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Abstract. In this paper we introduce a logic called FNG∼(Q) that com-
bines the well-known Gödel logic with a strong negation, rational truth-
constants and Possibilistic logic. In this way, we can formalize reasoning
involving both vagueness and (possibilistic) uncertainty. We show that
the defined logical system is useful to capture the kind of reasoning at
work in the medical diagnosis system CADIAG-2, and we finish by point-
ing out some of its potential advantages to be developed in future work.

1 Introduction

In the field of uncertain reasoning, many formalisms (e.g., [6], [16], [18]) have
been developed to deal with different measures of uncertainty. The most general
notion of uncertainty is captured by monotone set functions with two natu-
ral boundary conditions. In the literature, these functions have received several
names, like Sugeno measures [17], plausibility measures [12] or capacities [1].
In its simplest form, given a Boolean algebra of events ℘ = (U,∧,∨,′ ,⊥,⊤), a
Sugeno measure is a mapping µ : U → [0, 1] satisfying µ(⊤) = 1 and µ(⊥) = 0,
and the monotonicity condition µ(x) ≤ µ(y) whenever x ≤℘ y, where ≤℘ is the
lattice order in ℘. Many popular uncertainty measures, like probabilities [18],
Dempster-Shafer plausibility and belief functions [16], or possibility and neces-
sity measures [6], can be therefore seen as particular classes of Sugeno measures.
In this paper, we focus on possibilistic models of uncertainty.

Recall that a possibility measure on a (finite) Boolean algebra of events ℘ =
(U,∧,∨,′ ,⊥,⊤) is a Sugeno measure µ∗ satisfiying the following ∨-decomposition
property

µ∗(u ∨ v) = max(µ∗(u), µ∗(v)),

while a necessity measure is a Sugeno measure µ∗ satisfying the ∧-decomposition
property

µ∗(u ∧ v) = min(µ∗(u), µ∗(v)).

Actually, in presence of these decomposition properties, there is no need for the
monotonicity condition since it easily follows from each one of them. Possibility
and necessity measures are dual in the sense that if µ∗ is a possibility measure,



then the mapping µ∗(u) = 1−µ∗(u′) is a necessity measure, and vice versa. If U
is the power set of a (finite) setX , then any dual pair of measures (µ∗, µ∗) on U is
induced by a normalized possibility distribution, namely a mapping π : X → [0, 1]
such that supx∈X π(x) = 1, and, for any A ⊆ X ,

µ∗(A) = sup{π(x)|x ∈ A} and µ∗(A) = inf{1− π(x)|x /∈ A}.

On the other hand, formal computational models of vague statements usually
resort to some sort of fuzzy logic. Fuzzy logics rely on the idea that truth comes in
degrees. The inherent vagueness in many real-life declarative statements makes
it impossible to always claim either their full truth or full falsity. For this reason,
propositions are taken as statements that can be potentially evaluated as being
partially true.

Probably the most studied and developed many-valued systems related to
fuzzy logic are those corresponding to logical calculi with the real interval [0, 1]
as set of truth-values and built up from a conjunction & and an implication
→, interpreted respectively by a continuous t-norm ∗ and its residuum ⇒, and
where the negation is defined as ¬ϕ = ϕ → 0, with 0 being the truth-constant
for falsity. In the framework of these logics, called t-norm based fuzzy logics, each
continuous t-norm ∗ uniquely determines a semantical (propositional) calculus
PC(∗) over formulas defined in the usual way from a countable set of proposi-
tional variables, connectives ∧, & and → and truth-constant 0 [13]. Evaluations
of propositional variables are mappings e assigning each propositional variable
p a truth-value e(p) ∈ [0, 1], which extend truth-functionally and univocally to
compound formulas as follows:

e(0) = 0

e(ϕ&ψ) = e(ϕ) ∗ e(ψ)

e(ϕ→ ψ) = e(ϕ) ⇒ e(ψ)

A formula ϕ is said to be a 1-tautology of PC(∗) if e(ϕ) = 1 for each evaluation e.
The set of all 1-tautologies of PC(∗) will be denoted as TAUT (∗). For instance,
the well-known Gödel logic G is one of the three outstanding t-norm based fuzzy
logic calculi corresponding to the choice ∗ = ∗G, where

x ∗G y = min(x, y)

x⇒G y =

{

1, if x ≤ y
y, otherwise.

