwise

It is easy to see that J thus defined is such that |=J Φ.

For what follows we will be considering the collection of intervals I∗ in the
set [0, 1]. I∗ differs from I in that an interval Ω ∈ I∗ needs to have its maximum
and/or minimum in Q, provided it has a maximum and/or a minimum.

We define
R∗L = {〈P,Q,Ω〉 | P,Q ∈ L, Ω ∈ I∗}

and consider Φ ⊆ R∗L for the next proposition.

Proposition 2. If Φ has a model then it has a rational model.

Proof. Let I be an interpretation such that |=I Φ. We then have that, for all
〈P,Q,Ω〉 in Φ, Q/IP ∈ Ω.

For each Q/IP ∈ Ω we consider the inequalities∑
a∈DI

η1 V
I(P, a) <

∑
a∈DI

min{V I(P, a), V I(Q, a)} <
∑
a∈DI

η2 V
I(P, a),

where Ω is assumed to be of the form (η1, η2) ∈ I∗ (for Ω ∈ I∗ of any other
form we replace ’<’ in the inequalities above by ’≤’ as required) and with

min{V I(P, a), V I(Q, a)}

replaced by V I(P, a) or V I(Q, a) accordingly.
Let us also consider, for each Q/IP ∈ Ω, the inequalities

0 ≤ V I(P, a), V I(Q, a) ≤ 1,∑
a∈DI

V I(P, a) > 0

and, for V I(P, a) greater than V I(Q, a), the inequality V I(Q, a) ≤ V I(P, a)
(the inequality V I(Q, a) ≥ V I(P, a) otherwise).

The solution set of the linear system above with unknown values V I(P, a),
V I(Q, a) is not empty (I is assumed to be a solution of the system) and needs
to contain rational solutions (due to the form of the intervals in I∗). Therefore,
there has to exist a rational interpretation of L that models Φ.
4 It is worth stressing here again that the predicates in L, and thus the predicates

involved in (1), are atomic predicates.
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Corollary 1. Φ has a model if and only if it has a classical model.

By Corollary 1 we have that ΦCB will have a model if and only if it has a
classical model.

For the next definition let w be a probability function on L, where L here is
regarded as a propositional language, and 〈P,Q,Ω〉 a triple inRL, with P,Q ∈ L
and Ω ∈ I.

Definition 4. We say that the probability function w on L satisfies 〈P,Q,Ω〉
(denoted |=w 〈P,Q,Ω〉) if w(P ) > 0 and

w(P ∧Q)
w(P )

∈ Ω.

In that sense we say that 〈P,Q,Ω〉 is satisfiable (or consistent)5 if there exists
a probability function w on L that satisfies 〈P,Q,Ω〉. We extend the notion of
satisfiability for sets of rules in RL in the trivial way.

For the next proposition let Φ ⊆ R∗L.

Proposition 3. Φ is satisfiable if and only if it has a model.

Proof. That Φ has a model if and only if it is satisfied by a rational probability
function is clear. On the other hand, one can prove that if a probability function
satisfies Φ then there exists a rational probability function that satisfies Φ by
an argument similar to that of the proof of Proposition 2 by considering the
corresponding system of linear inequalities with variables the worlds in L.

Proposition 3 implies that ΦCB can be regarded, for consistency-checking
purposes, as a knowledge base formalised in propositional probabilistic logic (or
PPL).

For the last definition of this section let Φ ⊆ RL.

Definition 5. We say that Φ is a minimal unsatisfiable set (or minimal incon-
sistent set) if it is not satisfiable and, for all Φ∗ ⊂ Φ, Φ∗ is satisfiable.

4 Checking satisfiability of CADIAG-2

Our main goals are to solve the PSAT problem (Probabilistic SATisfiability) for
ΦCB and, provided ΦCB is unsatisfiable (which turns out to be the case), to
figure out the minimal sets of conflicting rules (see Definition 5). Despite the fact
that ΦCB is formalised as a propositional knowledge base and that there exist
several propositional PSAT solvers, we use Pronto (see [12]), our probabilistic
Description Logic reasoner, for several reasons.

