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Abstract

We present a family of consequence relations for graded inference
among  Lukasiewicz sentences. Given a set of premises and a threshold
η, we consider consequences those sentences entailed to hold to at least
some degree ζ whenever the premises hold to a degree at least η. We
focus on the study of some aspects and features of the consequence
relations presented and, in particular, on the effect of variations in the
thresholds η, ζ.

1 Introduction

In this paper we present and study the family of consequence relations of
the form η Iζ , for different thresholds η and ζ, aimed at formalizing graded
inference among  Lukasiewicz sentences in the following terms: given a set
of premises and a threshold η, we consider as consequences those sentences
entailed by  Lukasiewicz logic (see, e.g., [7]) to hold to a degree at least ζ
whenever the premises hold to a degree at least η.

The study and analysis of the family of consequence relations of the form
η Iζ carried out in this paper focuses mostly on the effect of variations of the
thresholds η, ζ in relation to a given set of premises Γ and consequence θ. In
particular, given η and a set of premises Γ, we are interested in determining
to which degrees a particular sentence θ holds provided that the sentences
in Γ hold at least to the degree η. This effect is formalized by means of the
function LΓ,θ which, for a given degree η for our set of premises Γ, gives us
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the maximal degree ζ to which θ holds (i.e., the maximal value ζ such that
Γη Iζ θ).

The motivation for the definition of the family of consequence relations
η Iζ and the issues we deal with in this paper partially originated from the
previous study and analysis of the family of consequence relations of the form
η.ζ , first defined in a simplified version in [12] (for η = ζ) and further studied
and extended in [13], [14] and [15]. These consequence relations formalize
graded inference in terms very similar to those of η Iζ , with the main
difference being that the underlying semantics is probabilistic (see, e.g., [11]).
In the context of η.ζ the thresholds η, ζ are considered to be probabilities
(interpreted in the aforementioned references as degrees of belief) rather
than, e.g., truth degrees—the standard interpretation for such values in the
context of  Lukasiewicz logic (see, e.g., [7] or [11]).

The present paper builds on [16] by first summarizing and extending
results in it and, later, by introducing new ideas and methodology related
to further analysis and computation of LΓ,θ. It is structured as follows: in
Section 2 we fix notation and give some preliminary definitions. In Section
3 we introduce the preliminary notion of  Lη-consistency, for use in further
sections. In Section 4 we formally introduce the family of consequence rela-
tions of the form η Iζ and the functions of the form LΓ,θ described above.
Some connections to related work in the literature are also given. Section 5
constitutes the core of the present paper. In it we provide a representation
theorem that offers a full characterization of the functions of the form LΓ,θ.
Intermediate results needed for our representation theorem are provided in
Sections 5.1, where some relevant properties of LΓ,θ are proved, and 5.2,
where some characteristic functions of the form LΓ,θ are analyzed. In Sec-
tion 6, some methodology and insights into the computation of functions of
the form LΓ,θ is presented.

2 Preliminary definitions and notation

Throughout we will be working with a finite set of propositional variables
L = {p1, ..., pm}, for some m ∈ N. We will denote by SL the closure of
L ∪ {⊥} under implication, i.e., the connective ‘→’.

We define now the notion of  L-valuation, based on the standard inter-
pretation of sentences in propositional  Lukasiewicz logic.

Definition 1 Let ω : SL −→ [0, 1]. We say that ω is an  L-valuation on L
if, for φ, θ ∈ SL, we have what follows:
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1. ω(φ→ θ) = min{1, 1− ω(φ) + ω(θ)}

2. ω(⊥) = 0

We will be using in this paper a large number of abbreviations which
correspond to other common logical connectives within the context of many-
valued logics. We consider the following abbreviations, for φ, θ ∈ SL:

• ⊥ → ⊥ is abbreviated by >

• φ→ ⊥ by ¬φ

• ¬(φ→ ¬θ) by φ&θ

• ¬φ→ θ by φ∨θ

• φ&(φ→ θ) by φ ∧ θ

• ((φ→ θ)→ θ) ∧ ((θ → φ)→ φ) by φ ∨ θ.

From Definition 1 we can deduce the behaviour of  L-valuations for the
other connectives aforementioned.

Let φ, θ ∈ SL. We have what follows:

• ω(>) = 1

• ω(¬φ) = 1− ω(φ)

• ω(φ&θ) = max{0, ω(φ) + ω(θ)− 1}

• ω(φ∨θ) = min{1, ω(φ) + ω(θ)}

• ω(φ ∧ θ) = min{ω(φ), ω(θ)}

• ω(φ ∨ θ) = max{ω(φ), ω(θ)}

We will sometimes refer to  L-valuations on L as m-tuples (based on some
ordering of our set of propositional variables L). The set of all such tuples
will be denoted by Dm (i.e., Dm = [0, 1]m).

Let Γ = {φ1, ..., φk} ⊂ SL, for some k ∈ N. We will denote by
∧

Γ the
sentence φ1 ∧ ... ∧ φk. Similarly

∨
Γ,
∨

Γ and &Γ will denote the sentences
φ1 ∨ ... ∨ φk, φ1∨...∨φk and φ1&...&φk respectively.

Sentences of the form φ∧ ...∧ φ where φ occurs k times will be abbrevi-
ated by the expression

∧k θ (and similarly for the other connectives). It is
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customary to refer to &kφ (i.e., φ&...&φ, where φ occurs k times) by φk in
the literature and we will follow this convention.

