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Abstract: Cadiag2 is a well-known rule-based expert system that aims at providing support for medical diagnose in
internal medicine. Cadiag2 consists of a knowledge base in the form of a set of if-then rules that relate medical
entities, in this paper interpreted as conditional probabilistic statements, and an inference engine constructed
upon methods of fuzzy set theory. The aim underlying this paper is the understanding of the inference in
Cadiag2. To that purpose we provide a (probabilistic) logical formalisation of the inference of the system and
check its adequacy with probability theory.

1 INTRODUCTION

Cadiag2 (Computer Assisted DIAGnosis) is a well-
known rule-based expert system aimed at providing
support in diagnostic decision making in the field of
internal medicine. Its design and construction was
initiated in the early 80’s at the Medical University
of Vienna by K.P. Adlassnig – see (Adlassnig et al.,
1986), (Adlassnig et al., 1985), (Adlassnig, 1986) or
(Leitich et al., 2002) for more on the origins and de-
sign of Cadiag2.

Cadiag2 consists of two fundamental pieces: the
inference engine and the knowledge base. The in-
ference engine is based on methods of approximate
reasoning in fuzzy set theory, in the sense of (Zadeh,
1965) and (Zadeh, 1975). In fact Cadiag2 is pre-
sented in some monographs as an example of a fuzzy
expert system, (Klir and Folger, 1988), (Zimmer-
mann, 1991). The knowledge base, ΦCad , consists of
a set of if-then rules intended to represent relation-
ships between distinct medical entities: symptoms,
findings, signs and test results on the one hand and
diseases and therapies on the other. The number of
rules in ΦCad is approximately 50.000. The vast ma-
jority of them are binary (i.e., they relate single medi-
cal entities) and only such rules are considered in this
paper. The rules in ΦCad are defined along with a
certain degree of confirmation which intuitively ex-

presses the degree to which the antecedent confirms
the consequent. For example,

IF suspicion of liver metastases by liver pal-
pation THEN may be pancreatic cancer with
degree of confirmation 0.30.1

As mentioned in (Adlassnig, 1986) we can iden-
tify such degrees of confirmation with probabilities
and the rules themselves with conditional probabilis-
tic statements. In (Adlassnig, 1986) it is stated that
such degrees of confirmation can be interpreted as
frequencies. An interpretation in terms of degrees of
belief of the doctor (or doctors) on the truth of the
consequent given that the antecedent of the rule holds
is also possible though. This fact motivates a prob-
abilistic interpretation of Cadiag2’s inference. Such
an interpretation leads to the primary aim of this pa-
per: formalise the inference in Cadiag2 on probabilis-
tic grounds and check its adequacy with probability
logic (Halpern, 2003) or, more generally, with prob-
ability theory. We shall not expect big surprises in
this respect. The inference mechanism in Cadiag2
proceeds in a compositional way and thus it is bound
to be probabilistically unsound (as will be clarified
later). This was soon observed in earlier studies con-
cerning the celebrated expert system MYCIN – see

1This rule is mentioned as an example in (Adlassnig
et al., 1986).



(Buchanan and Shortliffe, 1984) or (Shortliffe, 1976)
for a description of MYCIN and (Hajek, 1988), (Ha-
jek, 1989), (Hajek and Valdés, 1994), (Heckerman,
1986), (Valdés, 1992) for probabilistic approaches to
it. How far is Cadiag2’s inference from probabilistic
soundness remains to be seen though.

It is worth mentioning here that, although the in-
terest among theoretical AI researchers in rule-based
expert systems seems to be lesser today than some
years ago, rule-based expert systems are still very
popular among AI engineers. Many Cadiag2-like
systems are in use and more are being built for fu-
ture implementation. Is is mainly for this reason that
we believe that further analysis and understanding of
Cadiag2-like systems is of relevance.

This paper is in some way a continuation of (Cia-
battoni and Vetterlein, 2009). In (Ciabattoni and Vet-
terlein, 2009) the inference mechanism of Cadiag2 is
formalised by means of a logical calculus, CadL, and
compared to t-norm-based formalisms (Hajek, 1998).
It is shown that CadL does not respond to any t-norm-
based (or to any fragment of a t-norm-based) logic.
As far as we know, (Ciabattoni and Vetterlein, 2009)
constitutes the first attempt at formalising and under-
standing Cadiag2 in a logical way. The present paper
is the second.