The set TAUT (∗G) is finitely axiomatizable, for instance, as the schematic ex-
tension of Hájek’s BL with the idempotency axiom ϕ→ ϕ&ϕ [13].

In some situations, like in the medical diagnosis system CADIAG-2, one has
to deal with statements referring to both uncertainty and vagueness (in the sense
of gradual properties). CADIAG-2 consists of a knowledge base in the form of a
set of if-then rules that relate medical entities (i.e., symptoms on the one hand
and diagnoses on the other hand). The rules are defined along with a certain



degree of confirmation which intuitively expresses the degree to which the an-
tecedent confirms the consequent. CADIAG-2 considers statements about symp-
toms as being gradual, where grades refer to the intensity with which symptoms
are observed. The second class of propositions in CADIAG-2 refers to diagnoses.
It is often the case not, or not yet, possible to confirm or to exclude a diagnosis
with certainty. Thus, to each diagnosis, a degree of certainty is associated.

CADIAG-2 also allows facts be qualified by degrees, providing a measure of
certainty of crisp statements or a degree of presence of vague statements. Hence,
CADIAG-2 shows a challenging feature, i.e., it combines notions of linguistic
vagueness and uncertainty. The way those (certainty) values were interpreted and
the compositional way they were handled by the inference procedures varied from
one approach to another. Several approaches have been developed to provide
a clear basis for CADIAG-2. However, in all of these approaches, there was a
mismatch between the intended semantics of the (certainty) degrees and the way
they were used. Indeed, in some approaches the certainty values were interpreted
probabilistically (in some form or another), like in [14], but the propagation rules
were either not sound or they were making too strong conditional independence
assumptions. On the other hand, other approaches interpreted certainty degrees
as truth degrees in a truth-functional many-valued of fuzzy logic setting (see,
e.g. [3]). Here the problem was the misuse of partial degrees of truth as belief
degrees. This kind of confusion was quite common, but Hájek (in his monograph
[13]) had already clear this distinction in mind. He argues a very important
issue to distinguish uncertainty measures and truth values in a logical setting,
many-valued logics are truth functional but uncertainty measures are not.

Clearly, since uncertainty and vagueness are semantically quite different, it is
important to have a unifying formalism for the medical expert system CADIAG-
2, which allows us to deal with both uncertainty and vagueness. Any formalism
disallowing a unified platform for handling both uncertainty and vagueness is
therefore inapt to capture this knowledge and entails the danger of fallacies due
to misplaced precision.

We propose an alternative framework for the medical expert system CADIAG-
2. Our approach is guided by the idea to use a logical calculus that can deal with
both uncertainty and vagueness, and to find an interpretation for CADIAG-2’s
rules within this unified formalization. In our approach, we make a strong dis-
tinction between degrees of uncertainty due to a state of incomplete knowledge
and intermediary degrees of truth due to the presence of vague propositions. Our
framework to deal with uncertainty is possibilistic logic. The reader is referred to
[7] for an extensive overview on possibilistic logic. The proposed logic provides
a satisfying conceptual framework for CADIAG-2.

2 The logic FNG
∼
(Q) and its possibilistic semantics

Not surprisingly, the logic which we have in mind is an extension of the logic
G∼(Q), that is Gödel logic extended by the standard negation ∼ as well as with



rational truth constants3. More precisely we will define a logic, called FNG∼(Q),
F for fuzzy and N for necessity, which will include an extension of possibilistic
logic embedded inside the fuzzy logic G∼(Q), where it is possible to express e.g.
statements very close to the so-called certainty fuzzy if-then rules [4] of the form
“the more ϕ is true, the more certain ψ holds ”4, where ϕ is a fuzzy proposition
and ψ is Boolean proposition, as in “the younger a man, the more certainly he
is single”, or “the higher the fever, the more likely there is an infection”.

Starting from the basic ideas exposed by Hájek in [13], various kinds of
uncertainties can be studied by using various kinds of modal-fuzzy logics (see,
e.g., [10, 11]). The very basic idea allowing a treatment of the certainty of classical
(crisp) events inside a fuzzy-logical setting consists of interpreting the certainty
degree of a (classical) proposition φ as the truth value of a modal proposition
�φ which reads “φ is certain”.

Following the same approach, we define below the logic FNG∼(Q) which com-
bines in the same logic a formal treatment of fuzziness and uncertainty aspects,
the latter under the possibilistic semantics of necessity measures.