Let φ ∈ SL. We will denote by Lφ = {q1, ..., qk} ⊆ L the set of propo-
sitional variables that occur in φ. We will sometimes use the notation
φ(q1, ..., qk).

Let ω be an  L-valuation on L. We have that

ω(φ) = f(ω(q1), ..., ω(qk))

for some f : [0, 1]k → [0, 1]. We will denote this f by fφ. Sometimes, we will
write fφ(x1, ..., xk) or, in order to simplify notation slightly, fφ(~x), where ~x
is an m-tuple in Dm (i.e., we consider as many paremeters in f as variables
in L). Such functions we will call NcNaughton functions.

Throughout we will be working with finite subsets of sentences in SL.
Unless otherwise stated we will consider only finite subsets of SL.

Next we state a central theorem in  Lukasiewicz logic that will play an
important role in this paper.

Theorem 2 McNaughton’s Theorem (see [10])
In order that a function f : [0, 1]k → [0, 1] be of the form fφ for some φ ∈

SL it is necessary and sufficient that f satisfy the following two conditions:

1. f is continuous on [0, 1]k.

2. There are a finite number of distinct polynomials with integer coeffi-
cients λi, 1 ≤ i ≤ µ,

λi = bi +m1ix1 + ...+mkixk,

such that for every (x1, ..., xk), 0 ≤ xi ≤ 1 for all i ∈ {1, ..., k}, there
is λj for some j ∈ {1, ..., µ} such that f(x1, ..., xk) = λj(x1, ..., xk).

For a proof of this theorem see [10].

3 The notion of  Lη-consistency

We start this section by defining the notion of  Lη-consistency. To do so,
let us assume that Γ ⊂ SL and η ∈ [0, 1].

Definition 3 We say that Γ is  Lη-consistent if there exists an  L-valuation
ω on L such that ω(

∧
Γ) ≥ η.
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From our notion of  Lη-consistency we derive a degree of consistency for
sets of sentences in SL.

Definition 4 We define the consistency degree of Γ, denoted mc(Γ), as
follows:

mc(Γ) = sup{η | Γ is  Lη-consistent}

These two definitions resemble those of η-consistency and maximal η-
consistency presented in [8].1 Maximal η-consistency was defined as a prob-
abilistic measure of the degree of consistency for sets of sentences in classical
propositional calculus (for more on these notions see [8] or [15]). The notion
of  Lη-consistency and related degrees of consistency of sets of sentences are
presented here simply as some sort of technical notion that will be needed
in further sections (for more on the degree of consistency as a measure of
inconsistency see [15]).

Notice that  Lη-consistency of a set of sentences Γ is the same as  Lη-
consistency of the sentence

∧
Γ. We will talk indistinctively about the con-

sistency of sentences and sets of sentences.

Proposition 5 mc(Γ) is attained by some  L-valuation.

Proof. Let mc(Γ) = η. We can define an increasing sequence {ηn} whose
limit is η such that for all n ∈ N there exists an  L-valuation ~xn ∈ Dm with
f∧Γ(~xn) ≥ ηn. We need to prove that there exists an  L-valuation ~x ∈ Dm
such that f∧Γ(~x) ≥ η.

We can take a convergent subsequence {~x1
nk
} in the first coordinates

of {~xn}. We know such a convergent subsequence needs to exist and con-
verge in the interval [0, 1] by compactness. Next we can pick a convergent
subsequence {~x2

nk
} in the second coordinates of {~x1

nk
}. As before, such sub-

sequence needs to exist and converge in the interval [0, 1] by compactness.
We can proceed in the same way for the other coordinates. The final sub-
sequence, {~xmnk

}, will have as limit an  L-valuation ~x ∈ Dm for which, given
the continuity of McNaughton functions, f∧Γ(~x) ≥ η. �

The two types of sentences that we next define will prove useful in further
sections. We start by defining φ 1

k
as follows, with p ∈ L and k ∈ N:

φ 1
k

= ¬p ∧ pk−1.

1The essential difference being that such notions are defined based on probability func-
tions in L instead of  L-valuations.
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Proposition 6 The sentence φ 1
k

has the consistency degree 1
k .

Proof. It can be easily checked that φ 1
k

has the consistency degree 1
k . Con-

sider the  L-valuation ω on L that assigns to p the value k−1
k . We have that

ω(φ 1
k
) = 1

k . It is also clear that any other  L-valuation ω′ on L for which

ω′(p) < k−1
k or ω′(p) > k−1

k will be such that ω′(φ 1
k
) < 1

k . �

We define now the sentence φr, with r = u
v a rational number in Q∩[0, 1]:

φr =
∨u

φ 1
v
.

Proposition 7 The sentence φr has the consistency degree r.

Proof. By Proposition 6 we have that φ 1
v

has the consistency degree 1
v and

thus
∨uφ 1

v
will have the consistency degree u

v . �

Although obvious, it is worth mentioning that there exists an  L-valuation
ω on L for which ω(φr) = 0. Thus, by continuity of fφr , we will have an
 L-valuation ω on L such that ω(φr) = λ for each λ ∈ [0, r].

4 η Iζ and the function LΓ,θ

Time now to formally define the family of consequence relations of the
form η Iζ introduced in the first section and, from it, the function LΓ,θ.

