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ABSTRACT 
CADIAG-2 is a well known rule-based medical expert system aimed at providing support in medical diagnose in the field of internal medicine. Its knowledge base consists of a large collection of IF-THEN rules that represent uncertain relationships between distinct medical entities. Given this uncertainty and the size of the system it has been challenging to validate its consistency. Recent attempts to partially formalize CADIAG-2's knowledge base into decidable Gödel logics have shown that, on that formalization, the system is inconsistent.  In this paper we adopt an alternative, more expressive formalization of CADIAG-2’s knowledge base as a set of probabilistic conditional statements and apply our state-of-the-art probabilistic logic solver (Pronto) to confirm its inconsistency and to compute all its conflicting sets of rules under a slightly relaxed interpretation of them. Once this is achieved, we define a measure to evaluate inconsistency and discuss suitable repair strategies for CADIAG-2 and similar systems. 
Keywords: CADIAG-2, inconsistency, measures of inconsistency, probabilistic satisfiability, Pronto, repairing inconsistency, rule-based expert systems.
Introduction 

CADIAG-2 (Computer Assisted DIAGnosis) is a well known rule-based expert system aimed at providing support in diagnostic decision making in the field of internal medicine. Its design and construction was initiated in the early 80's at the Medical University of Vienna by K.P. Adlassnig –see (Adlassnig et al., 1986; Adlassnig et al., 1985; Adlassnig, 1986; Leitich et al., 2002) for more on the origins and design of CADIAG-2–.
CADIAG-2 consists of two fundamental pieces: the inference engine and the knowledge base. The inference engine –see (Ciabattoni et al., 2010; Picado Muiño, 2010) for alternative formalizations and analyses of CADIAG-2's inference– is based on methods of approximate reasoning in fuzzy set theory, in the sense of (Zadeh, 1965; Zadeh, 1975). In fact CADIAG-2 is presented in some monographs as an example of a fuzzy expert system –see for example (Klir et al., 1988; Zimmermann, 1991)–.  

The knowledge base consists of a set of IF-THEN rules –also known in the literature as production rules– intended to represent relationships between distinct medical entities: symptoms, findings, signs and test results (S) on the one hand and diseases and therapies (D) on the other. The vast majority of them are binary (i.e., they relate single medical entities) and only such rules are considered in this paper. The one that follows is an example of a binary rule of CADIAG-2, taken from (Adlassnig et al., 1986):

IF suspicion of liver metastases by liver palpation
THEN pancreatic cancer

with degree of confirmation 0.3
The degree of confirmation refers, intuitively, to the degree to which the conditioning event (i.e., ‘suspicion of liver metastases by liver palpation’ in the example above) confirms the uncertain event (i.e., ‘pancreatic cancer’ above). How these degrees of confirmation are to be formally interpreted will be discussed later. 

In this paper we present a formalization of a coded version of the binary fragment of CADIAG-2's knowledge base (i.e., that contains only codes for the identification of the distinct medical entities) as a probabilistic logic theory. We then check the satisfiability of that formalization with Pronto, our probabilistic description logic solver, which we briefly introduce. We find that CADIAG-2 is highly unsatisfiable (confirming the results of an alternative, weaker formalization, (Ciabattoni et al., 2010)) and analyze the sources of unsatisfiability.

To our knowledge, the probabilistic version of CADIAG-2 is the largest PSAT (Probabilistic SATisfiability) problem to be solved by an automated reasoner and is certainly the largest non-artificial one. This is, perhaps, a bit misleading as it is comparatively easy to detect unsatisfiability by first heuristically detecting small but likely unsatisfiable fragments and then performing a satisfiability check on each fragment. While this might suffice to validate that CADIAG-2 is unsatisfiable it is not sufficient, without further qualification, to detect all conflicting sets of rules, nor can it ensure that a satisfiable fragment is so in the context of the entire knowledge base.

As CADIAG-2 is too large (the number of rules in the binary fragment we are concerned with is over 18000) we describe an approach to split the knowledge base into comparatively large fragments that can be tested independently and prove that such methodology is complete, i.e., is guaranteed to find all conflict sets. With this methodology we are able to determine that CADIAG-2 contains numerous sets of conflicting rules and compute all of them for a slightly relaxed interpretation of the knowledge base.