This paper is structured as follows. In Section 2
we give some basic definitions and introduce most of
the notation used later in the other sections. In Sec-
tion 3 the inference process in Cadiag2 is briefly de-
scribed. In Section 4 the formal system CadPL is de-
fined and analysed in the light of probability logic.
CadPL is a formalization of the inference mechanism
of Cadiag2 based on a probabilistic interpretation of
it.

2 PRELIMINARY DEFINITIONS
AND NOTATION

Throughout we will be working with a finite proposi-
tional language, L = {p1, ..., pn}. We will denote by
SL its closure under classical connectives. Within the
context of Cadiag2 the language L represents the set
of medical entities in the system.

Let LLit = {p ,¬p | p∈ L}⊂ SL, the set of literals
of the language L.

Let ∆ = {φ1, ...,φk} ⊆ SL. We will denote by
∧

∆

the sentence φ1∧ ...∧φk.

Definition 1 Let w : SL −→ [0,1]. We say that w is a
probability function on L if the following two condi-
tions hold, for all θ,φ ∈ SL:

• If |= θ then w(θ) = 1.

• If |= ¬(θ∧φ) then w(θ∨φ) = w(θ)+w(φ).2

We define conditional probability from the notion
of unconditional probability in the conventional way.
For w a probability function on L and φ,θ ∈ SL,

w(φ|θ) =
w(φ∧θ)

w(θ)
.

The statements we will be dealing with are primar-
ily of the form ’the probability of θ given φ is equal
to η’. Let F L= be the set of all the statements of
the form P(θ|φ) = η, for θ,φ ∈ SL and η ∈ [0,1]. Oc-
casionally we will refer to the set F L≥, defined like
F L= but with ’≥’ in place of ’=’.

We will refer to φ in a statement of the form
P(θ|φ) = η as the evidence and to θ as the uncertain
entity or event.

We will denote by F L=
s the subset of conditional

statements of F L= where both the evidence and the
uncertain entity are literals, i.e. sentences in LLit . By
F L=

c we will denote the subset of conditional state-
ments of F L= where the uncertain entity is a literal
and the evidence consists of a conjunction of literals
(we define F L≥s and F L≥c analogously).

The binary fragment of Cadiag2’s knowledge
base, ΦCadBin, will be in principle regarded as a subset
of F L=

s . That is arguably the most natural interpreta-
tion of ΦCadBin when interpreting the rules probabilis-
tically.

Let Θ ∈ F L= and w a probability function on L.
We define satisfiability of Θ by w (denoted |=w Θ) in
the obvious way. More specifically, for η ∈ [0,1] and
θ,φ ∈ SL,

|=w P(θ|φ) = η ⇐⇒ w(θ|φ) = η.

Satisfiability for statements in F L≥ is defined
analogously. Such notion of satisfiability is extended
to subsets in F L= and F L≥ in its trivial way. We
will sometimes identify the notion of consistency of a
set of probabilistic statements with that of satisfiabil-
ity.
Definition 2 Let � be the partial ordering relation
on [0,1] defined as follows: For a,b ∈ [0,1], a � b if
and only if 0 < a≤ b or 0 < a < 1 and b = 0.

We define ≺ from � in the conventional way.
As we will see later, the definition of ≺ responds

to the use of both 0 and 1 as maximal values in
Cadiag2. The value 0 denotes certainty in the non-
occurrence of an event or falsity of a statement and
the value 1 denotes certainty in its occurrence or its
truth.

For the next definition let

D = [0,1]× [0,1]−{(0,1),(1,0)}.
2Here (and throughout) |= is classical entailment.



Definition 3 The function max∗ : D −→ R is defined
as follows, for (a,b) ∈ D:

max∗(a,b) =
{

a i f b≺ a
b otherwise

The definition of max∗ is extended to more than
two arguments in its trivial way.

3 THE INFERENCE IN CADIAG2

In this section we describe very briefly a generaliza-
tion of the inference mechanism in Cadiag2. A more
detailed description and analysis of it can be found in
(Ciabattoni and Vetterlein, 2009).