The first reason is that, unlike propositional solvers, it treats classical (i.e.,
certain) and probabilistic knowledge separately and scales perfectly with respect
5 We use both terms indistinctively throughout.
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to the amount of the former. ΦCB contains many classical formulas (for example,
the number of rules in ΦD|D is over 200) and so, given the scalability limits of
PPL solvers (about 1000 formulas), they are likely to be unable to handle a
sufficient number of uncertain symptom-disease rules in addition to ΦD|D and
(a fragment of) ΦS|S .

The second reason is that Pronto has pinpointing capabilities for finding all
minimal sets of conflicting formulas in an unsatisfiable knowledge base. This
feature is critical in the context of this work given the size of CADIAG-2 and,
as we will see shortly, the number of potentially overlapping inconsistencies. It
must be noted that finding all minimal inconsistencies is by no means a trivial
extension of the PSAT algorithm (for example, its naive implementation using
a PSAT solver as a black-box reasoner is not practical due to the hardness of
PSAT). Even with our implementation, the number of conflicts in most fragments
results in a significant slowdown of reasoning.

Finally, we are interested in evaluating our algorithms (see the next section)
on a large and naturally occurring knowledge base such as ΦCB .

4.1 Algorithms

In this section we briefly sketch the PSAT and conflict-finding algorithms im-
plemented in Pronto within the frame of classical propositional logic (since for
ΦCB a formalisation in terms of the probabilistic DL language is not necessary).

Probabilistic satisfiability algorithm. For the sake of clarity and brevity we
will consider the case of PSAT for sets of probabilistic conditional statements of
the form 〈>, φ, η〉 on L (a finite propositional language), with φ ∈ SL, where ’>’
abbreviates ’always true’ (a tautology in SL) and η represents the probability
assigned to it (i.e., all probabilistic statements considered are unconditional and
assigned point-valued probabilities. It is straightforward, but technically awk-
ward and space consuming, to generalise the procedure to handle conditional
interval statements, see [12]).

We say that a collection of probabilistic conditional statements of such form,
say Φ, is satisfiable if and only if the objective value of the following linear
program is equal to 1:

max
∑
s∈W

xs

s.t.
∑
s∈Wφ

xs = η ×
∑
s∈W

xs, for each 〈>, φ, η〉 ∈ Φ (2)

∑
s∈W

xs ≤ 1 and all xs ≥ 0

where xs is the assignment to the possible world s ∈W .
Let A denote the matrix of linear coefficients in (2). At every step of the

simplex algorithm, A is represented as a combination (B,N) where B and N
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are the submatrices of the basic and non-basic variables, respectively. Values of
non-basic variables are fixed to zero and the solver proceeds by replacing one
basic variable (i.e., column in A) by a non-basic one until the optimal solution is
found. As the size of A is exponential in the size of our language L, one should
determine the entering column without representing A explicitly. This is done
using the column generation technique in which entering columns are computed
by optimizing a subproblem (sometimes referred to as the pricing-out problem).
Observe that the above system of linear inequalities always admits a solution,
e.g. all xs = 0 even if Φ is unsatisfiable, which facilitates the column generation
process. Note, however, that the actual linear programs solved in Pronto are
considerably more involved, in particular, they include stabilization variables to
improve convergence.

The critical step is to formulate linear constraints for the pricing-out problem
such that every solution (a column) corresponds to a possible world in W . In
the propositional case this can be done by employing a well-known formulation
of SAT as a mixed-integer linear program [13]. In the case of an expressive
language, such as Description Logic [14], there appears to be no easy way of
determining a set of constraints H for the pricing-out problem such that its set
of solutions is in one-to-one correspondence with W . Pronto implements a novel
hybrid procedure to compute H iteratively via interaction with a DL reasoner.

The main idea of the algorithm is that every column produced as a solution
to the pricing-out problem is converted to a DL concept expression which is then
checked for satisfiability by the DL reasoner. If the expression is satisfiable, it
means that the column corresponds to a possible world (W in our context) and
can be added to (2). Otherwise, the justifications of unsatisfiability (see [15]) are
converted into linear constraints and added to the pricing-out problem, which is
then re-optimized. Finally, either an entering column is found or the pricing-out
problem becomes infeasible, which implies that the system (2) is optimal.

A detailed description of the PSAT algorithm is beyond the scope of this
paper and is left as the core of a future paper.

