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Abstract. First-order Gödel logic with the projection operator 4 (G4∞) is an important
many-valued as well as intermediate logic. In contrast to classical logic, the validity and
the satisfiability problems of G4∞ are not directly dual to each other. We nevertheless
provide a uniform, computational treatment of both problems for prenex formulas by
describing appropriate translations into sets of order clauses that can be subjected to
chaining resolution. For validity a version of Herbrand’s Theorem allows us to show the
soundness of standard Skolemization. For satisfiability the translation involves a novel,
extended Skolemization method.

1. Introduction

In classical logic efficient, resolution based theorem proving is a two step process. To
prove the validity of an arbitrary first-order formula F we first translate its negation into
a Skolemized, purely universal conjunctive normal form of ¬F . This normal form directly
corresponds to “logic free” syntax, namely to a set of clauses cl(¬F ) that can be subjected
to Robinson’s celebrated resolution mechanism to test for unsatisfiability. The well attested
efficiency of resolution, compared to other proof search methods, is due to the combination
of the unification principle (the existence of most general unifiers) and simple atomic cuts
as the only inference steps. The original formula F is valid if and only if the empty clause,
representing contradiction, is derivable from cl(¬F ) in this manner.

Note that in classical logic testing the validity of F is equivalent to testing the unsat-

isfiability of ¬F . This duality is lost in the logic G4∞ that we will consider here, namely
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Gödel logic enriched by the projection operator 4 [2]. There are indeed G4∞-formulas F

that are unsatisfiable, in the sense that there is no interpretation in G4∞ that assigns the

designated truth value 1 to F , and nevertheless ¬F is not valid in G4∞. The importance
of Gödel logic is emphasized by the fact that it naturally turns up in a number of differ-
ent contexts; among them fuzzy logic [18], intermediate logics [28], the provability logic of
Heyting arithmetic [29] and logic programming [24]. In these contexts, both the validity
problem and the satisfiability problem are of interest. In particular the latter is often cru-
cial for applications, for instance to detect inconsistencies in the knowledge base of fuzzy
rule-based systems [13]. The operator 4, which maps 4G to the designated truth value 1 if
the value of G equals 1, and to 0 otherwise, greatly increases the expressive power of Gödel
logic and its applicability. However, it renders the resulting logic more complicated. For

instance, checking whether a formula of G4∞ is valid or satisfiable is undecidable already
in the prenex and monadic case, i.e. when considering formulas with only unary predicates
and no function symbols where a string of quantifiers precedes a quantifier free part; in
contrast, without 4 satisfiability for prenex formulas is decidable, see [5, 3].

Our aim is to provide a uniform treatment of the validity and the satisfiability problem

for first-order G4∞ in as close analogy to classical logic as possible.
In contrast to propositional Gödel logic with or without 4 (e.g. [17, 22]), efficient

automated theorem proving at the first-order level seems to be beyond the current state of
the art, if possible at all. Thus it is reasonable to consider appropriate non-trivial fragments.

Here we focus on the prenex fragment of G4∞. We describe an efficient translation of such
formulas into sets of order clauses that can then be subjected to chaining resolution [12, 11]
to test for unsatisfiability. A central challenge here is to prove the soundness of (appropriate
versions of) Skolemization.

The results below mainly bring together and round off what we have presented in
preliminary form in two conference papers, [3] and [8]. The current paper is organized as

follows. Section 2 provides formal definitions and basic facts about G4∞. Section 3 is devoted

to Skolemization for prenex G4∞. This requires a separate and different treatment of the
validity and the satisfiability case. In Subsection 3.1 we prove that the standard Skolemiza-
tion method that replaces strong quantifier occurrences by newly introduced Skolem terms

preserves validity for prenex formulas in G4∞. The proof involves a version of Herbrand’s
theorem as well as a rather general statement about “reverse Skolemization”, which is of
independent interest. For testing (un-)satisfiability we cannot proceed as in classical logic,
but rather introduce a novel extended form of Skolemization that, in addition to replacing
weak quantifier occurrences by Skolem terms, introduces a fresh monadic predicate symbol.
In Section 4 we demonstrate that the results of Section 3 enable a translation of prenex

G4∞-formulas into corresponding clause forms of a particular kind, namely order clauses
that are to be interpreted in the theory of dense linear orders with endpoints. To achieve
a reasonably efficient translation process we use definitional normal forms that introduce
new predicate symbols for non-atomic subformulas. We show that both the validity and the

satisfiability problem for prenex G4∞ can be reduced to proving (un-)satisfiability of corre-
sponding sets of order clauses. For the final step of theorem proving we rely on known results
about so-called ordered chaining resolution [11, 12]. To render the paper self-contained we
will explicitly state in Subsection 4.2 which inference rules and corresponding soundness
and completeness result are needed in our specific case.