Throughout let Γ ∪ {θ} ⊂ SL and η, ζ ∈ [0, 1].

Definition 8 We say that Γ (η, ζ)-implies θ if, for all  L-valuations ω on
L, if ω(

∧
Γ) ≥ η then ω(θ) ≥ ζ.

We write Γη Iζ θ to denote that Γ (η, ζ)-implies θ.

Definition 9 The function LΓ,θ : [0, 1] −→ [0, 1] is defined as follows, for
all η ∈ [0, 1]:

LΓ,θ(η) = sup{ζ |Γη Iζ θ}.
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4.1 Related approaches

There exist some approaches in the literature that deal also with graded
inference in the context of  Lukasiewicz logic. Here we briefly provide some
connections between η Iζ and some of these approaches.

Probably the best-known logic that deals with graded truth in the con-
text of  Lukasiewicz semantics is Rational Pavelka Logic (RPL)—see, e.g., [7].
For the sake of comparing RPL and η Iζ let us extend the set of sentences
SL by introducing, for each r ∈ Q∩ [0, 1], the symbol r and further restrict
the behaviour of a valuation ω on L by adding the constraint ω(r) = r. We
also restrict to consequence relations of the form η Iζ with η, ζ ∈ Q∩ [0, 1].
The following fact follows, for Γ ∪ {θ} ⊂ SL and η, ζ ∈ Q ∩ [0, 1]:

η →
∧

Γ `RPL λ→ θ ⇐⇒ Γη Iλ θ.

A recent approach on graded inference within the context of  Lukasiewicz
logic is given by the consequence relation `6∞, defined and analyzed in [2]
and [5]. For the sake of completeness we give the definition of `6∞. For
Γ ∪ {θ} ⊂ SL, we define

Γ `6∞ θ ⇐⇒ for all η ∈ [0, 1] and all  L-valulations ω on L, if
ω(
∧

Γ) ≥ η then ω(θ) ≥ η.

The following equivalences follow trivially:

Γ `6∞ θ ⇐⇒ LΓ,θ(η) ≥ η for all η ∈ [0, 1] ⇐⇒ Γη Iη θ for all
η ∈ [0, 1].

Axiomatizations of sentences that are always above a certain threshold
ζ ∈ [0, 1] in the context of  Lukasiewicz logic are provided in [3]. Thus,
in our terms, [3] provides axiomatizations of those sets of sentences that
are always inferred under η Iζ regardless of the threshold η and the set of
premises considered.

5 A representation theorem for LΓ,θ

In this section we provide a representation theorem that fully character-
izes functions of the form LΓ,θ, for Γ ∪ {θ} ⊂ SL.

We start by showing some relevant features of functions of the form LΓ,θ

that, as will be seen later, prove sufficient for a complete characterization

7



of them. We continue, in Section 5.2, with some representative functions
of the form LΓ,θ. In particular, in Section 5.2.1 we introduce what we call
in this paper basic functions: functions of the form LΓ,θ characterized by
some specificic features that constitute in our approach the building blocks
out of which compound functions, introduced in Section 5.2.2, can be built
that can yield any function of the form LΓ,θ, as stated by the representation
theorem in Section 5.3.

5.1 Some properties of LΓ,θ

The four propositions in this section show some general features of func-
tions of the form LΓ,θ, for Γ ∪ {θ} ⊂ SL.

Proposition 10 Let Γ be  Lη-consistent. There exists an  L-valuation ω on
L such that ω(

∧
Γ) ≥ η and ω(θ) = LΓ,θ(η) = ζ.

Proof. Let us assume that Γ is  Lη-consistent. We proceed in a way similar
to that in the proof of Proposition 5. We can define a decreasing sequence
{ζn} whose limit is ζ such that for all n ∈ N there exists ~xn ∈ Dm with
fθ(~xn) = ζn and f∧Γ(~xn) ≥ η. We have to prove that there exists ~x ∈ Dm
such that fθ(~x) = ζ and f∧Γ(~x) ≥ η.

As before, we take a convergent subsequence {~x1
nk
} in the first coordi-

nates of {~xn}. Next we pick a convergent subsequence {~x2
nk
} in the second

coordinates of {~x1
nk
} and proceed in the same way for the other coordinates.

That all these subsequences exist and converge in the interval [0, 1] follows
from compactness. The final subsequence, {~xmnk

}, will have as limit ~x ∈ Dm
for which fθ(~x) = ζ and f∧Γ(~x) ≥ η. �

In words, Proposition 10 simply states that the value LΓ,θ(η) is attained
by some  L-valuation ω on L, provided that Γ is  Lη-consistent.

Proposition 11 LΓ,θ is increasing.

Proof. It follows directly from the definition of η Iζ . �

For the next proposition assume that mc(Γ) = λ > 0.

Proposition 12 LΓ,θ is left continuous on [0, λ].

Proof. Let us proceed by reductio ad absurdum by assuming that there exists
η ∈ (0, λ] and ε > 0 such that

LΓ,θ(η)− LΓ,θ(x) > ε
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for all x ∈ [0, η).
Let ζ = sup {LΓ,θ(x)|x < η}. We can define an increasing sequence {ηn}

with limit η and a sequence {ζn} with limit ζ such that for all n ∈ N there
exists ~xn ∈ Dm with f∧Γ(~xn) = ηn and fθ(~xn) = ζn.