We complete the paper with the introduction of an inconsistency measure aimed at evaluating CADIAG-2-like databases and a brief account of suitable repair strategies for CADIAG-2 and similar systems. The measure presented attempts to quantify how far the knowledge base is from consistency and its computation, in as much as it yields an adjustment in the degree of confirmation or uncertainty of each conditional statement, provides the modeler with a possible repair of the database.    
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NOTATION AND PRELIMINARY DEFINITIONS 
Throughout we will be working with a finite propositional language
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. We will denote by SL its closure under Boolean connectives. Within the context of CADIAG-2 the language L will represent the set of medical entities 
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We will use the abbreviations 
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We can restrict probability functions to the set
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A probability distribution 
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 on L can be characterized by the values it assigns to the expressions of the form 
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We will be assuming that W is an ordered set. 
We can characterize 
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Sentences in SL can also be identified with 
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We define probability on conditional statements in SL from the notion of unconditional probability in the conventional way. 
We will be dealing with conditional probabilistic statements of the form ‘the probability of 
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We will denote the collection of intervals in [0,1] by 
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Intervals of the form 
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Definition 2. We say that the probability function 
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In that sense, we say that 
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Definition 3. We say that 
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The words ‘satisfiable’ and ‘consistent’ will be used interchangeably throughout this paper. 
In order to prove some results and characterize the meaning of degree of consistency in CADIAG-2 we will regard L as a collection of unary predicates or sets in a first-order language and SL the closure of predicates in L under boolean combinations. 

Definition 4. An interpretation 
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Given an interpretation 
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THE KNOWLEDGE BASE OF CADIAG-2
We can classify CADIAG-2's binary rules (
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We say in most of the literature. There are some references in which the interpretation suggested for 
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For the next definition let 
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Definition 5. We say that 
[image: image143.wmf]I

 is a model of 
[image: image144.wmf]F

 (denoted 
[image: image145.wmf]F

I

‘

) if 
[image: image146.wmf](|)

qp

ÎW

I

 for all 
[image: image147.wmf]|,

qp

áWñÎF

. 

Proposition 1. 
[image: image148.wmf]L

FÎ

PK

 has a classical model if and only if it has a rational model. 

Proof.  The right implication follows trivially from the fact that every classical interpretation is also rational. In order to prove the left implication let us assume that 
[image: image149.wmf](,)

D

n

=

II

I

 is a rational interpretation such that
[image: image150.wmf]F

I

‘

.

Let 
[image: image151.wmf]C

 be the set given by the values
[image: image152.wmf](,)

pa

n

I

, for
[image: image153.wmf](,)

paLD

Î´

I

. It is assumed that all the values in 
[image: image154.wmf]C

 are rational. Let us consider the minimum common multiple of the denominators of all the elements of
[image: image155.wmf]C

, say
[image: image156.wmf]Q

Î

¥

. We next construct a new interpretation 
[image: image157.wmf]J

 from 
[image: image158.wmf]I

 such that 
[image: image159.wmf]F

J

‘

.

We first define 
[image: image160.wmf]D

J

 from
[image: image161.wmf]D

I

. For each element 
[image: image162.wmf]aD

Î

I

 we set 
[image: image163.wmf]Q

 elements in the domain
[image: image164.wmf]D

J

, labeled as follows: 
[image: image165.wmf]1

{,...,}

Q

aa

. Let us consider now 
[image: image166.wmf]pL

Î

 and 
[image: image167.wmf]aD

Î

I

 and assume that
[image: image168.wmf](,)/

paPQ

n

=

I

. We define 
[image: image169.wmf]V

J

 on 
[image: image170.wmf]LD

´

J

 from 
[image: image171.wmf]n

I

 as follows, for 
[image: image172.wmf]{1,...,}

iQ

Î

:


[image: image173.wmf](,)

i

Vpa

=

J

 
[image: image174.wmf]1

0

otherwi

i

e

P

s

£

ì

í

î


It is easy to see that 
[image: image175.wmf]J

 thus defined is such that 
[image: image176.wmf]F

J

‘

.  