THEOREM PROVING FOR PRENEX G4∞ 3

2. Gödel Logic with 4

First-order Gödel logic G∞, sometimes also called intuitionistic fuzzy logic [28] or
Dummett’s LC (eg. in [1, 16], referring to [15]), arises from intuitionistic logic by adding the

axiom of linearity (P → Q) ∨ (Q→ P ) and the axiom ∀x(P (x)∨Q(x))→ (∀xP (x))∨Q(x)

(∨-shift), where the notation A(x) indicates that there is no free occurrence of x in A.
Semantically Gödel logic can be viewed as an infinite-valued logic where the real interval

[0, 1] is taken as the set of truth values.1 An interpretation I consists of a non-empty
domain D and a valuation vI that maps constant symbols and object variables to elements
of D and n-ary function symbols to functions from Dn into D; vI extends in the usual way
to a function mapping all terms of the language to an element of the domain. Moreover,
every n-ary predicate symbol p is mapped to a function vI(p) of type Dn 7→ [0, 1]. The
truth-value of an atomic formula (atom) p(t1, . . . , tn) is defined as

‖p(t1, . . . , tn)‖I = vI(p)(vI(t1), . . . , vI(tn)).

For the truth constants ⊥ and > we have ‖⊥‖I = 0 and ‖>‖I = 1.
The semantics of propositional connectives is given by

‖A ∧B‖I = min(‖A‖I , ‖B‖I), ‖A ∨B‖I = max(‖A‖I , ‖B‖I),

‖A→ B‖I =

{
1 if ‖A‖I ≤ ‖B‖I
‖B‖I otherwise.

Henceforth we will consider the following abbreviations: ¬A for A → ⊥ and A ↔ B for
(A→ B) ∧ (B → A). Therefore

‖¬A‖I =

{
1 if ‖A‖I = 0

0 otherwise
‖A↔ B‖I =

{
1 if ‖A‖I = ‖B‖I
min(‖A‖I , ‖B‖I) otherwise.

For quantification we define the distribution of a formula A with respect to a free variable
x in an interpretation I as distrI(A(x)) = {‖A(x)‖I[d/x] | d ∈ D}, where I[d/x] denotes the
interpretation that is exactly as I, except for insisting on vI[d/x](x) = d. Similarly we

will use I[d/x] for the interpretation arising from I by assigning the domain element di in
d = d1, . . . , dn to the variable xi in x = x1, . . . , xn (1 ≤ i ≤ n). The universal and existential
quantifiers correspond to the infimum and supremum, respectively, in the following sense:

‖∀xA(x)‖I = inf distrI(A(x)) ‖∃xA(x)‖I = sup distrI(A(x)).

2.1. The projection operator 4. Following [2], we enrich the language of G∞ by adding
the unary operator 4 with the following meaning:

‖4A‖I =

{
1 if ‖A‖I = 1

0 otherwise.

The resulting logic—denoted as G4∞—is strictly more expressive than G∞. 4 allows
to recover classical reasoning inside “fuzzy reasoning” in a very simple and natural man-

ner: if all atoms are prefixed by 4 then G4∞ coincides with classical logic. However, the

1For more information about Gödel logic—its winding history, importance, variants, alternative semantics
and proof systems—see, e.g., [10, 4, 18, 27, 9].
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expressive power of 4 goes considerably beyond this. In particular, observe that in gen-

eral 4∃xP (x) → ∃x4P (x) is not valid in G4∞. (There are interpretations I such that
‖∃xP (x)‖I = 1 although ‖P (x)‖I[d/x] < 1 for all domain elements d.).

Definition 2.1. A formula A is valid in G4∞ (in symbols: |=
G4∞

A) if ‖A‖I = 1 for all

interpretations I. A is (1-)satisfiable (in symbols: A ∈ 1SAT) if ‖A‖I = 1 for at least one
interpretation I. Every such interpretation is called a model of A.

Remark 2.2. In G∞ and G4∞ validity as well as 1-satisfiability of a formula depend only
on the relative order of the truth values of atomic formulas, but not on their specific values.

Remark 2.3. In contrast to classical logic, in G4∞ validity and 1-(un)satisfiability are

not dual concepts.2 For instance, the formula ¬(B ∧ ¬4B) is not valid in G4∞, although
B ∧ ¬4B is unsatisfiable.

Since G4∞ does not contain the identity predicate, the following version of the Löwenheim-
Skolem theorem is easily obtained, just like for classical or intuitionistic logic.

Proposition 2.4 ([10]). Every 1-satisfiable formula of G4∞ has a model with countably
infinite domain.

We list a few valid schemes of G4∞ that will be used in later sections. Recall that the
notation A(x) indicates that there is no free occurrence of x in A.

Lemma 2.5. Let A and B be formulas of G4∞.

(1) |=
G4∞
4A→ A

(2) |=
G4∞
4(A ∨B)↔ (4A ∨4B)

(3) |=
G4∞

A(t)(x) → ∃xA(x)

(4) |=
G4∞
4∀xA↔ ∀x4A

(5) |=
G4∞
∀x(A(x) → B(x))→ (A(x) → ∀xB(x))

(6) |=
G4∞
∀x(B(x)→ A(x)))→ (∃xB(x)→ A(x))

2.2. Prenex Fragment. The prenex fragment of a logic is the set of all closed formulas
of the form Q1x1 . . .QnxnP , where P is quantifier free and Qi ∈ {∀,∃} for 1 ≤ i ≤ n. Like
in intuitionistic logic, also in Gödel logic (with or without 4) quantifiers cannot be shifted
arbitrarily. Indeed the following classical quantifiers shifting laws do not hold:

• (∀xA→ B(x))→ ∃x(A→ B(x))

• (B(x) → ∃xA)→ ∃x(B(x) → A).