Cadiag2 formally distinguishes between three dif-
ferent types of rules: type confirming to the degree d
(for d ∈ [0,1]), type mutually exclusive and type al-
ways occurring – see (Adlassnig et al., 1986), (Ad-
lassnig et al., 1985), (Adlassnig, 1986) or (Daniel
et al., 1997) for more on Cadiag2’s rules. The last
two types mentioned are classical in the sense that
the degree of confirmation for the rules of these types
is 1 and that the antecedent of such rules (or evidence
in our settings) needs to be fully true (degree of pres-
ence or of truth 1, see below) in order for these rules
to be triggered by the system. Such a distinction is not
taken into consideration in this paper and it is in this
sense that we say that our description of the inference
mechanism of Cadiag2 is actually a generalisation of
the real inference process.

The inference engine in Cadiag2 gets started with
a set of symptoms, findings, signs and diseases occur-
ring in ΦCadBin present in the patient. Let Γ be the set
of such medical entities.

Cadiag2 starts with an assignment w0 on Γ that
gives a value in the interval [0,1] to each entity in
Γ. Such value is intended to represent the degree to
which the entity is present in the patient. The in-
tended interpretation of such values is based, in prin-
ciple, on fuzzy set theory. However, other interpreta-
tions can also be suitable, at least to some extent. In
fact, when defining the system CadPL, the interpre-
tation to which we will commit will be probabilistic.
The assignment w0 is then extended to negative state-
ments and logical equivalents according to the follow-
ing rule:

If w0(φ) = η then w0(¬φ) = 1−η, for φ ∈ SL
and η ∈ [0,1].

After the initial assignment the inference rules in
ΦCadBin come into play. All the rules triggered by the
sentences in Γ are used during the inference process.

At each step in the inference process a rule is applied
(that is done, in principle, in no particular order).

At the first step in the inference a rule of the form
P(θ|φ) = η in ΦCadBin is triggered, with η ∈ [0,1] and
θ,φ∈ LLit . In order for that to happen φ or its negation
needs to be in Γ and the value w0(φ) has to be strictly
positive. The application of the rule P(θ|φ) = η gen-
erates a new assignment, w1, on {θ}. The value as-
signed to θ by it is calculated as the minimum be-
tween η and w0(φ) and the value assigned to ¬θ and
logical equivalents (if necessary for the inference) is
calculated from w1(θ) as mentioned above for w0.

At the nth step in the inference process a new rule
of the form P(θ|ψ) = η in ΦCadBin will be triggered,
for η ∈ [0,1] and θ,ψ ∈ LLit . In order for P(θ|ψ) = η

to be triggered ψ must have been assigned at least one
value in (0,1] either by the initial assignment, w0, or
by any other assignment on {ψ} defined during the
inference process at some previous step. At the nth

step the application of this new rule will generate a
new assignment on {θ} that will give θ the minimum
between η and the value of ψ considered for trigger-
ing the rule at this step in the inference (as above, this
value needs to be strictly positive). If the strictly posi-
tive values generated for ψ before the nth step are mul-
tiple the inference mechanism in Cadiag2 will call the
rule P(θ|ψ) = η again in further steps, if it has not
done so previously, until all the values for ψ have been
used and all the possible values for θ generated. The
assignment wn is defined to ¬θ as mentioned above.

The inference process goes on until all the rules
triggered by all the sentences in Γ and its negations
have been used and all the possible assignments for
the sentences involved in the inference have been gen-
erated. Cadiag2 yields as an outcome of the inference
the set of medical entities in L occurring in the rules
triggered by the evidence in Γ along with the maxi-
mal value (with respect to the ordering � defined in
Section 2) assigned to them during the inference. If
a sentence is assigned both value 0 and 1 along the
inference process the system generates an error mes-
sage.

It is worth mentioning that the original inference
process in Cadiag2 works in a slightly different way.
The update in the value of the distinct sentences in-
volved in the inference is done as soon as two differ-
ent values for the same sentence are produced by the
system. The value chosen in the update for atomic
sentences in L is the maximal one (with respect to
the ordering �). Notice though that this feature has
a highly undesirable result (unless further restrictions
on the rules or on the order in which the rules are ap-
plied are imposed), which is that the outcome of a
run of the inference mechanism can depend on the or-



der in which the rules are applied. Such a drawback
is easily avoided by assuming that the update is only
done at the end of the process. There are other sev-
eral undesirable features in Cadiag2’s inference en-
gine, most of them related to the maximal value 0 and
negated propositions. Maybe the most evident con-
cerning the maximal value 0 is that a medical entity
that at some step along the inference process is as-
signed value 0 (that is to say, it is considered false
with certainty or impossible) triggers any rules in
which it occurs as evidence if any other value other
than 0 is assigned to it along the inference process.
For a deeper analysis of such aspects of the infer-
ence process in Cadiag2 see (Ciabattoni and Vetter-
lein, 2009).