Conflict finding algorithm. A satisfiability algorithm is not sufficient for a
comprehensive analysis of an inconsistent knowledge base. Typically users need
to identify those fragments of the knowledge base which cause the inconsistency
in order to repair them. Such fragments are also required to be minimal so that
the user can choose a repair strategy with minimal impact on the rest of the
knowledge base.

We are interested in determining the minimal unsatisfiable subsets of a cer-
tain collection of probabilistic conditional statements in L, say Φ.

We apply the classical approach to finding minimal unsatisfiable sets based
on hitting sets which dates back to Reiter (see [16]). Reiter’s hitting set tree
(HST) algorithm requires, as a subroutine, a satisfiability procedure which can
extract one minimal unsatisfiable set from the knowledge base. It then system-
atically removes each axiom from that minimal unsatisfiable set and applies the
satisfiability procedure again to generate a new minimal unsatisfiable set. By
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being systematic in the “repairs”, the procedure finds all minimal unsatisfiable
sets in the knowledge base. We reduce the problem of finding a single minimal
unsatisfiable subset of Φ to the problem of finding a minimal infeasible subset
of inequalities in the corresponding linear system of the form (2) above. Such
subsets are known as irreducible infeasible systems(IIS) in the LP literature [17].
However, given that the system (2) is never represented in its full version the
application of the Ryan and Parker’s algorithm is far from straightforward.6 If
the optimal value of the system (2) is less than 1 then some inequalities have
non-zero dual values. Such inequalities correspond to conflicting constraints in Φ
but are not guaranteed to be minimal (though is typically quite small and close
to the minimal set). We then do a brute force trial and error search to remove
all superfluous constraints.

4.2 Decomposition of CADIAG-2

To our knowledge, none of the existing probabilistic solvers can solve PSAT
for ΦCB taken as a whole within reasonable amount of time (see Table 1 for
a precise account of the size of ΦCB). However, ΦCB has a certain structure
that allows splitting it into fragments that can be examined independently. A
crucial property of our probabilistic formalisation of CADIAG-2 is that ΦCB is
satisfiable if and only if all of the fragments are individually satisfiable, as we
show below.

Table 1. Characteristics of CADIAG-2

Number of distinct symptoms 1761

Number of distinct disease 341

Number of symptom-symptom rules 720
(size of ΦS|S)

Number of disease-disease rules 218
(size of ΦD|D)

Number of symptom-disease rules 17573
(size of ΦD|S)

We can regard ΦCB as a directed graph where the nodes are the medical
entities in L and the edges are given by the rules in ΦCB (i.e., a rule of the form
〈P,Q, η〉 in ΦCB would correspond to an edge directed from P to Q).

Let P ∈ L. We denote by ΦP ⊆ ΦCB the set of rules that yield a directed
edge in a path from P to any other medical entity in L or a directed edge in a
path from any medical entity in L to P .

6 We leave it for future research to investigate how multiple irreducible infeasible
systems can be generated at once when the linear system is constructed through
column generation.
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For the next two results let us consider two medical entities P1, P2 ∈ S and
assume that there is no path from P1 to P2 in ΦCB or vice versa and that there
is no medical entity P ∈ L from which there exists a path both to P1 and P2.

Proposition 4. If ΦP1 and ΦP2 are satisfiable then ΦP1 ∪ ΦP2 is satisfiable.

Proof. Let I1 and I2 be interpretations that satisfy ΦP1 and ΦP2 respectively.
We can assume without loss of generality that DI1 ∩DI2 = ∅. We can construct
an interpretation I from I1 and I2 that satisfies ΦP1 ∪ ΦP2 in a pretty trivial
way by setting DI = DI1 ∪DI2 and V I(P, a) = 1 if and only if V I1(P, a) = 1
or V I2(P, a) = 1 and 0 otherwise, for all (P, a) ∈ L ×DI . In can be easily seen
that I thus defined satisfies ΦP1 ∪ ΦP2 .

Corollary 2. If Φ is a minimal unsatisfiable set of rules in ΦP1 ∪ ΦP2 then Φ
needs to be contained in ΦP1 or ΦP2 .

Proof. It follows trivially from Proposition 4. Notice that if Φ were a minimal
inconsistent set in ΦP1∪ΦP2 and that it were neither contained in ΦP1 nor in ΦP2

then we could define satisfiable subsets from ΦP1 and ΦP2 of the same structure
(possibly by removing rules from other minimal inconsistent subsets of ΦP1 and
ΦP2 , but none from Φ).