Language. We start from a countable set of Boolean propositional variables VB =
{δ1, δ2, ...} and a countable set VMV = {σ1, σ2, ...} of many-valued propositional

variables. We assume that the two sets VB and VMV are disjoint. Then formulas
of FNG∼(Q) are defined as follows:

– The set BFm consists of Boolean formulas built from the countable set of
propositional variables VB using the classical logic connectives. ⊤ and ⊥ will
continue denoting the truth constants true and false respectively. Boolean
formulas will be denoted by lower case greek letters ϕ, ψ, . . .

– Box-formulas are formulas of the kind �ϕ, where ϕ ∈ BFm.

– General FNG-formulas are then built up from the countable set of many-
valued propositional variables VMV together with �-formulas (taken as new
many-valued variables) using G∼(Q) connectives (∧,→,∼) and rational truth
constants r for every rational r ∈ [0, 1]. We shall denote them by lower case
greek letters ζ, ξ, τ, η.

For instance, if ζ is a FNG-formula and ϕ ∈ BFm is a Boolean formula, then
0.5 → (ζ → �ϕ) is a FNG-formula, while 0.5 → (ζ → ϕ) is not.

Note that, as in G∼(Q), other connectives are definable, notably ¬ζ is ζ → 0
(Gödel negation), ∆ζ is ¬∼ζ (Monteiro-Baaz connective), ζ ∨ ξ is ((ζ → ξ) →
ξ) ∧ ((ξ → ζ) → ζ) (max disjunction), and ζ ↔ ξ is ζ → ξ) ∧ (ξ → ζ) (equiva-
lence).

3 Due to lack of space, we cannot include preliminaries on basic notions regarding
Gödel logic and its expansions with truth-constants, with Monteiro-Baaz’s operator
∆ and with an involutive negation, that will be used throughout this section. Instead,
the reader is referred to [13, 8, 9] for the necessary background.

4 Informally interpreted as truth-degree(ϕ) ≤ certainty-degree(ψ).



Semantics. The intended possibilistic semantics is given by what we call mixed

possibilistic models. A mixed possibilistic model is a pair

M = (v, 〈W, e, π〉)

where v : VMV → [0, 1] is a [0, 1]-valued interpretation of the many-valued
propositional variables, and M = 〈W, e, π〉 is a possibilistic Kripke model, where
W is a non-empty set whose elements are called nodes (or states or possible
worlds), e : W × VB → 0, 1 provides for each world w a {0, 1}-evaluation of
Boolean propositional variables, and π : W → [0, 1] is a normalized possibility
distribution on W , i.e π: is such that maxw∈W π(w) = 1. In other words, π
models a consistent belief state, in the sense that at least one possible world has
to be fully plausible. An evaluation of Boolean propositional variables extends
to an evaluation of Boolean formulas of BFm in the usual way. For each ϕ ∈
BFm, we shall write [ϕ] to denote the set of worlds which are a model of ϕ, i.e.
[ϕ] = {w ∈ W : e(w,ϕ) = 1}.

Given a mixed possibilistic model M for FNG∼(Q) and a FNG-formula ζ,
the truth value of ζ in M, denoted by ‖ζ‖

M
, is inductively defined as follows:

– if ζ is a propositional variable from the set VMV , then ‖ζ‖
M

= v(ζ),

– if ζ is a Box-formula �ϕ, where ϕ ∈ BFm, then ‖ζ‖
M

= N([ϕ]|π), where
N(.|π) is the necessity measure induced by π on the power set of W , defined
as N([ϕ]|π) = infw/∈[ϕ](1− π(w)).

– if ζ is a compound FNG-formula, then its truth-value ‖ζ‖
M

is computed
using the truth functions of G∼(Q).

The notions of satisfaction and validity of a formula are defined as usual, as
well as the notion of logical consequence of a formula from a set of formulas, that
we will denote by |=FNG. For instance, it is very easy to check that 0.6 → �ϕ,
saying that ϕ is certain at least to the degree 0.6, is a logical consequence of the
set of FNG-formulas {0.8 → σ1, 0.6 ↔ σ2, 0.7 → (σ1 ∧ σ2 → �ϕ)}, saying that
σ1 is true at least to the degree 0.8, σ2 is true to the degree 0.6 and that, for
every r ∈ [0, 1], if σ1 ∧ σ2 is true at least to the degree r, then ϕ is certain at
least to the degree min(r, 0.7).