We represent sentences together with the assign-
ments generated for them at each step in the inference
by pairs in SL× [0,1] along with a subscript indicat-
ing the step in the process at which such pairs have
been generated. As mentioned above, a step in the in-
ference process is given by the application of a rule in
ΦCadBin and the new assignments that it generates for
the sentences involved in the rule.

Let p ∈ L and η ∈ [0,1] be the highest assignment
to p in a run of the inference mechanism in Cadiag2.
We will use the subscript max∗ on the pair (p,η) –
that is to say, (p,η)max∗ – to denote that η is the maxi-
mal value assigned during the inference process for p
(with respect to the ordering �).

4 THE FORMAL SYSTEM CADPL

Some medical entities that occur in the rules of
Cadiag2 represent statements that are vague. For ex-
ample, in Cadiag2 we have a medical entity given by
the following statement: ’reduced glucose in serum’.3

In such a statement the adjective ’reduced’ is vague.
Cadiag2 tackles vagueness by assigning values to

medical entities in the interval [0,1]. Such values
stand in principle for fuzzy membership within the
context of fuzzy set theory – see (Adlassnig et al.,
1986), (Adlassnig et al., 1985) or (Adlassnig, 1986).
In this paper we consider the possibility of interpret-
ing such values as probabilities, which can be done in
quite intuitive ways given the nature of the statements
we are dealing with.

Let us consider again the statement ’reduced glu-
cose in serum’. Let us assume that the value assigned
by the evaluation system in Cadiag2 to the statement
’Patient A has reduced glucose in serum’ out of the
evidence given by the corresponding measurement of

3This example is extracted from (Adlassnig et al., 1986).

the amount of glucose in Patient A is η, for some η ∈
[0,1]. As an example, we could interpret such value
as the degree of belief that a medical doctor has in the
truth of the statement given the evidence. As such η

could be interpreted as a probability. The probabilistic
interpretation is certainly favoured by the discretiza-
tion applied to medical concepts in Cadiag2 (for ex-
ample, the concept ’glucose in serum’ generates five
distinct medical entities in Cadiag2: ’highly reduced
glucose in serum’, ’reduced glucose in serum’, ’nor-
mal glucose in serum’, ’elevated glucose in serum’
and ’highly elevated glucose in serum’). Notice that
such an interpretation places us within the subjective
probabilistic frame and thus, for the sake of coher-
ence, the knowledge base ΦCadBin should also be in-
terpreted subjectively. Other interpretations are also
possible though. For example, one could regard such
values as the ratio given by the number of doctors that
agree on the truth of the statement out of all the doc-
tors involved in the assessment. In order to accommo-
date such values into a coherent probabilistic frame
along with the statements in ΦCadBin one could justify
them as being subjective probabilities assessed by a
group of experts – see (Genest and Zidek, 1986) or
(Osherson and Vardi, 2006) for an analysis and justi-
fication of such concept.

Let φ ∈ LLit represent a medical entity present in
the patient and assume that η ∈ [0,1] is the initial
value assigned to it at the start of a run of Cadiag2’s
inference process. We can formalise this by means
of a probabilistic conditional statement of the form
P(φ|κ) = η in F L=, where κ ∈ SL is the evidence
that supports the presence of φ in the patient. For sim-
plicity the sentence κ will be assumed to be a literal
in LLit .

Next we are going to define the formal system
CadPL. Recall that the ultimate goal when doing so is
to define a system which represents the inference pro-
cess in Cadiag2 when interpreted from a probabilistic
point of view. Although the inference in Cadiag2 can
be closely related to probability theory (given the na-
ture of the rules of inference in ΦCadBin) it is not based
on probabilistic methods and so the degree of free-
dom when choosing the rules of the system CadPL is
high. We have chosen the rules by interpreting in the
most natural way the steps along the inference pro-
cess within a probabilistic frame. The main idea be-
hind such interpretation consists of the identification
of the inference process with the propagation of evi-
dence facilitated by the rules in ΦCadBin. For example,
from P(φ|κ) = η, where k ∈ LLit is evidence support-
ing the presence of φ in the patient, and P(θ|φ) = ζ

in ΦCadBin we would infer P(θ|κ) = min(η,ζ), where



min(η,ζ) is the value (probability) assigned to θ given
the evidence κ. We would have a propagation process
of this nature for each single piece of evidence. The
evidence would then be brought together in Cadiag2
by what we call the Right conjunction rule: given
two outcomes of Cadiag2’s inference process, say
P(p|κ1) = η and P(p|κ2) = ζ, for p ∈ L and κ1,κ2 ∈
LLit , Cadiag2 combines the evidence given by κ1 and
κ2 by computing P(p|κ1∧κ2) = max∗(η,ζ). The in-
ference rules of CadPL that we next present formalise
this interpretation.