As a consequence arbitrary formulas are not equivalent to prenex formulas, in general.

Nevertheless the prenex fragment of G4∞ is quite expressive. By encoding the classical theory
of two equivalence relations one can show that both the validity and the 1-satisfiability

problem are undecidable, see [5, 3]. In fact the prenex fragment of G4∞ is undecidable already
in the monadic case; i.e., when considering only unary predicates and no function symbols.

2The duality is preserved when considering the notion of positive satisfiability : a formula A is positively
satisfiable if there exists an interpretation I such that ‖A‖I > 0. However this notion is less natural than
1-satisfiability. In particular a formula can be positively satisfiable without admitting a model.
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This should be contrasted with the decidability of satisfiability of prenex monadic G∞ [5]
and of the validity problem for the prenex fragment of intuitionistic logic [14].

3. Skolemization for prenex G4∞

Loosely speaking, Skolemization with respect to validity is the replacement of strong
quantifiers in a formula by fresh function symbols. Here positive occurrences of universal
quantifiers and negative occurrences of existential quantifiers are called strong ; the other
quantifier occurrences are called weak. Skolemization with respect to satisfiability replaces
the weak quantifiers in a formula instead. It is, of course, always possible to instantiate
bound variables and delete corresponding quantifier occurrences. But the aim is to obtain a
formula that is valid or 1-satisfiable if and only if the original formula is valid or 1-satisfiable,
respectively. In classical logic this is achieved by replacing each variable occurrence y that
is bound by a strong (weak) quantifier by a Skolem term f(x1, . . . , xn) if y is in the scope of
the weak (strong) quantifier occurrences Q1x1, . . . , Qnxn. We refer to this transformation
as “standard Skolemization”. We emphasize the fact that standard Skolemization is not
sound for intuitionistic logic, not even for its prenex fragment (see, e.g., [25]).

Below we describe how and why Skolemization with respect to validity as well as to

satisfiability can be achieved for the prenex fragment of G4∞. More precisely, we show that

the standard Skolemization method of classical logic also works for prenex formulas of G4∞
in the context of validity, but fails with respect to 1-satisfiability. For the latter we present a
novel Skolemization method where, in addition to Skolem terms that replace weak quantifier
occurrences, a fresh monadic predicate symbol is introduced.

3.1. Validity. As in the case of intuitionistic logic, standard Skolemization does not pre-

serve validity in G∞ (and therefore in G4∞). For instance the formula

∀x¬¬A(x)→ ¬¬∀xA(x)

is not valid in G∞
3 while its Skolemized version ∀x¬¬A(x) → ¬¬A(c) is valid. In this

section we show that the standard Skolemization method is nevertheless sound for the
prenex fragment of G4∞ with respect to validity.

Definition 3.1. Let F = Q1y1 . . .QnynP , with Qi ∈ {∀, ∃} be a (prenex) formula, where
P is quantifier free. The operator Φ(·), to be applied from outside to inside, is defined as
follows:

• Φ(∃xA(x)) = ∃xΦ(A(x));
• Φ(∀xA(x)) = Φ(A(f(y))), where f is a fresh (Skolem) function symbol and y are the

free variables in ∀xA(x); if there are no such variables then Φ(∀xA(x)) = Φ(A(c)),
for a fresh (Skolem) constant symbol c;
• Φ(A) = A, if A is quantifier free.

The Skolem form of F , denoted by ∃xPS(x)4, is Φ(F ).

3Any interpretation with domain {d1, d2, . . .} and infi≥1 ‖A(x)‖I[di/x] = 0 but ‖A(x)‖I[di/x] > 0, for all

di, is not a model for the formula.
4The notation hides the fact that the Skolem form also depends on the quantifier prefix. However, below,

the context will always provide the relevant information.
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Our aim is to provide a constructive proof that

|=
G4∞

Q1y1 . . .QnynP ⇔ |=
G4∞
∃xPS(x).

The first step towards establishing the (more difficult) left-to-right direction of this equiv-

alence is to prove Herbrand’s theorem for prenex G4∞ (see [3] or [10]).

Definition 3.2. Let P be a formula. The Herbrand universe U(P ) of P is the set of all
variable free terms that can be constructed from the set of function symbols and constants
occurring in P . To prevent U(P ) from being finite or empty we add a constant and a
function symbol of positive arity if no such symbols appear in P .

The Herbrand base B(P ) is the set of atoms constructed from the predicate symbols in
P and the terms of the Herbrand universe. A Herbrand expansion of P is a disjunction of
instances of P where free variables are replaced with terms in U(P ).

The following lemma relies on the fact that the truth value of any formula P of G4∞
under a given interpretation only depends on the ordering of the respective values of atoms
occurring in P .

Lemma 3.3. Let P be a quantifier free formula of G4∞. For every interpretation I such
that ‖P‖I < 1 and every real number c, where 0 < c < 1, there is an interpretation Ic such
that ‖P‖Ic ≤ c.