Axioms and rules. FNG∼(Q) has the following axioms and rules:

– Axioms of classical propositional logic for BFm-formulas.

– Axioms and rules of G∼(Q) for FNG-formulas.

– The following axiom schemata for the modality �:

(N1) ∼�⊥

(N2) �(ϕ→ ψ) → (�ϕ→ �ψ)

(N3) �(ϕ ∧ ψ) ↔ (�ϕ ∧�ψ)

– The modus ponens rule of (for BFm and FNG-formulas).

– The necessitation rule for �: from ϕ derive �ϕ, for any Boolean formula ϕ.



A theory Γ over FNG∼(Q) is a set of FNG-formulas. We define a notion of
proof (denoted by ⊢FNG) from a theory in the usual way from the above axioms
and rules.

Using standard techniques, it is not hard to prove that FNG∼(Q) is indeed
sound and strongly complete for deductions from finite theories with respect to
the class of mixed possibilsitic models, i.e., for every finite theory T and formula
ζ, it holds that T |=FNG ζ iff T ⊢FNG ζ. Details of the completeness proof are
to be found in a longer version of this manuscript in preparation.

3 CADIAG-2 and the logic FNG
∼
(Q)

As we have already mentioned, CADIAG-2 is a knowledge-based system for med-
ical diagnosis, whose (weighted) if-then rules may combine vague with uncertain
knowledge. In this section we explain how the logic FNG∼(Q) can represent
CADIAG-2 if-then rules as well as the data associated to a patient. The latter
is the data describing the state of the patient and it is the input of a particular
run of CADIAG-2. We will specify how the input data and the rules translate
to formulas of FNG∼(Q). We will also compare the CADIAG-2 inference mecha-
nism with proofs in the logic FNG∼(Q). We will examine the situation from the
theoretical side. Actually, instead of referring to CADIAG-2 system itself, we will
usually refer to the formal calculus CadL defined in [3] (see also [2]) capturing
its operational semantics in a logical framework.

A knowledge-base of CADIAG-2 (or a theory in CadL) basically deals with
two kinds of basic information variables, corresponding to symptoms (includ-
ing signs), and to diagnoses (diseases and therapies). Given a finite set S =
{σ1, σ2, . . . , σm} of symptoms and a finite set D = {δ1, δ2, . . . , δn} of diagnoses,
propositions of CadL are built from the variables by means of three connectives
“and” (∧), “or” (∨) and “not” (¬), and graded propositions are of the form (ζ, r),
where ζ is a proposition and r ∈ [0, 1]. A graded if-then rule is represented in
CadL as a pair (ζ → ϕ, r) where ζ is a proposition, ϕ is a literal (a variable from
S ∪D or its negation), and r ∈ [0, 1]. Finally, an input for a run of the system
is a set of graded atomic propositions (σ1, r1), (σ2, r2) . . . and (δ1, d1), (δ2, d2) . . .
referring to the available data about the presence of a set of symptoms and
diagnoses of a given patient. 5

In order to define a translation of CadL formulas into FNG∼(Q) formulas, first
of all we make a formal distinction between symptoms and diagnoses because
we formally distinguish between degrees of presence (for symptoms) and degrees
of certainty (for diagnoses). Thus, we shall identify each symptom and diagnosis
appearing in a CadL theory with a unique atomic proposition from the sets VMV

and VB , respectively, of the language of FNG∼(Q). In other words, we assume
S = {σ1, σ2, . . . , σm} ⊆ VMV and D = {δ1, δ2, . . . , δn} ⊆ VB . Furthermore, let
Lit(D) = {δ,¬δ | δ ∈ D} where ¬δ is the negation of δ, and let D� = {�ϕ : ϕ ∈
Lit(D)}. Recall that �δ means we are certain that the disease δ is present, while

5 For convenience, from now on we consider all weights being actually rational numbers
from [0, 1].



�¬δ means we are certain that the disease δ is not present (or equivalently, the
disease δ is impossible).