A theory T in CadPL is a finite subset of sen-
tences in F L=

s .
For what follows let T = Ω∪Φ, with

Ω = {P(φ1|κ1) = η1, ...,P(φm|κm) = ηm},

for some m ∈ N.
Let KΩ = {κ1, ...,κm} and Γ = {φ1, ...,φm}.
The set Ω is intended to represent the initial as-

signment in the inference process, Φ the set of rules of
the system, Γ the initial set of medical entities present
in the patient and KΩ the evidence in support of the
presence of the corresponding medical entities in Γ.

The formal system CadPL is defined by the fol-
lowing inference rules:

Inference rules
• Reflexivity rule

For φ ∈ LLit , κ ∈KΩ and η ∈ [0,1],

P(φ|κ) = η ∈Ω

T ` P(φ|κ) = η

• Negation rule
For φ ∈ LLit , ψ ∈ SL and η ∈ [0,1],

T ` P(φ|ψ) = η

T ` P(¬φ|ψ) = 1−η

• Equivalence rule
For ψ,φ,θ ∈ SL and η ∈ [0,1],

ψ≡ φ T ` P(φ|θ) = η

T ` P(ψ|θ) = η

• Minimum rule
For θ,φ ∈ LLit , κ ∈KΩ, η ∈ (0,1] and ζ ∈ [0,1],

T ` P(θ|κ) = η P(φ|θ) = ζ ∈Φ

T ` P(φ|κ) = min(η,ζ)

• Right conjunction rule
For p ∈ L, K1,K2 ⊆KΩ and η,ζ ∈ [0,1],

T ` P(p|
∧

K1) = η T ` P(p|
∧

K2) = ζ

T ` P(p|
∧
{K1∪K2}) = max∗(η,ζ)

• Exhaustivity rule
For p ∈ L, κ ∈KΩ, K ⊆KΩ and η ∈ [0,1],

T ` P(p|
∧

K) = η ∀ζ ∈ [0,1] T 0 P(p|κ) = ζ

T ` P(p|κ∧
∧

K) = η

Notice that the Exhaustivity rule does not have any
bearing on the decidability of whether P(p|κ) = ζ is
provable from T or not for ζ ∈ [0,1], p ∈ L and κ ∈
KΩ. The Exhaustivity rule can only be applied after
its provability or non-provability has been decided.

Given a theory T of CadPL and a statement Θ ∈
F L=

c , a proof of Θ from T is defined as a finite se-
quence of sequents of the form

T `Θ1, ...,T `Θn

with Θn = Θ and where, for i ∈ {1, ...,n}, each Θi in
T ` Θi follows from T by the application of one of
the rules above, from Θ j in a previous sequent (with
j < i) or from Θ j,Θk in previous sequents (with j,k <
i) by one of the rules above.

Let Θ be the statement P(θ|φ) = η, for some η ∈
[0,1] and θ,φ∈ SL. We say that there exists a maximal
proof of Θ from T if there exists a proof of Θ from
T and there is no proof from T of P(θ|φ) = ζ with
η≺ ζ.

We say that Θ follows maximally from T (denoted
by T `CadPL Θ) if there exists a maximal proof of Θ

from T .

For the next proposition let T = Ω∪ΦCadBin, with

Ω = {P(φ1|κ1) = η1, ...,P(φm|κm) = ηm},

KΩ = {κ1, ...,κm}⊂ LLit and Γ = {φ1, ...,φm} a subset
of literals occurring in ΦCadBin.

Proposition 4 Let p ∈ L and η ∈ [0,1]. We have that

T `CadPL P(p|
∧

KΩ) = η

if and only if (p,η)max∗ is the outcome of a run of
Cadiag2’s inference process on T .