Proof. Let p1, . . . , pk the atomic formulas in P that do not evaluate to 0 or 1 under I.
Without loss of generality, assume that ‖p1‖I on1 . . . onk ‖pk‖I where each oni is either = or
<. Ic is defined by assigning (possibly) new values ‖pi‖Ic to pi such that ‖p1‖Ic on1 . . . onk

‖pk‖Ic and ‖pk‖Ic ≤ c and keeping the values 0 or 1 for the remaining atoms. The claim is
easily proved by structural induction on P .

Theorem 3.4. Let P be any quantifier-free formula of G4∞. If |=
G4∞
∃xP (x) then there

exist tuples t1, . . . tn of terms in U(P ), such that |=
G4∞

∨n
i=1 P (ti).

Proof. Let A1, A2, . . . be a non-repetitive enumeration of (the infinite set) B(P ). We con-
struct a “semantic tree” T; i.e., a systematic representation of all possible order types of
interpretations of Ai. T is a rooted tree whose nodes appear at levels. Each node at level `
is labelled with an expression, called constraint, of the form

cπ`
def
= 0 on0 Aπ(1) on1 . . . on`−1 Aπ(`) on` 1,

where on is either = or < and π is a permutation of {1, . . . , `}. We say that an interpreta-
tion I of P (x) fulfills the constraint cπ` if

0 on0 ‖Aπ(1)‖I on1 . . . on`−1 ‖Aπ(`)‖I on` 1

holds. We say that the constraint cπ
′
`+1

def
= 0 on0 Aπ′(1) on1 . . . on` Aπ′(`+1) on`+1 1 extends cπ`

if every interpretation fulfilling cπ
′
`+1 also fulfills cπ` .

T is constructed inductively as follows:

• The root of T is at level 0 and is labelled with the constraint 0 < 1.
• Let ν be a node at level ` with label cπ` .

(∗1) Given cπ` , if there is an instance P (t) of P (x), such that for every interpretation
I that fulfills cπ` we have ‖P (t)‖I = 1, where the atoms of P (t) are among
A1, . . . , A`, then ν is a leaf node of T.
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Otherwise, for each constraint cπ
′
`+1 that extends cπ` a successor node ν ′ labelled with

this constraint is appended to ν (at level `+ 1).

By the definition of T the following holds:

(∗2) For every interpretation I of B(P ) there is a branch of T such that I fulfills all
constraints at all nodes of this branch.

Two cases are to be considered:

T is finite: Let ν1, . . . , νm be the leaf nodes of T. Then by (∗1) and (∗2) we obtain
|=

G4∞

∨m
i=1 P (ti), where P (ti) is an instance of P (x) such that ‖P (ti)‖I = 1 for all

interpretations I that fulfill the constraint at νi.
T is infinite: By König’s lemma, T has an infinite branch. This implies that there is

an interpretation I such that ‖P (ti)‖I < 1 for every tuple ti of terms of U(P ). By
Lemma 3.3 there is an interpretation J satisfying all constraints in the branch, such
that ‖P (ti)‖J < c < 1. Hence ‖∃xP (x)‖J < 1, which contradicts the assumption
that |=

G4∞
∃xP (x).

The following lemma states sufficient conditions for a logic to admit de-Skolemization
(also known as reverse Skolemization). By this we mean the re-introduction of quantifiers

in Herbrand expansions. These conditions are fulfilled by G4∞ and indeed, by most of the
fuzzy logics in the sense of [18]. Here, by a logic L we mean a set of formulas that is closed
under modus ponens. We call a formula P valid in L (and write: |=L P ) if P ∈ L.

Lemma 3.5. Let L be a logic satisfying the following properties:
(1) |=L P (t)(x) ⇒ |= P (x)
(2) |=L Q ∨ P ⇒ |=L P ∨Q
(3) |=L (Q ∨ P ) ∨R ⇒ |=L Q ∨ (P ∨R)
(4) |=L Q ∨ P ∨ P ⇒ |=L Q ∨ P
(5) |=L P (y) ⇒ |=L ∀x[P (x)](y)

(6) |=L P (t) ⇒ |=L ∃xP (x)

(7) |=L ∀x(P (x) ∨Q(x)) ⇒ |=L (∀xP (x)) ∨Q(x)

(8) |=L ∃x(P (x) ∨Q(x)) ⇒ |=L (∃xP (x)) ∨ ∃xQ(x).

Let ∃xPS(x) be the Skolem form of Q1z1 . . .QnznP (z1, . . . , zn), where Qi ∈ {∀, ∃}. For all
tuples of terms t1, . . . , tm of the Herbrand universe of PS(x)

|=L

m∨
i=1

PS(ti) ⇒ |=L Q1z1 . . .QnznP (z1, . . . , zn).

Proof 5. Let TSK be the set of all instances in
∨m
i=1 P

S(ti) of Skolem terms in ∃xPS(x).
We define the following order on TSK : s ≺ t iff either s is a proper subterm of t or
s = f(t1, . . . , ta) and t = g(t′1, . . . , t

′
b), where the Skolem term f(x1, . . . , xa) in ∃xPS(x)

replaces a variable zi in Q1z1 . . .QnznP (z1, . . . , zn) and g(t′1, . . . , t
′
b) replaces a variable zj in

Q1z1 . . .QnznP (z1, . . . , zn) such that i < j. (Skolem constants are treated as 0-ary Skolem
functions here.) As we will show below, this order guarantees that one can re-introduce
universal quantifiers in

∨m
i=1 P

S(ti) at the appropriate positions by replacing maximal terms
at each corresponding step.