         ■
For what follows we will be considering the collection of intervals 
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Corollary 1. 
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We assume that this linear system has a solution (i.e., that there exists a probability function that satisfies
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Proposition 3 implies that 
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 can be regarded, for consistency-checking purposes, as a knowledge base formalized in propositional probabilistic logic (or PPL). 

CHECKING SATISFIABILITY OF CADIAG-2
One of our main goals is to determine satisfiability or unsatisfiability of 
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 is formalized as a propositional knowledge base and the existence of propositional PSAT algorithms we use Pronto, our PSAT solver designed for more expressive probabilistic description logics –see (Klinov et al., 2010; Lukasiewicz, 2008) –, for our purposes. We do so for several reasons. 

· First, unlike propositional solvers, it treats classical (i.e., certain) and probabilistic knowledge separately and scales well with respect to the amount of the former. 
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 contains many classical rules (for example, the number of rules in 
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 is over 200) and so, given the scalability limits of PPL solvers (about 1000 statements), they are likely to be unable to handle a sufficient number of uncertain symptom-disease rules in addition to 
[image: image239.wmf]|

DD

F

 and (a fragment of) 
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· Second, Pronto has pinpointing capabilities for finding all minimal unsatisfiable subsets in an unsatisfiable knowledge base. This feature is critical in the context of this work given the size of 
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 and, as we will see shortly, the number of potentially overlapping inconsistencies. It must be noted that finding all minimal unsatisfiable subsets is by no means a trivial extension of the PSAT algorithm (for example, its naïve implementation using a PSAT solver as a black-box reasoner is not practical due to the hardness of PSAT). Even with our implementation, the number of unsatisfiable subsets in a range of fragments of   
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 presents a significant challenge to the reasoner.

· Last but not least, we are interested in evaluating our algorithms (see the next subsection) on such a large and naturally occurring knowledge base as
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. 

Algorithms
In this subsection we briefly sketch the PSAT and conflict-finding algorithms implemented in Pronto within the frame of classical propositional logic (since for 
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 a formalization in terms of the probabilistic description logic language is not necessary). 

Probabilistic satisfiability algorithm
For the sake of clarity and brevity we will consider the case of PSAT for sets of probabilistic statements of the form 
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 on 
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 (a finite propositional language), with 
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 and where 
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 represents the probability assigned to it (i.e., all probabilistic statements considered are unconditional and assigned point-valued probabilities. It is straightforward, but technically awkward and space consuming, to generalize the procedure to handle conditional interval statements –see (Klinov et al., 2010) for a more detailed account–.
We say that a collection of probabilistic conditional statements of such form, say 
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, is satisfiable if and only if the objective value of the following linear program is equal to 
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where 
[image: image254.wmf]x

a

 is the assignment to the possible world 
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Let 
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 denote the matrix of linear coefficients in (2). At every step of the simplex algorithm, 
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 is represented as a combination 
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 where 
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 and 
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 are the submatrices of the basic and non-basic variables, respectively. Values of non-basic variables are fixed to zero and the solver proceeds by replacing one basic variable (i.e., column in 
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) by a non-basic one until the optimal solution is found. As the size of 
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 is exponential in the size of our language 
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, one should determine the entering column without representing 
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 explicitly. This is done using the column generation technique in which entering columns are computed by optimizing a subproblem, sometimes referred to as the pricing-out problem (or POP). Observe that the above system of linear inequalities always admits a solution (e.g. 
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), even if 
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 is unsatisfiable, which facilitates the column generation process. Note, however, that the actual linear programs solved in Pronto are considerably more involved (in particular, they include slack and stabilization variables to improve convergence).
The critical step is to formulate linear constraints for the pricing-out problem such that every solution (a column) corresponds to a possible world in
[image: image268.wmf]W

. In the propositional case this can be done by employing a well known formulation of SAT as a mixed-integer linear program (Hooker, 1988). In the case of expressive languages, such as those in description logics, there appears to be no easy way of determining a set of constraints 
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 for the pricing-out problem such that its set of solutions is in one-to-one correspondence with 
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. Pronto implements a novel hybrid procedure to compute 
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 iteratively via interaction with a description logic reasoner.