Proof.4 In order to prove the left implication let us
consider a run of Cadiag2’s inference mechanism on
T . The inference starts from pairs of the form (φ,η)0
and (¬φ,1−η)0 for some η ∈ [0,1] for all φ ∈ Γ. In
CadPL a pair of the form (φ,η)0, for φ ∈ Γ, corre-
sponds to a sequent of the form T ` P(φ|κ) = η, for
κ ∈ KΩ. The pair (¬φ,1−η)0 corresponds to the se-
quent T ` P(¬φ|κ) = 1−η. The former corresponds

4For the sake of brevity we will deal with sentences as
if they were equivalence classes. If anything applies to a
sentence of the form ¬φ, with φ ∈ LLit , we also assume that
it applies to any logical equivalent of φ without mentioning
it.



to an application of the Reflexivity rule. The latter fol-
lows from the first one by an application of the Nega-
tion rule.

Let us assume now that we are at the nth step of the
inference process and that a rule of the form P(θ|ψ) =
ζ is triggered, for some ζ ∈ [0,1] and θ,ψ ∈ LLit . Let
us suppose that we have (ψ,µ)n−t , the pair that trig-
gers the rule at the nth step of the process, for µ∈ (0,1]
and t ≤ n− 1. In CadPL that would correspond
to a sequent of the form T ` P(ψ|κ) = µ derived
from a previous step in the inference, for κ ∈ KΩ.
The inference mechanism in Cadiag2 produces the
pairs (θ,min(ζ,µ))n and (¬θ,1−min(ζ,µ))n which,
in CadPL, corresponds to the sequents T ` P(θ|κ) =
min(ζ,µ) and T ` P(¬θ|κ) = 1−min(ζ,µ) respec-
tively, which follow by an application of the Minimum
rule and, for the latter, an application of the Negation
rule on the former.

At the end of the process Cadiag2 generates the
pair (p,η)max∗ for each sentence p∈ L involved in the
inference, where η is the maximal value (with respect
to the ordering �) among those assigned to p along
the inference. This maximization process is achieved
in CadPL by means of repeated applications of the
Right conjunction rule. Instances of the Exhaustivity
rule (if necessary) complete the inferential counter-
part of Cadiag2 in CadPL.

In order to prove the right implication let us sup-
pose that we have a maximal proof of the form

T `Θ1, ...,T `Θm,

where Θm is the statement P(p|
∧

KΩ) = η, for some
η ∈ [0,1] and p ∈ L.

The first sequent of the proof needs to respond to
an instance of the Reflexivity rule, T `P(φ|κ) = η, for
some φ ∈ Γ, κ ∈ KΩ and η ∈ [0,1]. The correspond-
ing counterpart of this sequent in Cadiag2 is the pair
(φ,η)0.

Let us move now to the nth sequent, with n ≤ m.
The nth sequent can be an instance of the Reflexivity
rule, T ` P(φ|κ) = η, for some φ ∈ Γ, η ∈ [0,1] and
κ ∈ KΩ. The counterpart for this sequent in Cadiag2
is the pair (φ,η)0.

The nth sequent can follow from a previous one in
the proof by an instance of the Negation rule. Let us
suppose that the nth sequent is T ` P(¬θ|ψ) = 1−η

for some η ∈ [0,1], θ ∈ LLit and ψ ⊆ LLit and that
there is a sequent T ` Θi, for some i < n, of the form
T ` P(θ|ψ) = η. The latter corresponds to a pair of
the form (θ,η)t in Cadiag2 and the former to the pair
(¬θ,1−η)t , where t is the step in the inference pro-
cess at which such pairs have been generated.

The nth sequent can follow from a previous one
by an instance of the Minimum rule. Let us assume

that the nth sequent is T ` P(θ|κ) = min(η,ζ), for
some θ ∈ LLit , κ ∈ KΩ, η ∈ [0,1] and ζ ∈ (0,1], that
T ` P(ψ|κ) = ζ is a previous sequent in the proof and
that P(θ|ψ) = η ∈ΦCadBin. The latter corresponds in
Cadiag2 to the pair (ψ,ζ)t and the former to the pair
(θ,min(η,ζ))t+k, where t, t + k indicate the steps at
which the pairs have been generated by the inference
process.

The nth sequent can follow from previous sequents
by an application of the Right conjunction rule. The
counterpart in Cadiag2 of such an outcome consists
of the maximization process at the end of the infer-
ence. Instances of the Exhaustivity rule are irrelevant
to the inference in Cadiag2.