5Our de-Skolemization procedure follows the proof of the Second Epsilon Theorem by Hilbert and
Bernays [21]. A more detailed modern presentation of de-Skolemization for classical logic using Gentzen’s
sequent calculus can be found in [6]. Our task is to show that conditions 1–8 are sufficient to guarantee the
soundness of the procedure and to correct an error in the proof of this lemma as it appeared in [3, 10].



8 BAAZ, CIABATTONI, AND FERMÜLLER

Starting with
∨m
i=1 P

S(ti) and working from right to left with respect to the original
quantifier prefix Q1z1 . . .Qnzn, we stepwise (re-)introduce quantifier occurrences at indi-

vidual disjuncts using the algorithm below. We will use QiP i to denote a disjunct in the

formula obtained at some stage of the procedure: the quantifier prefix Qi is either empty

or else is Qkzk . . .Qnzn for some 1 ≤ k ≤ n. Referring to QiP i we will use Qi+z to denote

the quantifier occurrence immediately preceding Qi in Q1z1 . . .Qnzn. If Qi is empty then

Qi+z = Qnzn. (If Qi is already the full prefix Q1z1 . . .Qnzn then Qi+ remains undefined.)

Note that Qi+z denotes the quantifier occurrence that is to be introduced next at QiP i.

Step 1: The following is repeated as long as possible:

Pick a disjunct QiP i in the current formula where Qi+z = ∃zk for some 1 ≤ k ≤ n.

Replace QiP i(t) by ∃zkQiP i(zk), where t is the term that occurs at those positions

in QiP i where zk occurs in P (z1, . . . , zn).
Step 2: Remove all redundant copies of identical disjuncts, if any.

Step 3: Let t be a maximal term (with respect to ≺) in TSK and let QiP i(t) be some
disjunct of the current formula where t occurs. Qi+z = ∀zk for some 1 ≤ k ≤ n.

Replace QiP i(t) by ∀zkQiP i(zk). Goto step 1.

We claim that the above algorithm converges at Q1z1 . . .QnznP (z1, . . . , zn) and that
the validity of the current formula is preserved at each stage. To see why conditions 1–8
guarantee that this is the case we refer to the three steps separately.

Ad Step 1: Let
∨`
i=1 Q

iP i be the current formula. If there is no disjunct QiP i where
Qi+z = ∃zk for some 1 ≤ k ≤ n then step 1 is empty. Otherwise observe that

|=L

j=i−1∨
j=1

QjP j ∨ QiP i(t) ∨
j=∨̀
j=i+1

QjP j

implies

|=L ∃zk(
j=i−1∨
j=1

QjP j ∨ QiP i(zk) ∨
j=∨̀
j=i+1

QjP j)

by assumption 6. Note that throughout the procedure the current formula remains
closed, i.e. without free occurrences of variables. Therefore zk only occurs free in

QiP i(zk) and we can apply assumption 8, combined with 2 and 3, to obtain

|=L

j=i−1∨
j=1

QjP j ∨ ∃zkQiP i(zk) ∨
j=∨̀
j=i+1

QjP j

as required.
Ad Step 2: Validity is preserved by assumptions 2, 3, and 4. Moreover, since the

original quantifier occurrences Qkzk are re-introduced at their correct positions, the
algorithm terminates with the original formula Q1z1 . . .QnznP (z1, . . . , zn), if steps
1 and 3 are sound.

Ad Step 3: We claim that (i) every maximal term t occurs only in a single disjunct

QiP i(t) of the current formula. Moreover, (ii) Qi+z = ∀zk for some 1 ≤ k ≤ n and t
only occurs at positions where zk occurs in the original formula. Note that if these
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claims are true then

|=L

j=i−1∨
j=1

QjP j ∨ QiP i(t) ∨
j=∨̀
j=i+1

QjP j

implies

|=L ∀zk(
j=i−1∨
j=1

QjP j ∨ QiP i(zk) ∨
j=∨̀
j=i+1

QjP j)

by assumption 1 and 5. This allows us to apply assumption 7, combined with 2 and
3, to obtain

|=L

j=i−1∨
j=1

QjP j ∨ ∀zkQiP i(zk) ∨
j=∨̀
j=i+1

QjP j

as required.
It remains to prove claims (i) and (ii). Since t = f(t1, . . . , tn) is an instance

of a Skolem term f(x1, . . . , xm), t is connected to the universal variable zj in the

original formula that has been replaced by f(x1, . . . , xm) in ∃xPS(x). Let QjP j(t)
be a disjunct of the current formula in which t occurs. Because of step 1 we know

that Qj+z = ∀zk for some 1 ≤ k ≤ n. Any position p at which t occurs in QjP j(t) is
such that zk occurs in the original formula Q1z1 . . .QnznP (z1, . . . , zn) at p for the
following reasons. First, by maximality t cannot be a subterm of any term that
replaces one of z1, . . . , zn in the current formula. Moreover, by the definition of ≺,
t cannot replace any variable zj where j < k. This settles claim (ii).