The main idea of the algorithm is that every column produced as a solution to the pricing-out problem is converted to a description logic concept expression which is then checked for satisfiability by the description logic reasoner. If the expression is satisfiable, it means that the column corresponds to a possible world (in W in our context) and can be added to (2). Otherwise, the justifications of unsatisfiability –see (Horridge et al., 2008)– are converted into linear constraints and added to the pricing-out problem, which is then re-optimized. Finally, either an entering column is found or the pricing-out problem becomes infeasible (which implies that the system (2) is optimal). 

A detailed description of the PSAT algorithm is beyond the scope of this paper and is left as the core of a future publication. 
Conflict-finding algorithm.

A satisfiability algorithm is generally not sufficient for a comprehensive analysis of an inconsistent knowledge base (either classical or probabilistic). Typically users need to identify those fragments of the knowledge base which cause the inconsistency in order to repair them. Such fragments are typically required to be minimal so that the user can choose a repair strategy with minimal impact on the rest of the knowledge base. 

We are interested in determining the minimal unsatisfiable subsets of a certain collection of probabilistic conditional statements in
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, say
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. 

We apply the classical approach to finding minimal unsatisfiable sets based on hitting sets which dates back to Reiter (1987). Reiter's hitting set tree (HST) algorithm requires, as a subroutine, a satisfiability procedure which can extract one minimal unsatisfiable set from the knowledge base. It then systematically removes each axiom from that minimal unsatisfiable set and applies the satisfiability procedure again to generate a new minimal unsatisfiable set. By being systematic in the ‘repairs’, the procedure finds all minimal unsatisfiable sets in the knowledge base. We reduce the problem of finding a single minimal unsatisfiable subset of 
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 to the problem of finding a minimal infeasible subset of inequalities in the corresponding linear system of the form (2) above. Such subsets are known as irreducible infeasible systems (IIS) in the linear programming literature –see, for example, (Parker et al., 1996)–. However, given that the system (2) is never represented in its full version the application of the Ryan and Parker's algorithm is far from straightforward. If the optimal value of the system (2) is less than 
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 then some inequalities have non-zero dual values. Such inequalities correspond to conflicting constraints in 
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 but are not guaranteed to be minimal (though is typically quite small and close to the minimal set). We then do a brute force trial and error search to remove all superfluous constraints.

Decomposition of  
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To our knowledge, none of the existing probabilistic solvers can solve PSAT for 
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 taken as a whole within a reasonable amount of time (see the table below for a precise account of the size of 
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). However, 
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 has a certain structure that allows splitting it into fragments that can be examined independently. A crucial property of our probabilistic formalization is that 
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 is satisfiable if and only if all of the fragments are individually satisfiable, as we show below.

	Number of distinct symptoms
	1761

	Number of distinct diseases
	341

	Number of symptom-symptom rules
	720

	Number of disease-disease rules
	218

	Number of symptom-disease rules
	17573


We can regard 
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 as a directed graph where the nodes are the medical entities in 
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For the next two results let us consider two medical entities 
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Proposition 4. If 
[image: image302.wmf]1

p

F

 and 
[image: image303.wmf]2

p

F

 are satisfiable then 
[image: image304.wmf]12

pp

FÈF

 is satisfiable. 

Proof. Let 
[image: image305.wmf]1

I

 and 
[image: image306.wmf]2

I

 be models of 
[image: image307.wmf]1

P

F

 and 
[image: image308.wmf]2

P

F

 respectively. We can assume without loss of generality that 
[image: image309.wmf]12

DD

Ç=Æ

II

. We can construct a model 
[image: image310.wmf]I

 of 
[image: image311.wmf]12

pp

FÈF

 from 
[image: image312.wmf]1

I

 and 
[image: image313.wmf]2

I

 in a pretty trivial way by setting 
[image: image314.wmf]12

DDD

=È

II

I

 and 
[image: image315.wmf](,)1

pa

n

=

I

 if and only if 
[image: image316.wmf]1

(,)1

pa

n

=

I

 or 
[image: image317.wmf]2

(,)1

pa

n

=

I

 and 
[image: image318.wmf]0

 otherwise, for all 
[image: image319.wmf](,)

paLD

Î´

I

. In can be easily seen that 
[image: image320.wmf]I

 thus defined satisfies
[image: image321.wmf]12

pp

FÈF

.  