We proceed as in previous proofs by taking suitable convergent subse-
quences of {~xn} at each step until we come to {~xmnk

}, which will have as
limit a valuation ~x ∈ Dm for which f∧Γ(~x) = η and fθ(~x) = ζ since LΓ,θ is
increasing. Therefore LΓ,θ needs to be continuous from the left at η. �

Proposition 13 LΓ,θ is of the following form:

LΓ,θ(η) =


a1η + b1 if η ≤ λ1

...
akη + bk if λk−1 < η ≤ λk

with ai, bi, λi ∈ Q and k ∈ N, i ∈ {1, ..., k}.

Proof. Let R = 〈R,+,−, <,=, 0, 1〉.2
The set of pairs

{(x, y) ∈ R2| y = LΓ,θ(x)}

is R-definable (notice that, since R is an elementary extension of the struc-
ture Q = 〈Q,+,−, <,=, 0, 1〉, it is Q-definable too).

The theory of R has quantifier elimination (see for example [9]). There-
fore the set of pairs

{(x, y) ∈ R2| y = LΓ,θ(x)}

is given by a finite boolean combination (which reduces to a finite union of
intersections by the complement and distributive laws for sets) of sets of the
form

{(x, y) ∈ R2| ay < bx+ c}

and
{(x, y) ∈ R2| ay = bx+ c}

for a, b, c ∈ Z.
Notice that each non-empty intersection of sets of such form is convex

so, since LΓ,θ is a function, such intersection has to be a line segment (with
coefficients and bounds in Q).

That LΓ,θ is left continuous was stated and proved in Proposition 12. �

2Here by ‘−’ we mean the map given by x −→ −x.
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5.2 Building functions of the form LΓ,θ

As mentioned earlier, the aim of this section is to provide basic functions
of the form LΓ,θ for particular Γ∪ {θ} ⊂ SL out of which, by some suitable
operations, any other function of that form can be obtained.

5.2.1 Basic functions

We define five types of basic functions.

Proposition 14 (Type 1)
Let r, s ∈ [0, 1] ∩ Q. We can find Γ ∪ {θ} ⊂ SL for which LΓ,θ is as

follows:

LΓ,θ(η) =

{
s if η ≤ r
1 otherwise

Proof. Let 0 < r = u1
v1

and 0 < s = 1− u2
v2
< 1.

Let Γ = {
∨u1φ 1

v1

}, with φ 1
v1

= ¬p∧pv1−1 and p ∈ L. As seen previously,

Γ has the consistency degree r.
On the other hand take φ 1

v2

= ¬q∧qv2−1, for q ∈ L, q 6= p. The sentence∨u2φ 1
v2

has the consistency degree u2
v2

. Thus there is no  L-valuation ω on L

such that
ω
(
¬
(∨u2

φ 1
v2

))
< 1− u2

v2
= s.

Set θ = ¬
(∨u2φ 1

v2

)
. Clearly, for Γ and θ thus defined, LΓ,θ is as stated

above.
For r = 0 we can take

∧
Γ to be an  L-contradiction. If s = 0 we can

take θ to be an  L-contradiction and, if s = 1, an  L-tautology. �

It is worth remarking the importance of a subclass of this type of func-
tions; namely, the function given for s = 0.

Notice that in the above example Γ is not  L1-consistent. Later on, in
order to prove the representation theorem for the functions LΓ,θ, we will
need to appeal to functions of this form for  L1-consistent sets of premises.
From McNaughton’s Theorem we can claim that there exist sentences

∧
Γ

and θ involving only one propositional variable—say p ∈ L—with
∧

Γ  L1-
consistent such that LΓ,θ(η) = 0 for η ≤ r and LΓ,θ(η) = 1 for η > r, for any
r ∈ [0, 1]∩Q. To see this consider for example f∧Γ(x) to be of the following
form:

10



f∧Γ(x) =


a1x if x ≤ 1+b2

a1+a2

1− (a2x− b2) if 1+b2
a1+a2

< x ≤ 1+b2
a2

a3x− b3 if 1+b2
a2

< x ≤ c
1 otherwise

Here a1, a2, a3, b2, b3 are positive integers and c is a rational number.
Other conditions on these values are that

a1

( 1 + b2
a1 + a2

)
= 1−

(
a2

( 1 + b2
a1 + a2

)
− b2

)
= r, 1 + b2 < a2,

1−
(
a2

(1 + b2
a2

)
− b2

)
= a3

(1 + b2
a2

)
− b3 = 0 and a3c− b3 = 1.

Let us also consider fθ(x) of the following form:

fθ(x) =


0 if x ≤ d1

a4x− b4 if d1 < x ≤ d2

1 otherwise

Here a4, b4 are positive integers and d1, d2 are rational numbers. Other
conditions on these values are a4d1 − b4 = 0, a4d2 − b4 = 1 and

1 + b2
a1 + a2

≤ d1 < d2 ≤
1 + b2
a2

.

For
∧

Γ and θ of this form the function LΓ,θ will be as desired. Notice
that

f∧Γ

( 1 + b2
a1 + a2

)
= r, fθ

( 1 + b2
a1 + a2

)
= 0

and, for all x ∈ [0, 1] for which f∧Γ(x) > r we have that fθ(x) = 1.