Regarding claim (i), suppose that there were two disjuncts QiP i and QjP j in the
current formula in which t occurs. The maximality of t = f(t1, . . . , tn), claim (ii),
and the fact that we have already re-introduced all quantifier occurrences to the right
of ∀zk in Q1z1 . . .Qnzn implies that the variables in the Skolem term f(x1, . . . , xm)
correspond to precisely those variables in ∃xPS(x) that are still instantiated by
terms from the Herbrand universe in the current formula. But this means that at
each position corresponding to an occurrence of xi (1 ≤ i ≤ m) in ∃xPS(x) we find

the same term ti in the current formula. Therefore QiP i and QjP j must be identical
and thus have been contracted into a single disjunct at the preceding step 2. �

Corollary 3.6. Let F =
∧

1≤i≤mAi where Ai are prenex formulas of G4∞. Then

|=
G4∞

F ⇔ |=
G4∞

∧
1≤i≤m

∃xASi (x).

Proof. (⇒) Follows from the laws of quantification that hold in G4∞.
(⇐) Using Theorem 3.4 and Lemma 3.5 we argue as follows:

|=
G4∞
∃xASi (x)

⇒ |=
G4∞

∨n
i=1A

S
i (ti) for appropriate t1, . . . , tm by Theorem 3.4

⇒ |=
G4∞

Ai by Lemma 3.5

Since |=
G4∞

A iff for each i = 1, . . . ,m, |=
G4∞

Ai, this concludes the proof.
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3.2. Satisfiability. In contrast to the validity case, standard Skolemization for satisfiability
(where weakly quantified variables are replaced by Skolem terms) does not preserve 1-

satisfiability, even for prenex formulas of G4∞. This is due to the fact that to be 1-satisfiable,
an existentially quantified formula does not need to evaluate to 1 for any of its instances.
Rather, it is sufficient that the supremum of the distribution, i.e., of the truth values taken
by the instances, is 1. For instance, the following formula is 1-satisfiable:

∃xp(x) ∧ ∀y¬4p(y).

A model with domain {di | i ≥ 1} is obtained by setting vI(p)(di) = 1 − 1
i for all i ≥ 1.

On the other hand the standard Skolemized form for this formula, p(c) ∧ ∀y¬4p(y), is not
1-satisfiable. (The example can easily be made prenex by moving the universal quantifier
to the front.)

Below we show that a Skolem form with respect to satisfiability for (conjunctions of)

prenex formulas of G4∞ can nevertheless be achieved by introducing an additional monadic
predicate symbol. The resulting formulas will have no existential quantifier and will be
1-satisfiable if and only if the original formulas are. Given a prenex formula its Skolem
form will be defined in two steps:

(1) We will first introduce a suitable formula, whose only existential quantifier binds
the newly introduced monadic predicate, and which is 1-satisfiable if and only if the
original formula is (Lemma 3.8).

(2) This existential quantifier is afterwards replaced by a universally quantified for-
mula (Lemma 3.11).

Definition 3.7. Let q be a new monadic predicate symbol. The operator Ψq(·), to be
applied to prenex formulas from outside to inside, is defined by

• Ψq(∀xA(x)) = ∀xΨq(A(x));
• Ψq(∃xA(x)) = ∀x(q(x)→ Ψq(A(f(x, y))), where f is a new (Skolem) function sym-

bol and y are the free variables in ∃xA(x);
• Ψq(A) = A, if A is quantifier free.

The SAT-Skolem form SKOq(A) of A is obtained by moving all (universal) quantifiers in
Ψq(A) to the front and inserting one occurrence of 4 immediately after the quantifiers.
More precisely,

SKOq(A) = ∀x4(Ψq(A)−)

where x are the bounded variables in Ψq(A), and Ψq(A)− denotes Ψq(A) after the removal
of all quantifier occurrences.

Note that applying the operator SKOq(·) is not sufficient for our purpose, since SKOq(P )
is 1-satisfiable for all formulas P . For instance, P = ∃x(4A(x) ∧ ¬4A(x)) is not 1-
satisfiable, while SKOq(P ) = ∀x(q(x)→ (4A(f(x))∧¬4A(f(x))) is 1-satisfiable. (A model
of the latter formula is obtained by setting vI(q)(d) = 0 for all d in the domain D.) However
SKOq(·) does preserve 1-(un)satisfiability when the condition sup{vI(q)(d) | d ∈ D} = 1
is imposed in addition. As shown in the following theorem, this amounts to adding the
formula ∃xq(x) conjunctively to SKOq(P ). Henceforth we will slightly widen our focus by
considering conjunctions of prenex formulas.

Lemma 3.8 (Step 1). Let A1, . . . , Am be prenex formulas. Then( ∧
1≤i≤m

Ai
)
∈ 1SAT ⇐⇒

(
∃xq(x) ∧

∧
1≤i≤m

SKOq(Ai)
)
∈ 1SAT.
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Proof. Observe that SKOq(Ai) is of the form

∀y1 . . . ∀yk∀x1 . . . ∀xn4(q(x1)→ . . . (q(xn)→ Aski ) . . .)

where Aski denotes the quantifier free part of Ai with existentially bound variables replaced
by Skolem terms fj(xj , yj) (1 ≤ j . . . n), as specified in Definition 3.7.