         ■
Corollary 2. If 
[image: image322.wmf]F

 is a minimal unsatisfiable set of rules in 
[image: image323.wmf]12

pp

FÈF

 then 
[image: image324.wmf]F

 needs to be contained in 
[image: image325.wmf]1

p

F

 or 
[image: image326.wmf]2

p

F

. 

Proof. It follows trivially from Proposition 4. Notice that if 
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Although trivial, it is worth mentioning that the previous propositions also hold for any alternative interpretation of the rules in terms of probabilistic intervals (i.e., by taking certain real intervals in place of point-valued probabilities).


[image: image336.wmf]CB

F

 has the following properties which will enable us to decompose it into a set of fragments:
· All conditional statements contain only atomic medical entities (i.e., entities in
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).
· Uncertain rules (i.e., non-classical, 
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) condition only on symptoms. 

· The graph of 
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contains many disconnected subgraphs.
We split 
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 into a set of fragments of the form
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. The largest fragments have around 200 conditional statements that normally relate two or three connected symptoms to diseases. 

Corollary 2 guarantees that all minimal unsatisfiable sets of rules in 
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 can be found by computing such sets for each fragment. Thus our methodology is simply a systematic analysis of the sets of the form
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, which involves a PSAT test and (if the fragment is unsatisfiable) the computation of all minimal unsatisfiable sets in it (see the algorithms in the two previous subsections). 

Related approaches in the literature

Consistency-checking methods and algorithms for large-scale databases have long been of relevance in scientific computational research. In relation to expert systems and in particular to CADIAG-2 it is worth referring to (Moser et al., 1992) as an example of research of this nature. In this paper, a classical first-order logic theorem prover was used to analyze the predecessor of CADIAG-2 (CADIAG-1), which did not contain any uncertain rules, and that helped to detect some inconsistent sets of rules. Consistency-checking in CADIAG-2 by means of formal methods is much harder mostly due to the necessity of an appropriate formalism for representing degrees of confirmation in rules (in particular in symptom-disease rules). Very recently the first such attempt (Ciabattoni et al., 2010) was made using a specific fragment of monadic infinite-valued Gödel logic extended with classical, involutive negation (denoted by 
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In (Ciabattoni et al., 2010) a sentence in 
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· If 
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In (Ciabattoni et al., 2010) the problem of checking satisfiability of the set of sentences in 
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 associated to the rules in 
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 is proved to be equivalent to the problem of satisfiability in classical first-order logic for such sentences (i.e., equivalent to determining whether there is a classical interpretation of 
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 that satisfies the sentences associated to the rules).  

The relation between our approach and that in (Ciabattoni et al., 2010) is clear in the light of the results stated in the third section. We will have that a certain collection of rules 
[image: image369.wmf]CB

FÍF

 will be found to be inconsistent according to the approach defined in (Ciabattoni et al., 2010) if and only if there is no probability function 
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Unlike the approach in (Ciabattoni et al., 2010), our probabilistic formalization is equisatisfiable with 
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 (see Proposition 3) and ensures finding all minimal unsatisfiable sets of rules. In (Ciabattoni et al., 2010) the fragment of compound rules in CADIAG-
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 is also considered in addition to the binary fragment (at the expense of a further weakening in the information expressed by the formulas in 
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 representing these rules). As mentioned earlier, we do not consider CADIAG-
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's compound rules in this paper. Certainly, we would require additional efforts to ensure (if possible at all) equisatisfiability and completeness of our decomposition procedure (as given by Proposition 4 for 
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) if we consider CADIAG-2's compound rules, although the former would not be necessary if we assumed a probabilistic interpretation of the rules from the outset. 