This completes the proof. �

It is worth commenting on some features of the in-
ference rules of CadPL in connection with probability
theory.

Soundness with respect to probabilistic semantics
of the Reflexivity, Negation and Equivalence rules is
clear. The Minimum rule is certainly not sound with
respect to such semantics. The Right conjunction rule
is not sound and it can generate probabilistic conse-
quences that are inconsistent with its premises and
the theory T (in the sense that such consequences
along with the premises and the theory are not si-
multaneously satisfiable by a probability function).
The Exhaustivity rule assumes some probabilistic in-
dependence among sentences that may not actually
be independent. Overall, CadPL does not score well
within probability theory. This is no surprise. The
computation of conditional probabilistic statements in
a compositional way, as done by Cadiag2 primarily
by means of the min and max∗ operators, is clearly
bound to be probabilistically unsound. One may won-
der though what could be done in order to improve
the inference on probabilistic grounds from a knowl-
edge base like ΦCadBin. The answer seems to be ’not
much’. Certainly a ΦCadBin-like knowledge base (i.e.,
a knowledge base given by some binary probabilistic
conditional statements) is not the most convenient for
inferential purposes in probability theory for medical
applications like Cadiag2. As is well known, there
are other knowledge-base structures better suited for
that purpose, Bayesian networks being the most cel-
ebrated among them, see (Castillo et al., 1997) or
(Pearl, 1988).

In terms of consistency, it is worth noting that
CadPL satisfies what we can call weak consistency
– called weak soundness in (Hajek, 1988) –, defined
as follows: if there is a maximal proof in CadPL of a
statement of the form P(φ|

∧
∆) = 1 (or P(φ|

∧
∆) = 0)

from a certain theory T , with φ∈ SL and ∆⊆ SL then,
if there is a maximal proof in CadPL of a statement



of the form P(φ|
∧

∆∗) = η, with ∆ ⊂ ∆∗, then η = 1
(or η = 0 respectively). That is to say, if CadPL con-
cludes certainty about the occurrence of some event or
about the truth or falsity of some sentence then adding
new evidence does not alter this certainty. Weak con-
sistency is provided in CadPL and so in Cadiag2’s in-
ference mechanism by the operator max∗ defined over
the ordering �.

It is also worth noting that one could guaran-
tee consistency (i.e., satisfiability) by considering
ΦCadBin a subset of F L≥s (in place of F L=

s , regarding
the values of the conditional statements as lower prob-
ability bounds rather than as exact probabilities) and
by restricting the system to a positive fragment of LLit
(i.e., only one of p, ¬p can occur in ΦCadBin). This
way consistency is trivially guaranteed for ΦCadBin
together with any outcomes produced by the system
during the inference process.

In terms of soundness there does not seem to be
much that one can do in order to improve the infer-
ence mechanism for knowledge bases like ΦCadBin, or
at least not much that one can do that does not come
at the price of generating probabilistic statements
with very low probabilistic bounds (when working
in F L≥), which would make Cadiag2 potentially
useless for practical purposes. There is some room
for improvement for some steps in the inference that
come by the addition of some independence assump-
tions among some of the medical entities in ΦCadBin.
Under such independence assumptions the product
operator in place of the min operator could yield
soundness for the inference steps referred.

5 CONCLUSIONS

Cadiag2 is a reasonably well-performing medical ex-
pert system (Adlassnig et al., 1986), but how it is so is
far from clear. The inference engine of Cadiag2 was
built with methods of approximate reasoning in fuzzy
set theory but, as such, it was not based on any logical
formalism or theory embedded with a clear semantics.
This fact motivated the main aim of this paper, which
was no other than the understanding of Cadiag2 in a
logical way.

The natural interpretation of the inference rules of
Cadiag2 (i.e., probabilistic) placed us upon the at-
tempt of interpreting the inference itself probabilis-
tically. We formalised this interpretation by means of
the system CadPL, the logical (probabilistic) coun-
terpart of the inference engine of Cadiag2. The un-
soundness of some of the rules of CadPL (and thus
of some inference steps in Cadiag2) and the inconsis-
tency of the calculus (and thus of the inference pro-

cess in Cadiag2) was made clear. Apart from these
drawbacks, otherwise expected, some other aspects of
CadPL were also stressed and analysed. At the end of
the paper some possibilities for an improvement of
Cadiag2 in terms of soundness and consistency were
also mentioned.
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