(⇐) We first show that

(∗) |=
G4∞

(∃xq(x) ∧ SKOq(Ai))→ ∀y1 . . . ∀yk∃v1 . . . ∃vnAski [fj(xj ,yj)/fj(vj ,yj)]

where vj are fresh variables and Aski [fj(xj ,yj)/fj(vj ,yj)] stands for Aski in which the xj in
Skolem terms are replaced by these new variables.

Since |=
G4∞
4∀xB ↔ ∀x4B and |=

G4∞
4B → B for all formulas B (Lemma 2.5(1),(4)),

we can remove the indicated occurrence of 4 in SKOq(Ai). Then we use |=
G4∞
∀x(B(x) →

C(x)) → (B(x) → ∀xC(x)) (Lemma 2.5(5)) to put all universally quantified variables yj
immediately in front of Aski and |=

G4∞
A(fj(xj , yj)) → ∃vjA(fj(vj , yj)) (Lemma 2.5(3)),

where vj is a new variable. Finally by using Lemma 2.5(6) we move existential quantifiers
immediately in front of all occurrences of q to get

|=
G4∞

SKOq(Ai)→ (∃xq(x)→ . . . (∃xq(x)→ ∀y1 . . . ∀yk∃v1, . . .∃vnAski [fj(xj ,yj)/fj(vj ,yj)]) . . .)

from which (∗) follows straightforwardly. Therefore, if (∃xq(x) ∧ SKOq(Ai)) ∈ 1SAT then

also ∀y1 . . . ∀yk,∃v1, . . .∃vnAski [fj(xj ,yj)/fj(vj ,yj)] ∈ 1SAT. In fact, it is easy to transform a
model of the latter formula into a model of Ai.

(⇒) Suppose that the interpretation I is a model for Ai for 1 ≤ i ≤ m. By Proposi-
tion 2.4 we can assume that I has a countably infinite domain D = {d1, d2, . . .}. To obtain
a model J with the same domain D for the formula ∃xq(x)∧

∧
1≤i≤m SKOq(Ai) we have to

augment I by a suitable interpretation of q and of the Skolem function symbols. In partic-
ular, to achieve ‖∃xq(x)‖J = 1 we assign vJ(q)(di) = wi in such a manner that supiwi = 1,
but wi 6= 1 for all i ≥ 1.

In interpreting the Skolem functions we have to make sure that for each step of the
transformation Ψq(Bi), replacing an existential quantifier in ∃xBi(x),

‖q(x)→ Ψq(Bi(f(x, y)))‖J [d/x,e/y] = 1,

for all d ∈ D and all e ∈ Dn, where n is the number of free variables in ∃xBi(x). To
this aim we use the assumption that ‖∃xBi(x)‖I[e/y] = 1. This means that for any d ∈ D
there is a further domain element d′ such that ‖q(x)‖J [d/x] ≤ ‖Bi(x)‖I[d′/x,e/y]. We assign
vJ(f)(d, e) = d′. If there are no more existential quantifiers in Bi then we are done, as
Ψq(Bi) = Bi and therefore ‖Bi(x)‖I[d′/x,e/y] = ‖Ψq(Bi(f(x, y)))‖J [d/x,e/y]. Otherwise we
proceed by induction on the number of existential quantifiers replaced by applying Ψq, with
(essentially) the presented argument as inductive step.

We will replace the newly introduced existential quantified formula ∃xq(x) by a con-
junction of suitable universal formulas. This way we will finally obtain a purely universal
formula that is 1-satisfiable if and only if the original formula is 1-satisfiable. To this aim
we first introduce a notation that will be useful also in the next section.

Definition 3.9. A E B
def
= 4(A→ B) and ACB

def
= ¬4(B → A).
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It is straightforward to check that the suggestive symbols are justified by

‖AEB‖I =

{
1 if ‖A‖I ≤ ‖B‖I
0 otherwise

and ‖ACB‖I =

{
1 if ‖A‖I < ‖B‖I
0 otherwise.

Definition 3.10. Let A be a conjunction of prenex formulas of G4∞ and p1, . . . , pk the
predicate symbols occurring in SKOq(A). (Note that q ∈ {p1, . . . , pk}.)

H∃(q, A)
def
=

∧
1≤i≤k

∀yi(> E pi(yi) ∨ pi(yi)C q(fpi(yi))),

where yi is a sequence of fresh variables, according to the arity of pi, and fpi is a fresh
function symbol of corresponding arity.

Lemma 3.11 (Step 2). Let A =
∧

1≤i≤m Ai where A1, . . . , Am are prenex formulas. Then(
∃xq(x) ∧

∧
1≤i≤m

SKOq(Ai)
)
∈ 1SAT ⇐⇒

(
H∃(q, A) ∧

∧
1≤i≤m

SKOq(Ai)
)
∈ 1SAT.

Proof. For the whole proof let p1, . . . , pk be the predicate symbols occurring in SKOq(A).

(⇒) Let I be a model of ∃xq(x)∧
∧

1≤i≤m SKOq(Ai) with domain D. For every d ∈ Dn,

where n is the arity of pi the following holds: either ‖pi(yi)‖I[d/yi] = 1 or ‖pi(yi)‖I[d/yi] < 1.