The translation of CadL propositions is done as follows. Consider the set M
of FNG-formulas built from the set of many-valued propositional variables S
and from Box-formulas �ϕ for each ϕ ∈ Lit(D), using the connectives ∧,∨,∼ of
FNG∼(Q). Then, we shall also identify each compound entity in CadL with the
respective many-valued formulas from the set M . For instance, assume that we
are given the following compound proposition: (σ1∨¬δ1) ∧ (δ2∧¬σ2) where σ1, σ2
are symptoms and δ1, δ2 are diagnoses, then we translate it to the respective FNG
formula (σ1 ∨�¬δ1) ∧ �δ2 ∧ ∼σ2. We shall denote formulas from M by lower
case greek letters ζ, ξ, τ, η.

Let us now consider the input of a specific run of CADIAG-2. It consists
typically of weighted symptoms, but is also allowed to contain information about
confirmed or excluded diagnoses. The two cases are to be distinguished.

– Assume that the graded proposition (σi, r) is provided, where σi ∈ S is
a symptom and r is its degree of presence. Hence, we translate it to the
following FNG-formula t ↔ σi. Note that, as particular cases, when r = 1
and r = 0 the FNG-formula t↔ σi is equivalent to σi and ∼σi, respectively.

– Assume that the graded proposition (δi, r) is provided, where δi ∈ D is a
diagnosis and r > 0. In this case r expresses a degree of uncertainty; we
translate it to the following FNG-formula r → �δi, meaning that we are
certain to a degree at least t that the disease δi is present. Note that the
degree assigned to δi may be increased at a later point of a CadL run6. As
a particular case, when t = 1, the FNG-formula r → �δi is equivalent to
�δi. However, in case that t = 0, the graded proposition (δi, 0) means in
CadL that the diagnosis δi is excluded, and hence it will be translated to the
following FNG-formula �¬δi.

We next turn to the translations of rules in the language of CadL. Rules contained
in a knowledge base are classified as being of three types: (C ), (me), and (ao).
We consider first the rules of type (C ). It is necessary to differentiate its contents.
Namely, there are three kinds of rules that all belong to the type (C ).

– First, there are the symptom-symptom rules, which are of the form (σi →
σj , 1), where σi, σj ∈ S denote symptoms. According to the manipulation
rule (c) of CadL (see [3, 2]), the above rule is to be interpreted as specifying
that the degree of σj is at least as high as the one of σi. Hence, we translate
that rule to the following FNG-formula σi → σj .

– The second group of rules of type (C ) are the diagnosis-diagnosis rules,
which are of the form (δi → δj , 1), where δi, δj ∈ D are diagnoses. These
rules resemble the symptom-symptom rules and the translation of these rules
is straightforward: �δi → �δj .

6 This is why we interpret r as a lower bound for the certainty degree on δi rather
than an equality.



– The last group of rules of type (C ) are the symptom-diagnosis rules, of the
form (τ → δ, d), where τ is a (compound) proposition and δ ∈ D refers to a
diagnosis. These rules could be considered as the kernel of the inference of
CadL and they express that δ is certain to the degree d given the proviso that
τ is true. Again, according to the CadL manipulation rule (c) such a rule is
to be interpreted as ”we are certain that δ is true with a necessity degree at
least equal to min{‖τ‖ , d}, where ‖τ‖ is the truth value of τ . Therefore, the
translation into a FNG formula is again straightforward:

d ∧ τ∗ → �δ

where τ∗ is the translation into its corresponding FNG formula of the CadL

proposition τ . Due to the residuation property, equivalent translations would
also be d→ (τ∗ → �δ) and τ∗ → (d→ �δ).

We finally turn to the rules of type (me) and (ao). They are of the form (τ →
¬δ, 1) and (¬τ → ¬δ, 1), respectively, where τ is a possibly compound CadL

proposition and δ ∈ D refers to a diagnosis. According to the CadL manipulation
rules (me) and (ao), we translate these rules into the following FNG formulas

△τ∗ → �¬δ △ (∼τ∗) → �¬δ

respectively, where again τ∗ is the translation into its corresponding FNG for-
mula of the CadL proposition τ . The role of Monteiro-Baaz’s operator △7 in the
translation of the rules of type (me) and (ao) is obvious, we just have to recall
that a CadL rule (me) is applicable if the respective proposition τ is fully present
(i.e., its truth value is 1), but not if it is present to any degree strictly smaller
than 1. The case of rules (ao) is similar.