Although trivial, it is worth mentioning that the previous propositions also
hold for any alternative interpretation of the rules in terms of probabilistic in-
tervals (i.e., by taking certain real intervals in place of precise probabilities).

ΦCB has the following properties which will enable us to decompose it into
a set of fragments:

P1 All formulas contain only atomic medical entities (i.e., entities in L).
P2 All probabilistic formulas in ΦD|S condition only on symptoms (uncertain

rules are unidirectional).
P3 The graph of ΦS|S contains many disconnected subgraphs.

We split ΦCB into a set of fragments of the form ΦP , where P ∈ S is a
symptom such that there is no rule in ΦCB of the form 〈Q,P, η〉. For simplicity
we include the entire ΦD|D in each fragment since it is decomposable to a much
less extent than ΦS|S . The largest fragments have around 200 probabilistic
formulas that normally relate two or three connected symptoms to diseases.

Corollary 2 guarantees that all minimal unsatisfiable sets of formulas in ΦCB
can be found by computing such sets for each fragment. Thus, our methodology
is simply a systematic analysis of the fragments of the form ΦP , which involves a
PSAT test and, if the fragment is unsatisfiable, the computation of all minimal
unsatisfiable sets in it (see the algorithms in the two previous subsections).
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5 Results

We present here results concerning the consistency check of ΦCB when consid-
ering a slightly relaxed interpretation of ΦCB by replacing each rule of type
symptom-disease of the form 〈P,Q, η〉 ∈ ΦCB , for some P,Q ∈ L and η ∈
(0, 1) ∩Q, by 〈P,Q,Ωη〉, with

Ωη = [η − 0.01, η + 0.01] = [η−, η+].7

We have opted for checking consistency of this slightly relaxed interpretation
of the rules in ΦCB against a precise interpretation (i.e., the standard inter-
pretation with precise values) because of time constraints. The implementation
of our algorithms for the relaxed interpretation of ΦCB completes the task of
finding all minimal unsatisfiable subsets in a reasonable amount of time (around
one hour). It is a well-known fact in model-diagnosis theory that computing all
minimal unsatisfiable subsets of a certain knowledge base requires a number of
satisfiability tests (in our case, PSAT tests) that is exponential in the number of
unsatisfiable subsets. Our relaxed interpretation of ΦCB already contains a high
number of unsatisfiable sets (as we will just see) and a precise interpretation
adds up more. Furthermore, some of the unsatisfiable sets that are present in
the precise interpretation and not in our relaxed one are relatively large (some
contain 7 rules) and do not overlap with other unsatisfiable sets. Such facts bring
the algorithm’s running time closer to its worst case.

An example of a type of minimal unsatisfiable set detected under a precise
interpretation of the rules but not under our relaxed version is the one that
follows:

〈P1, Q1, η1〉, 〈P1, Q2, η2〉 〈P2, Q1, η3〉 〈P2, Q3, η4〉,

〈Q1, Q3, 1〉 〈Q2, Q3, 1〉 〈P1, P2, 1〉,

for P1, P2 ∈ S, Q1, Q2, Q3 ∈ D, η1, η2, η3, η4 ∈ [0, 1], with η3 = η4 and η1 < η2.
Notice that the rules 〈P2, Q1, η3〉 and 〈P2, Q3, η4〉 along with 〈Q1, Q3, 1〉 intu-
itively claim that the set of patients with symptom P2 and disease Q2 coincides
with the set of patients with symptom P2 and disease Q3 when assuming η3 = η4.
Under such an assumption the rules 〈P1, Q1, η1〉 and 〈P1, Q2, η2〉 along with the
remaining classical rules generate an inconsistency whenever η1 < η2. Notice also
that, for example, for η3 < η4 the set would not be unsatisfiable and thus our re-
laxed interval intepretation would yield this set consistent (assuming η3, η4 < 1).

For the sake of simplicity we will adopt the same notation for the rules of type
symptom-disease of the form 〈P,Q, η〉, with η ∈ {0, 1}. We will write 〈P,Q,Ωη〉,
with Ωη = [η, η] = [η−, η+].