MINIMAL UNSATISFIABLE SETS IN 
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We present here results concerning the satisfiability check of 
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 when considering a slightly relaxed interpretation of 
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 (The degrees of confirmation of the rules in 
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We have opted for checking satisfiability of this slightly relaxed interpretation of the rules in 
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 against a point-valued interpretation (i.e., the standard interpretation with point-valued probabilities) because of time constraints. The implementation of our algorithms for the relaxed interpretation of 
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 completes the task of finding all minimal unsatisfiable subsets in a reasonable amount of time (around one hour). It is a well known fact in model-diagnosis theory that computing all minimal unsatisfiable subsets of a certain knowledge base requires a number of satisfiability tests (in our case, PSAT tests) that is exponential in the number of unsatisfiable subsets. Our relaxed interpretation of 
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 already contains a high number of minimal unsatisfiable sets (which also happen to be minimal under a point-valued interpretation) and a point-valued interpretation adds up more. Furthermore, some of the unsatisfiable sets that are present in the point-valued interpretation and not in our relaxed one are relatively large (some contain 
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 rules) and do not overlap with other unsatisfiable sets. Such facts bring the algorithm's running time closer to its worst case. 

An example of a type of minimal unsatisfiable set detected under a precise interpretation of the rules but not under our relaxed version is the one that follows: 
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For the sake of simplicity we will adopt the same notation for the rules of type symptom-disease of the form
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We list the different types of minimal unsatisfiable sets encountered in 
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 under this relaxed interpretation of the rules: 
Type 1. Our first type of minimal unsatisfiable set in 
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Type 2. Our second type of minimal unsatisfiable set in 
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Notice that the rule 
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Type 3. The third type of minimal conflict set in 
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Intuitively, the rule 
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Type 4. The fourth and last type of minimal unsatisfiable set is given by a collection of rules of the form 
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The following table shows the amount of minimal unsatisfiable sets found for each type and the number of rules involved in them. 
	Type 
	Amount
	Number of rules involved

	1
	420
	3

	2
	5
	3

	3
	1
	3

	4
	269
	6


A thorough analysis of these types of inconsistencies in connection with the whole knowledge base and with possible repair strategies and in relation to other sets of inconsistencies obtained under alternative interpretations of 
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 (as briefly pointed above, under the standard point-valued interpretation of the rules or when regarding 
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 as a lower-bound threshold) is an ongoing research challenge.   

EVALUATING INCONSISTENCY IN 
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While we have determined that 
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 is inconsistent and have found various sets of statements and patterns to account for that inconsistency, it is not entirely clear how to interpret this information. In particular, we may wish to determine how inconsistent 
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We have just seen that 
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 contains a large number of minimal inconsistent subsets. That, on a straightforward reading, makes 
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 highly inconsistent as each inconsistent subset is an inconsistency and thus 
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 contains a lot of inconsistencies.  Such a reading is the basis of several approaches in the literature to measuring the amount of inconsistency of a database (or even of each particular statement in the database  (Hunter et al., 2008) based on the number and composition of its minimal inconsistent subsets –see (Hunter et al., 2004) for a review–. Clearly, under some of these approaches 
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 would certainly be regarded as highly inconsistent.  

However, while appealing, this is not the only way to measure inconsistency. We consider here an alternative approach to measuring the degree of inconsistency by considering how far the knowledge base is from consistency –see (Thimm, 2009) for an example of such an approach for probabilistic knowledge bases–, with the ultimate goal of giving an alternative evaluation of the amount of inconsistency of 
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 and providing a tool for determining possible, minimal repair strategies for 
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 and similar knowledge bases. 