Proposition 15 (Type 2)
Let r, s ∈ [0, 1] ∩ Q, with r < s. We can find Γ ∪ {θ} ⊂ SL for which

LΓ,θ is of the following form:

LΓ,θ(η) =


0 if η ≤ r
η−r
s−r if r < η < s

1 otherwise
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Proof. Let 0 < r = u1
v1
< s = u2

v2
.

Take s− r = u2v1−u1v2
v1v2

and define ψ1 and θ as follows:

ψ1 =
∨u2v1−u1v2

φ 1
v1v2

θ =
∨v1v2

φ 1
v1v2

.

Here φ 1
v1v2

= ¬p ∧ pv1v2−1, for p ∈ L.

Define ψ2 as follows:

ψ2 =
∨u1

φ 1
v1

.

We take φ 1
v1

to be ¬q∧qv1−1, for q ∈ L with q 6= p, and set Γ = {ψ1∨ψ2}.
LΓ,θ is as required. To see this notice that, since ψ2 has the consistency

degree r, LΓ,θ(η) = 0 for all η ∈ [0, r] and that any  L-valuation ω on L for
which ω(ψ1) = λ(s − r), for λ ∈ [0, 1], is such that ω(θ) = λ. If r = 0 then
we can dispense with ψ2 and take Γ = {ψ1}. �

As with Type 1 McNaughton’s Theorem guarantees the existence of
∧

Γ
 L1-consistent and θ such that LΓ,θ is as above. To see this consider φ(p)
and θ(p) (with p ∈ L) for which fφ(x) and fθ(x) are of the following form:

fφ(x) =

{
bx if x ≤ 1

b
1 otherwise

fθ(x) =

{
ax if x ≤ 1

a
1 otherwise

Here a, b ∈ N and a
b = 1

s−r . Notice that L{φ},θ(η) = aη
b for all η ≤ b

a . We
can then set Γ = {φ∨ψ2}, where ψ2 is as defined above. The function LΓ,θ

will be as stated, with Γ  L1-consistent.

Proposition 16 (Type 3)
Let r, s ∈ [0, 1] ∩Q. We can define Γ ∪ {θ} ⊂ SL for which LΓ,θ has the

following form:

LΓ,θ(η) =

{
0 if η ≤ r
s(η−r)

1−r otherwise
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Proof. Let r = u1
v1

and s = u2
v2

. We have to distinguish two possible cases
here:

Case 1. s
1−r ≤ 1.

Consider s
1−r = u2v1

v2(v1−u1) .
We first define ψ1 and θ as follows:

ψ1 =
∨v2(v1−u1)

φ 1
v2(v1−u1)

,

θ =
∨u2v1

φ 1
v2(v1−u1)

.

Here φ 1
v2(v1−u1)

= ¬p ∧ pv2(v1−u1)−1, for p ∈ L.

Let us now define ψ2 for r > 0 as follows:

ψ2 =
∨u1

φ 1
v1

.

Here φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L with q 6= p. We set Γ = {ψ1∨ψ2}. We

can clearly see that LΓ,θ is as stated.
Notice that if r = 0 then we can dispense with ψ2 and set Γ = {ψ1}.

Case 2. s
1−r > 1.

Consider 1−r
s = v2(v1−u1)

u2v1
.

We now define ψ1 and θ in the following way:

ψ1 =
∨v2(v1−u1)

φ 1
u2v1

,

θ =
∨u2v1

φ 1
u2v1

with φ 1
u2v1

= ¬p ∧ pu2v1−1, for p ∈ L.

Define ψ2 as in Case 1 and set Γ = {ψ1∨ψ2}. LΓ,θ will be as stated. �

Proposition 17 (Type 4)
Let r, s ∈ [0, 1] ∩Q, with r < s. We can define Γ ∪ {θ} ⊂ SL for which

LΓ,θ(η) = (s− r)η + r.
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Proof. Let r = u1
v1
< s = u2

v2
. Take s− r = u2v1−u1v2

v1v2
and define ψ and θ1 as

follows:

ψ =
∨v1v2

φ 1
v1v2

,

θ1 =
∨u2v1−u1v2

φ 1
v1v2

,

where φ 1
v1v2

= ¬p ∧ pv1v2−1, for p ∈ L.

Let us define θ2 as follows:

θ2 = ¬
(∨u1

φ 1
v1

)
.

Here φ 1
v1

= ¬q ∧ qv1−1, with q ∈ L and q 6= p.

By setting θ = θ1∨θ2 and Γ = {ψ} we get LΓ,θ of the desired form.
If r = 0 then we set θ = θ1. �

Proposition 18 (Type 5)
Let r, s ∈ [0, 1] ∩Q. We can define Γ ∪ {θ} ⊂ SL for which LΓ,θ has the

following form:

LΓ,θ(η) =

{
η(1−r

s ) + r if η ≤ s
1 otherwise

Proof. Let 0 < r = u1
v1

and s = u2
v2

. We have to distinguish two possible cases:

Case 1. 1−r
s > 1.

Consider s
1−r = u2v1

v2(v1−u1) and define ψ and θ1 as follows:

ψ =
∨u2v1

φ 1
v2(v1−u1)

,

θ1 =
∨v2(v1−u1)

φ 1
v2(v1−u1)

,

with φ 1
v2(v1−u1)

= ¬p ∧ pv2(v1−u1)−1, for p ∈ L.