We list the different types of minimal unsatisfiable sets encountered in ΦCB
under this relaxed interpretation of the rules:

7 The degrees of confirmation of the rules in ΦCB are all of the form k
100

, for some
k ∈ {0, 1, ..., 100} ⊂ Z. Thus Ωη is well defined.
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Type 1. Our first type of minimal unsatisfiable set in ΦCB is given by a
collection of rules of the form

〈P,Q1, Ωη〉, 〈P,Q2, Ωζ〉, 〈Q1, Q2, 1〉,

for P ∈ S, Q1, Q2 ∈ D, η, ζ ∈ [0, 1] and ζ+ < η−.
By ζ+ < η− we are intuitively assuming that the number of patients that

have both symptom P and disease Q1 is greater than the number of patients
with both symptom P and disease Q2, which contradicts 〈Q1, Q2, 1〉 (i.e., the
assumption that all patients that have disease Q1 have also disease Q2).

Type 2. Our second type of minimal unsatisfiable set in ΦCB is given by a
set of rules of the form

〈P,Q1, Ωη〉, 〈P,Q2, Ωζ〉, 〈Q1, Q2, 0〉,

for P ∈ S, Q1, Q2 ∈ D, η, ζ ∈ [0, 1] and η− + ζ− > 1.
Notice that the rule 〈Q1, Q2, 0〉 assumes disjointness between Q1 and Q2

(intuitively, there cannot be a patient with both disease Q1 and Q2), which
rules out the possibility of consistency whenever η− + ζ− > 1.

Type 3. The third type of minimal conflict set in ΦCB is given by a set of
the form

〈P1, Q,Ωη〉, 〈P2, Q,Ω1〉, 〈P1, P2, 1〉,

for P1, P2 ∈ S, Q ∈ D, η ∈ [0, 1] and η+ < 1.
Intuitively, the rule 〈P1, P2, 1〉 says that all patients with symptom P1 also

have symptom P2. The rule 〈P2, Q,Ω1〉 intuitively says that all patients with
symptom P2 have disease Q. These two facts together imply that patients with
symptom P1 should all have disease Q (i.e., η+ = 1).

Type 4 The fourth and last type of minimal unsatisfiable set is given by a
collection of rules of the form

〈P,Q1, Ωη〉, 〈P,Q2, Ωζ〉, 〈P,Q3, Ωλ〉 〈Q1, Q3, 1〉, 〈Q2, Q3, 1〉, 〈Q1, Q2, 0〉,

with P ∈ S, Q1, Q2, Q3 ∈ D, η, ζ, λ ∈ [0, 1], λ+ < η−+ ζ− ≤ 1 and ζ−, η− ≤ λ+

(to guarantee minimality).
Intuitively, assuming 〈P,Q1, Ωη〉, 〈P,Q2, Ωζ〉 and 〈Q1, Q2, 0〉, the proportion

of patients that, having symptom P , have either disease Q1 or Q2 is at least
η−+ ζ−. On the other hand, assuming 〈Q1, Q3, 1〉 and 〈Q2, Q3, 1〉, we have that
all patients with disease either Q1 or Q2 have also disease Q3. Thus, under such
assumptions, satisfiability requires that λ+ ≥ η− + ζ−.

A thorough analysis of these types of inconsistencies in connection with the
whole knowledge base and with possible repair strategies and in relation to
other sets of inconsistencies obtained under alternative interpretations of ΦCB
(as briefly pointed above, under the standard interpretation of the rules or when
regarding η in 〈P,Q, η〉 ∈ ΦCB as a lower-bound threshold) is being done at
present.
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Table 2. Number of minimal unsatisfiable sets in ΦCB and size (relaxed interpretation)

Type of minimal unsatisfiable set Amount Number of rules involved

Type 1 420 3

Type 2 5 3

Type 3 1 3

Type 4 269 6

6 Related work

Consistency-checking methods and algorithms for large-scale databases have long
been of relevance in scientific computational research. In relation to expert sys-
tems and in particular to CADIAG-2 it is worth referring to [18] as an example
of research of this nature. In this paper, a classical first-order logic theorem
prover was used to analyze the predecessor of CADIAG-2 (CADIAG-1), which
did not contain any uncertain rules, and that helped to detect some inconsistent
sets of rules. Consistency-checking in CADIAG-2 by means of formal methods is
harder mostly because one has to use an appropriate formalism for representing
degrees of confirmation in rules (in particular in symptom-disease rules). Very
recently the first such attempt (see [11]) was made using a specific fragment of
monadic infinite-valued Gödel logic G (denoted by G∼) extended with classical,
involutive negation.