Distance to consistency

For what follows let 
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We define a measure of inconsistency for 
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 based on the quantification of the minimal adjustment that one needs to make on 
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 in order for 
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 to be satisfiable. We call the measure presented here distance to consistency. Our notion of distance to consistency is similar in nature to that defined in (Thimm, 2009). The main difference between our approach and that of (Thimm, 2009) is the notion of satisfiability for probabilistic conditional statements: null probability for the conditioning event in a probabilistic statement is allowed in (Thimm, 2009) and makes the statement satisfiable by default. Our approach becomes much more complex in comparison to (Thimm, 2009) due mostly to our definition of satisfiability (see Definition 2), which we believe is much more natural and intuitive than that of (Thimm, 2009). 
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The reason why we consider 
[image: image523.wmf]ò

 will be made clear later. We are not interested in infinitesimal precision and thus we do not consider algebraic operations involving infinitesimals.   
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We will write DC instead of 
[image: image576.wmf]DC

Æ

 whenever there is no set 
[image: image577.wmf]GÌ

K

 with respect to which we are defining the distance to consistency. We will apply the same convention when referring to the map 
[image: image578.wmf]F

Æ

 on
[image: image579.wmf]c

PK

. 

Let 
[image: image580.wmf](,)

c

v

DÎ

PK

 and 
[image: image581.wmf]GÌD

. It is not generally true that 
[image: image582.wmf](,)

DCv

G

DÎ

¡

. To see this consider the following example:

[image: image583.wmf](,){(|)1,(|)1,(|)1/2}

vvvv

fqyfyq

D====

.
Notice that 
[image: image584.wmf](,)

DCv

D=

ò

. 
[image: image585.wmf](,)

v

D

 is certainly inconsistent and becomes consistent by replacing 
[image: image586.wmf](|)1

v

yf

=

 and/or 
[image: image587.wmf](|)1

v

fq

=

 by 
[image: image588.wmf](|)

v

yfh

=

 and/or 
[image: image589.wmf](|)

v

yqz

=

 respectively, for any values 
[image: image590.wmf],

hz

 strictly less than 
[image: image591.wmf]1

. 

Measuring 
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The computation of DC is certainly not a trivial matter for the general case. The main difficulty stems from our definition of satisfiability (i.e., from the fact that conditioning events are required to have a strictly positive probability). Some heuristics can be of much help in this matter. In fact, in order to compute
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Proposition 5.  
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We impose some restrictions on the sets of the form
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This completes the proof. 
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Proposition 6. 
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Proof. We know from results in previous sections that 
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REPAIR STRATEGIES FOR 
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In this section we discuss some tools and methodology aimed at helping the modeler to repair CADIAG-2-like knowledge bases in the presence of inconsistency (in this section, by CADIAG-2-like knowledge bases we mean those that can be represented as elements in
[image: image677.wmf]c

PK

). Our account is certainly not exhaustive. There are a vast number of methods and tools in the literature related to dealing with inconsistency in knowledge bases. We discuss some that we believe are of particular interest for CADIAG-2 and similar systems. 

A very natural repair strategy for inconsistent knowledge bases consists of removing at least one statement from each of its minimal unsatisfiable subsets (provided we have them). Knowledge of the information represented by the system (i.e., for CADIAG-2 in particular, medical knowledge in the field of internal medicine) could certainly help in determining which statements should be removed and which should be kept. In the lack of such support, however, some minimization criterion (possibly along with other criteria) could be a good alternative, the most straightforward being the cardinality of the set of rules to be removed from the database (i.e., the cardinality of the repair subset). The literature in this direction is numerous –see for example (Kalyanpur et al., 2006; Lam et al., 2008; Roussey et al., 2009) –.  