On the other hand define θ2 as follows:

θ2 = ¬
(∨u1

φ 1
v1

)
,
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with φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L and q 6= p.

Set θ = θ1∨θ2 and Γ = {ψ}. The function LΓ,θ will be as desired.
If r = 0 then we can set θ = θ1.

As with Type 1 and Type 2, McNaughton’s Theorem guarantees the
existence of sentences

∧
Γ and θ in one variable (say p ∈ L), with

∧
Γ  L1-

consistent, such that LΓ,θ is of the required form. Consider for example φ
and ψ for which fφ(x) and fψ(x) are defined as those seen previously for
Type 2:

fφ(x) =

{
bx if x ≤ 1

b
1 otherwise

fψ(x) =

{
ax if x ≤ 1

a
1 otherwise

Here a, b ∈ N and a
b = 1−r

s .
Set Γ = {φ} and θ = {ψ∨θ2}, where

θ2 = ¬
(∨u1

φ 1
v1

)
and φ 1

v1

= ¬q ∧ qv1−1, with q ∈ L and q 6= p.

Clearly LΓ,θ will be as stated, with Γ  L1-consistent.

Case 2. 1−r
s ≤ 1.

Consider 1−r
s = v2(v1−u1)

u2v1
and define ψ and θ1 as follows:

ψ =
∨u2v1

φ 1
u2v1

,

θ1 =
∨v2(v1−u1)

φ 1
u2v1

,

where φ 1
u2v1

= ¬p ∧ pu2v1−1, for p ∈ L.

Define θ2 as in Case 1 and set θ = θ1∨θ2 and Γ = {ψ}. The function
LΓ,θ will be as desired.

For r = 0 we dispense again with θ2. �

5.2.2 Compound functions

In order to introduce compound functions, let L1, L2 be two disjoint sets
of propositional variables and SL1, SL2 their respective sets of sentences.
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Take Γ1 ⊂ SL1, Γ2 ⊂ SL2 and θ1 ∈ SL1, θ2 ∈ SL2. Assume that Γ = Γ1∪Γ2

has the consistency degree λ.

Proposition 19 For all η ∈ [0, 1],

max{LΓ1,θ1(η),LΓ2,θ2(η)} = LΓ1∪Γ2,θ1∨θ2(η).

Proof. It follows trivially from the interpretation of the connective ‘∨’. �

Proposition 20 For all η ∈ [0, λ],

min{LΓ1,θ1(η),LΓ2,θ2(η)} = LΓ1∪Γ2,θ1∧θ2(η).

Proof. It follows trivially from the interpretation of ‘∧’. �

We can extend these propositions to any finite collection of sets of sen-
tences Γ1 ⊂ SL1, ...,Γk ⊂ SLk and θ1 ∈ SL1, ..., θk ∈ SLk, for some k ∈ N,
with L1, ..., Lk a collection of pairwise disjoint sets of propositional variables.

5.3 Representation theorem

At this point we have all the intermediate results necessary for the rep-
resentation theorem that we finally present in this section.

Theorem 21 Representation Theorem. The function F : [0, 1] −→
[0, 1] is of the form LΓ,θ for some Γ ∪ {θ} ⊂ SL if and only if F is an
increasing function of the following form:

F(x) =


a1x+ b1 if x ≤ λ1

...
akx+ bk if λk−1 < x ≤ λk

with ai, bi, λi ∈ Q and k ∈ N, i ∈ {1, ..., k}.

Proof. If the function F : [0, 1] −→ [0, 1] is of the form LΓ,θ for some
Γ ∪ {θ} ⊂ SL then we know, by Propositions 11 and 13, that F will be an
increasing function of the form stated in the theorem.

Let us prove now the left implication.

Let F : [0, 1]→ [0, 1] be as stated.
We will denote the line segment given by aix + bi and λi−1 < x ≤ λi

by li, for i ∈ {2, ..., k} (l1 will be the line segment given by a1x + b1 and
x ≤ λ1).
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Let us define Γ and θ for which LΓ,θ(η) = F(η) for all η ∈ [0, 1].

First, let li be a line segment of F , i ∈ {1, ..., k} (without loss of gener-
ality we can assume that i 6= 1). We can define Γi ⊂ SL  L1-consistent and
θi ∈ SL for which LΓi,θi is as follows:

LΓi,θi(x) =


aiλi−1 + bi if x ≤ λi−1

aix+ bi if λi−1 < x ≤ λi
1 otherwise

To see this set

LΓi,θi(η) = max{L∆1,ψ1(η),max{L∆2,ψ2(η),L∆3,ψ3(η)}}

for all η ∈ [0, 1], with ∆j ⊆ SLj  L1-consistent and ψj ∈ SLj for all j ∈
{1, 2, 3}, where L1, L2, L3 are pairwise disjoint.
L∆1,ψ1 and L∆2,ψ2 are of Type 1 :

L∆1,ψ1(x) =

{
0 if x ≤ λi
1 otherwise

L∆2,ψ2(x) = aiλi−1 + bi for all x ∈ [0, 1]

The nature of the straight line aix+bi will determine the type of function
of L∆3,ψ3 . We will choose ∆3 and ψ3 such that the function L∆3,ψ3 contains
the straight segment aix+ bi, for λi−1 < x ≤ λi. That L∆3,ψ3 will be of one
of the types described in the previous subsection is clear.