Rules of type (me) or (ao) are also used to express relationships between
other kinds of entities, namely between two symptoms, or between two diagnoses.
The translation of the rules is analogous, e.g., in the case of two symptoms, the
translation of such rules is respectively:

△σ1 → ∼σ2, △ (∼σ1) → ∼σ2.

From the above, we conclude that the data processed by CadL is translated
into a theory of FNG∼(Q) in a way that preserves the contents. However, we
have not yet addressed the question what CADIAG-2 (or CadL) on the one hand
and FNG∼(Q) on the other hand do with this information. In the following we
will show that FNG∼(Q) allows us to draw all possible conclusions in CadL. For
this purpose, let us consider the inference rules of CadL (the reader is referred
to [3, 2] for details) and check that for every inference rule of CadL, we can
specify a corresponding valid rule in the logic FNG∼(Q). Indeed, for all FNG-
formulas ζ, τ ∈ M , for all Boolean formulas δ ∈ D and all rational numbers
r, s, d ∈ (0, 1] ∩ Q, we have that the following inferences are valid (and hence
provable) in FNG∼(Q):

7 Recall that this operator is interpreted in a model M as follows : ‖∆τ‖M = 1 if
‖τ‖M = 1, ‖∆τ‖M = 0 otherwise.



– �¬δ ⊢ ∼�δ
– �¬δ ⊢ ∼(ζ ∧�δ)
– ∼ζ ⊢ ∼(τ ∧ ζ)
– r ↔ ζ, s↔ τ ⊢ min(r, s) ↔ (ζ ∧ τ)
– r ↔ ζ, s↔ τ ⊢ max(r, s) ↔ (ζ ∨ τ)
– r → ζ, s→ τ ⊢ min(r, s) → (ζ ∧ τ)
– r → ζ, s→ τ ⊢ max(r, s) → (ζ ∨ τ)
– r ↔ ζ ⊢ 1− r ↔ ∼ζ
– r ↔ ζ ⊢ r → (ζ ∨ τ)
– r → ζ ⊢ r → (ζ ∨ τ)
– r → ζ, d ∧ ζ → τ ⊢ min(d, r) → τ
– r → ζ, d ∧ ζ → �δ ⊢ min(d, r) → �δ
– △τ → �¬δ, τ ⊢ �¬δ
– △∼τ → �¬δ, ∼τ ⊢ �¬δ
– r → ζ, s→ ζ ⊢ max(r, s) → ζ

Therefore we conclude that the logic FNG∼(Q) can reproduce the inference of
the CadL system. One difference is certainly present, FNG∼(Q) is stricly stronger
than CadL. In other words, FNG∼(Q) can produce inferences that CadL cannot,
for instance, the following rule concerning ∼ is also valid in FNG∼(Q): r → ζ ⊢
ζ → 1− r, since if r is a lower bound for the truth value of ζ, then 1 − r is an
upper bound of the truth value of ζ.

4 Final remarks and future work

We end by addressing the special feature in CADIAG-2’s inference engine, re-
lated to the particular role played by the truth value 0. It is a special feature
of CADIAG-2 that sharp values dominate over intermediate ones. For example,
a medical entity δ, where δ is a diagnosis, may be assigned the certainty value
r ∈ (0, 1) ∩Q at some step in the inference process and it may be the case that
0 is also assigned to it (that is to say, it is considered false with certainty or
impossible) in a later step. Hence, according to CADIAG-2, the former value r
of δ becomes obsolete once δ is assigned 0.

This means that in such a situation, both the FNG-formulas �¬δ and r →
�δ, with r > 0, could be provable in the logic FNG∼(Q) from a theory obtained
by the translation of a CADIAG-2 knowledge base, expressing the constraints
N(¬δ) = 1 and 0 < r ≤ N(δ). But having min(N(δ), N(¬δ)) = r > 0 is in con-
flict with the postulates of possibility theory, that stipulates min(N(δ), N(¬δ)) =
0 for any δ. Therefore, the particular role assigned to 0 in CADIAG-2 may lead
to deal with theories with (partial) possibilistic inconsistencies, and thus being
FNG∼(Q)-inconsistent as well.

Part of our future work will address non-monotonicity aspects arising when
dealing with (partial) inconsistency in FNG∼(Q) theories, either by adapting
well-known techniques already used in Possibilistic logic [5], or by designing
particular revision or inconsistency repairing mechanisms specially suited for
the particular case of CadL in the line of [15] for the case of dealing with a
probabilistic semantics.
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