The size of minimal repair subsets in 
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 for its relaxed interval interpretation (defining minimality in terms of just cardinality) is pretty small. That is due to the presence of some conditional statements in many minimal unsatisfiable subsets, which seems to indicate a higher contribution of these statements to the inconsistency of 
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Graded approaches are also an alternative. We might think that it would be more suitable, since we are working with graded statements (i.e., uncertain statements along with a degree of uncertainty), an adjustment of the degrees of uncertainty in the knowledge base rather than the removal of the statements themselves. A minimal adjustment as measured by a function like DC would be desirable from that point of view. The computation of DC and the obtainment of a minimal adjustment in these terms are, as mentioned in the previous section, not an easy task in the general case. 
We can place a strictly positive lower bound 
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 for the probability of the conditioning events. This way our problem reduces to finding an optimal solution to a (non-linear) constrained optimization problem –see, for example (Boyd et al., 2004) for basic concepts and, in general, for more on constrained optimization–. 
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Consider the following constrained optimization problem:
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Notice that for any 
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Maybe it is not too adventurous to assume, given the large number of minimal inconsistent subsets in 
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 and their simple structure, that the intended knowledge to be represented by at least some of these subsets could respond to a different (although in a way similar) representation. That gives rise to another repair strategy that consists of devising alternative representations for the presumably intended knowledge. For example, in CADIAG-2, one might think that the intended knowledge behind a representation of the form 
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Clearly, the latter is probabilistically satisfiable. Certainly, medical support would help in devising such alternative structures but, in the lack of it, assumptions like the one above (slightly more conservative than the original one) could be suitable.  

One last possibility we mention in our brief account is directly related to the inference process of the system and to the possibility of redundant information. For example, some minimal inconsistent sets of Type 4 in CADIAG-2 contain rules that are inferentially redundant (by this we mean, roughly, that its presence or non-presence does not have a bearing in the outcome of a run of the inference engine on the knowledge base). Consider a minimal inconsistent set of the form
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 –see (Ciabattoni et al., 2010; Picado Muiño, 2010) for a brief description of the inference engine in CADIAG-2– and could be removed at no loss for the system.   
CONCLUSION 
While the knowledge base of CADIAG-2, formalized as a probabilistic logic theory, is highly unsatisfiable it is unclear what action this calls for. Inconsistency in a knowledge base may capture critical information and maintaining it may be critical to the integrity of the represented knowledge –see (Gabbay et al., 1991) for a more comprehensive discussion–. Furthermore, the inference engine in CADIAG-2 does not explode in the presence of the inconsistencies found. In this paper we have presented an analysis of the inconsistency which abstracts from the particular details of the inference mechanism in CADIAG-2 and serves as a foundation for extracting, understanding and reusing the knowledge embodied in it.

Regardless of one's preferred strategy for resolving the conflicts, it is clear that detecting them is critical to a complete understanding of the knowledge base which is challenging when we reach the size of CADIAG-2. Even with our (fortuitous) decomposition, the extraction of all conflicts under the standard interpretation of the rules in CADIAG-2 is unfeasible for everyday knowledge base development (we estimate that it will take weeks to extract all conflicts. Of course, if the modelers decide that producing and maintaining a satisfiable version is the right course of action then even several weeks would not be unreasonable as a one-time cost). Subsequent satisfiability checks would go much faster, especially as one can check only the relevant fragment a modeler is working on. This is similar to various proposals from the description logic community for modular ontology development –see (Sattler et al., 2009; Grau et al., 2009 (I); Grau et al., 2009 (II))–. As part of our future work, we intend to integrate more general modular analysis into our reasoner as an optimization. We intend to investigate whether it is necessary to do this decomposition outside of the solver (that is, by decomposing the input knowledge base before even starting to solve PSAT) in the rather crude manner we currently do, or whether modular analysis can be more tightly integrated with the reasoning process. As a related issue, we hope that CADIAG-2, or CADIAG-2-like problems, will be taken up by the PSAT solving community. CADIAG-2 is interestingly different in kind, not only in size, from traditional generated problems while its size sets a new base line for scalable PSAT. 

We believe our analysis demonstrates the value of formalization and automated reasoning services. Merely detecting whether the knowledge base is satisfiable is obviously valuable. However, without conflict set extraction, there was no hope of understanding CADIAG-2's inconsistency. Considering alternative inconsistency metrics generated alternative understandings of the scope and nature of the inconsistency. Together, these services help make the knowledge base more transparent to new modelers.

We have, as yet, to attempt probabilistic entailment from CADIAG-2 or any of its fragments. It is not clear yet the extent to which one could generate interesting queries for CADIAG-2's knowledge base (or, more generally, for CADIAG-2-like knowledge bases) once it has been repaired and possibly modified for inferential purposes –see (Picado Muiño, 2010)–.  
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