It can easily be seen that

F(η) = L⋃Γi,
∧
θi(η) = min{LΓi,θi(η) | i ∈ {1, ..., k}}

for all η ∈ [0, 1], with Γ1 ⊂ SL1, ...,Γk ⊂ SLk, θ1 ∈ SL1, ..., θk ∈ SLk and
L1, ..., Lk a pairwise disjoint collection of sets of propositional variables. �

6 The computation of LΓ,θ

In this section we deal with the computation of LΓ,θ(η), for particular
Γ = {φ1, ..., φk} ⊂ SL (for k ∈ N), θ ∈ SL and η ∈ [0, 1]. In particular,
we show methodology based on finding the solution to certain constrained
optimization problems in order to compute LΓ,θ(η). Similar methodology
was presented in [17] in order to compute the amount of inconsistency (un-
derstood as distance to consistency) in knowledge bases with graded propo-
sitions, where grades represent truth values in the context of  Lukasiewicz
logic.
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Throughout we will assume that L =
⋃k
i=1 Lφi (recall that Lφi is the set

of propositional variables that occur in φi).

Consider the following constrained optimization problem with optimiza-
tion variable the m-tuple ~x ∈ Rm:

minimize fθ(~x) (1)

subject to the following constraints:

• fφi(~x) ≥ η for each i ∈ {1, ..., k},

• ~x ∈ Dm (i.e., 0 ≤ xi ≤ 1 for each i ∈ {1, ...,m}),

Let us denote the constrained optimization problem (1) by C[Γ,θ,η]. We
define SC[Γ,θ,η], the solution to C[Γ,θ,η], as follows:

SC[Γ,θ,η] = inf
~x∈Dm

{fθ(~x) | ~x ∈ Rm is feasible}.

By ~x being feasible we mean that ~x satisfies the constraints in C[Γ,θ,η].
The collection of all such tuples is called the feasible set (of C[Γ,θ,η])—see,
e.g., [4] for more on these concepts and, in general, on the terminology and
basic definitions for constrained optimization problems.

Notice that SC[Γ,θ,η] does not exist if the feasible set of C[Γ,θ,η] is empty,
in which case we will have that LΓ,θ(η) = 1. Otherwise, as is clear from the
definition of LΓ,θ, we will have that

LΓ,θ(η) = SC[Γ,θ,η].

In C[Γ,θ,η], neither the objective function fθ nor functions fφi in the con-
straints (for i ∈ {1, ..., k}) need to be convex, let alone linear. That places
our problem C[Γ,θ,η] within non-convex optimization grounds and, unfortu-
nately, there is no effective methodology for dealing with non-convex op-
timization problems for the general case—see, e.g., [1] or [4] for more on
these issues. However, our case is peculiar in that McNaughton functions
are piecewise linear, only the min operator breaks linearity.

Our aim is to express our problem C[Γ,θ,η] in an equivalent form involving
only linear objective functions and constraints since, as it is well known,
there exist effective and efficient algorithms for linear optimization—see [4].
We can do so in a pretty trivial way by observing that, for general functions
g, h with domain in Rm, the set

{~x | min{g(~x), h(~x)} ∈ I},
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for I a real interval in R, is equal to the union of sets

{~x | g(~x) ∈ I, g(~x) ≤ h(~x)} ∪ {~x | h(~x) ∈ I, h(~x) ≤ g(~x)}.

Notice that for g, h linear the constraints in the sets {g(~x) ∈ I, g(~x) ≤
h(~x)} and {h(~x) ∈ I, h(~x) ≤ g(~x)} are linear too.

We start by picking one of the innermost min operators occurring in the
objective function fθ in C[Γ,θ,η] (that is to say, that there is no other min
operator within the scope of the chosen one—that if any such operator occurs
at all in fθ). Let us assume that the arguments of the min operator chosen
are g, h. We eliminate such operator by generating two new optimization
problems with distinct objective functions:

• An optimization problem with objective function f1
θ , obtained from

fθ by replacing min{g(~x), h(~x)} for g(~x), and constraint set that of
C[Γ,θ,η] extended with the new linear constraint g(~x) ≤ h(~x).

• An optimization problem with objective function f2
θ (~x), obtained from

fθ by replacing min{g(~x), h(~x)} for h(~x), and constraint set that of
C[Γ,θ,η] extended with the new linear constraint h(~x) ≤ g(~x).

We proceed in the same way for the objective function of each new
optimization problem that we obtain this way until all the min operators
are eliminated. At the end of this process we will have a finite collection
of new optimization problems with a linear objective function. For what
follows, we will assume that the number of such problems is t ∈ N and will
denote each one of them by Ci[Γ,θ,η], for i ∈ {1, ..., t}.