In [11] a sentence in G∼ is associated to each rule of the form 〈P,Q, η〉 in
ΦCB . It is proved that, for 〈P,Q, η〉 ∈ ΦCB and θ the sentence in G∼ associated
to it, the following holds:

– If η ∈ (0, 1) then θ is satisfied by a certain interpretation I of L if and only
if Q/IP ∈ (0, 1).

– If η ∈ {0, 1} then θ is satisfied by a certain interpretation I of L if and only
if Q/IP = η.

In [11] the problem of checking satisfiability of the set of sentences in G∼

associated to the rules in ΦCB is proved to be equivalent to the problem of
satisfiability in classical first-order logic for such sentences (i.e., equivalent to
determining whether there is a classical interpretation of L that satisfies the
sentences associated to the rules).

The relation between our approach and that in [11] is clear in the light of
the results stated in Section 3. We will have that a certain collection of rules
Φ ⊆ ΦCB will be found to be inconsistent according to the approach defined in
[11] if and only if there is no probability function w on L such that |=w Φ

∗, where
Φ∗ is defined from Φ by replacing η in each rule 〈P,Q, η〉 ∈ Φ by the interval
(0, 1).

Unlike the approach in [11], our probabilistic formalisation is equisatisfiable
with ΦCB (see Proposition 3) and ensures finding all minimal unsatisfiable sets
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of rules. In [11] the fragment of compound rules in CADIAG-2 is also consid-
ered in addition to the binary fragment (at the expense of a further weakening
in the information expressed by the formulas in G∼ representing these rules).
As mentioned earlier, we do not consider CADIAG-2’s compound rules in this
paper. Certainly, we would require additional efforts to ensure (if possible at all)
equisatisfiability and completeness of our decomposition procedure (as given by
Proposition 4 for ΦCB) if we consider CADIAG-2’s compound rules, although
the former would not be necessary if we assumed a probabilistic interpretation
of the rules from the outset.

7 Conclusion

While CADIAG-2’s knowledge base is, when formalised as a probabilistic logic
theory, highly unsatisfiable it is unclear what action this calls for. Inconsistency
in a knowledge base may capture critical information and maintaining it may be
critical to the integrity of the represented knowledge (see [19] for a more com-
prehensive discussion). An ongoing research challenge is to study and measure
the inconsistencies in CADIAG-2 in order to understand them better and to
determine suitable repair strategies.

Regardless of one’s preferred strategy for resolving the conflicts, it is clear
that detecting them is critical to a complete understanding of the knowledge base
which is challenging when we reach CADIAG-2’s size. Even with our (fortuitous)
decomposition, the extraction of all conflicts under the standard interpretation of
the rules in CADIAG-2 is unfeasible for everyday knowledge base development
(we estimate that it will take weeks to extract all conflicts. Of course, if the
modellers decide that producing and maintaining a satisfiable version is the right
course of action then even several weeks would not be unreasonable as a one-time
cost). Subsequent satisfiability checks would go much faster, especially as one
can check only the relevant fragment a modeller is working on. This is similar
to various proposals from the description logic community for modular ontology
development (see [20–22]). As part of our future work we intend to integrate
more general modular analysis into our reasoner as an optimization. We intend
to investigate whether it is necessary to do this decomposition outside of the
solver (that is, by decomposing the input knowledge base before even starting to
solve PSAT) in the rather crude manner we currently do, or whether modular
analysis can be more tightly integrated with the reasoning process.

We have, as yet, to attempt entailment from CADIAG-2 or any of its frag-
ments. It is not clear yet the extent to which one could generate interesting
queries for CADIAG-2’s knowledge base (or, more generally, for CADIAG-2 like
knowledge bases) once it has been repaired and possibly modified for inferential
purposes (see [6]).

We hope that CADIAG-2, or CADIAG-2 like problems, will be taken up by
the PSAT solving community. CADIAG-2 is interestingly different in kind, not
only in size, from traditional generated problems while its size sets a new base
line for scalable PSAT.
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