Now we need to eliminate the min operators occurring in the set of
constraints of Ci[Γ,θ,η], for each i ∈ {1, ..., t}. To do so, we will proceed in a
way similar to that above for eliminating the min operators in the objective
function. As an example, let us consider a constraint of the form fφ(~x) ≥ ζ
in Ci[Γ,θ,η], for some i ∈ {1, ..., t} and ζ ∈ [0, 1]. As before, we will pick one
of the innermost min operators in fφ, with arguments g and h, and will
eliminate it by producing two new optimization problems:

• An optimization problem obtained from Ci[Γ,θ,η] by replacing the con-

straint fφ(~x) ≥ ζ for two new constraints: the first one, f1
φ(~x) ≥ ζ,

obtained from fφ(~x) ≥ ζ by replacing min{g(~x), h(~x)} for g(~x), and
the second one, given by g(~x) ≤ h(~x).
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• An optimization problem obtained from Ci[Γ,θ,η] as above, by replacing

the constraint fφ(~x) ≥ ζ for two new constraints: the first one, f2
φ(~x) ≥

ζ, obtained from fφ(~x) ≥ ζ by replacing min{g(~x), h(~x)} for h(~x), and
the second one, given by h(~x) ≤ g(~x).

We proceed in the same way for every newly generated optimization
problem until all the min operators are eliminated. At the end of this pro-
cess we will obtain a finite collection of linear optimization problems (i.e.,
linear programmes). We will denote the number of such linear programmes
generated from Ci[Γ,θ,η] by si and the collection of linear programmes them-

selves by Ci,j[Γ,θ,η], for each i ∈ {1, ..., t} and j ∈ {1, ..., si}.

We can view this whole process as the generation of a tree where the
nodes are given by the distinct optimization problems generated, with root
C[Γ,θ,η]. An iteration in the process corresponds to the generation of exactly
two new optimization problems that arise from the elimination of an in-
nermost min operator in the objective function or in the constraints of the
preceding optimization problem (in the tree, the parent of the two new prob-
lems obtained) in the way indicated above. The process terminates when
the leaves of the generated tree have no min operators left.

For the next proposition let us consider the linear programme Ci,j[Γ,θ,η], for

i ∈ {1, ..., t} and j ∈ {1, ..., si}.

Proposition 22 If the feasible set of SCi,j[Γ,θ,η] is not empty then SCi,j[Γ,θ,η]
exists and is attained by some feasible point in Rm.

Proof. The result follows from compactness of the feasible set. �

The next result summarizes the relation between our collection of linear
programmes of the form Ci,j[Γ,θ,η], for i ∈ {1, ..., t} and j ∈ {1, ..., si}, and our
original problem C[Γ,θ,η].

Proposition 23 Let us assume that SC[Γ,θ,η] exists. We then have the fol-
lowing identity:

SC[Γ,θ,η] = min
i,j
{SCi,j[Γ,θ,η]},

where i, j range over values in {1, ..., t} and {1, ..., si} respectively for which
SCi,j[Γ,θ,η] exists.

Proof. The result follows basically from the fact that the union of the feasible
sets of the linear programmes of the form Ci,j[Γ,θ,η] is equal to the feasible set
of C[Γ,θ,η]. �
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Summarizing, the computation of LΓ,θ reduces to finding the solution of
a collection of linear optimization problems (for which there exist efficient
algorithms). However, the number of problems to be considered shows an
exponential growth with respect to the min operators in the McNaughton
functions that correspond to the sentences in Γ ∪ {θ}. Notice that, for
r ∈ N the number of min operators occurring in C[Γ,θ,η], the number of
linear programmes that we need to generate is, at least in principle, 2r.
However, it will not be necessarily so in most cases. At each step in the
generation of our collection of optimization problems we can obtain a new
problem whose feasible set is known to be empty and thus it will not need to
be considered any further for the generation of new optimization problems
(in graph terminology, a branch corresponding to a certain problem whose
feasible set is known to be empty can be closed). This way we could reduce
the number of linear programmes to be considered (the number of leaves in
graph terminology) in order to calculate LΓ,θ(η).

7 Conclusion

The central notion of this paper is the family of consequence relations
η Iζ , for distinct thresholds η and ζ, intended to formalize graded infer-
ence in the context of  Lukasiewicz logic in the following terms: given set of
premises and threshold η, we consider as consequences those sentences that,
by  Lukasiewicz logic, are entailed to hold to the degree at least ζ whenever
the premises hold at least to the degree η.

Our analysis of consequence relations of the form η Iζ in this paper
mostly focused on the effect of variations of the thresholds η, ζ in relation
to a given set of premises Γ and consequence θ. Such effect was formalized
by means of the function LΓ,θ which, for a given threshold η for Γ, gives us
the maximal threshold ζ such that Γη Iζ θ. The main result given in this
paper, in relation to our analysis of functions of the form LΓ,θ, was a full
characterization of them (i.e., a representation theorem for these functions
that provides necessary and sufficient conditions for a map to be of the form
LΓ,θ for some set of sentences Γ ∪ {θ}).

Part of our analysis of functions of the form LΓ,θ was devoted to method-
ology for their computation. In particular, an equivalence between LΓ,θ(η)
and the solution of a certain collection of linear optimization problems (i.e.,
linear programmes) was established. It is known that there exist efficient
algorithms for solving linear programmes. However, the number of them to
be considered for the computation of LΓ,θ shows an exponential growth with
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respect to the number of implications occurring in Γ∪{θ}, thus making our
problem potentially infeasible for considerably large Γ ∪ {θ}.

Much is left to be analyzed about the family of consequence relations
η Iζ . In particular, a logic based on these relations is yet to be found.
In relation to the issues presented here, some further research could also
be desirable (e.g., our methodology for computing LΓ,θ(η) could probably
benefit from further research).
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