In the former case the first disjunct > E pi(yi) of the relevant conjunct in H∃(q, A) evaluates
to 1. In the latter case, since we have ‖∃xq(x)‖I = 1, we can extend I by a valuation function
for the new function symbols fpi in such a manner that ‖q(fpi(yi))‖I[d/yi] > ‖pi(yi)‖I[d/yi]
holds. But this implies that the second disjunct in H∃(q, A) is evaluated to 1.

(⇐) Let I be a model of H∃(q, A)∧
∧

1≤i≤m SKOq(Ai) with domain D. If ‖∃xq(x)‖I = 1

then we are done. Otherwise, ‖q(x)‖I[d/x] < 1 for all d ∈ D. Note that q ∈ {p1, . . . , pk} and
therefore ‖H∃(q,A)‖I = 1 implies that ‖q(x)‖I[d/x] < ‖q(fq(x))‖I[d/x], for every d ∈ D, since
‖> E q(x)‖I[d/x] < 1. Consequently supd∈D ‖q(x)‖I[d/x] = v for some v < 1, but nevertheless

‖q(x)‖I[d/x] 6= v for all d ∈ D. ‖H∃(q, A)‖I = 1 also implies that for every d ∈ Dn, where n
is the arity of pi, we have either ‖pi(yi)‖I[d/yi] = 1 or ‖pi(yi)‖I[d/yi] < v. In other words: no

atomic formula is assigned a value in the interval [v, 1) by I. We may therefore define a new
interpretation J over the same domain D by setting ‖pi(yi)‖J [d/yi]

= ‖pi(yi)‖I[d/yi] +(1−v),

whenever ‖pi(yi)‖I[d/yi] 6= 1 and ‖pi(yi)‖I[d/yi] 6= 0. Otherwise the corresponding truth

value remains the same, i.e., 1 or 0, respectively.
It remains to show that J is a model of ∃xq(x)∧

∧
1≤i≤m SKOq(Ai). By definition of J ,

supd∈D ‖q(x)‖J [d/x] = 1. To complete the argument remember that each SKOq(Ai) is of the

form ∀x4B−i where B−i is (q(x1) → . . . (q(xn) → Aski ) . . .). Therefore ‖SKOq(Ai)‖I = 1

implies that ‖B−i ‖I[d/x] = 1 for every appropriate tuple d of domain elements. This means

that the evaluation reduces to that of a quantifier free formula of G4∞. Now recall from
Lemma 3.3 that whether a given interpretation I satisfies a quantifier free formula only
depends on the relative order of assigned truth values below 1 and above 0, but not on their
absolute values. Therefore, just like I, also J is a model of SKOq(Ai) for 1 ≤ i ≤ m. �

Example 3.12. Let F = ∃xp(x) ∧ ∀y¬4p(y).
Step 1: by Lemma 3.8,

F ∈ 1SAT if and only if ∃xq(x) ∧ SKOq(∃xp(x)) ∧ ∀y¬4p(y) ∈ 1SAT,
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where SKOq(∃xp(x)) = ∀x(q(x)→ p(f(x))).
Step 2: the existential quantifier is removed by translating ∃xq(x) into H∃(q, F ):

∀y1(> E q(y1) ∨ q(y1)C q(fq(y1)))
∧ ∀y2(> E p(y2) ∨ p(y2)C q(fp(y2)))
∧ ∀x(q(x)→ p(f(x))) .

According to Lemma 3.11 H∃(q, F )∧ SKOq(∃xp(x))∧ ∀y¬4p(y) is 1-satisfiable if and only
if F is 1-satisfiable. We refer to it as the Skolemized form of F with respect to satisfiability.

Although standard Skolemization does not preserve 1-satisfiability for all prenex formu-

las of G4∞, it does so for formulas in which the quantifier free part is preceded by4. Indeed,
formulas of the form Qx4B, where B is quantifier-free, can be Skolemized in the standard
way, i.e., every existentially quantified variable x is replaced by a Skolem term f(y), where
y denotes the variables bound by universal quantifiers in the scope of which x occurs (per-
fectly dual to Definition 3.1). We will denote by ∀x4BS the formula arising from Qx4B
in this manner.

Lemma 3.13. Qx4B ∈ 1SAT ⇐⇒ ∀xBS ∈ 1SAT.

Proof. (⇐) Easy. For (⇒) note that a formula ∃y4B′(y) evaluates to 1 under an inter-
pretation I if and only if ‖B′‖I[d/y] = 1 for some domain element d. �

This observation can be exploited to achieve a more efficient translation of conjunctions
of prenex formulas, as stated in the following corollary.

Corollary 3.14. Let F =
∧

1≤i≤mAi, where Ai are prenex formulas of G4∞ and for 1 ≤
i ≤ m1 (m1 ≤ m) Ai is of the form Qx4Bi for some quantifier free formula Bi. Then

F ∈ 1SAT ⇐⇒
( ∧

1≤i≤m1

∀xASi ∧H∃(q,
∧

m1≤i≤m
Ai) ∧

∧
m1≤i≤m

SKOq(Ai)
)
∈ 1SAT .

4. Theorem Proving

Let F be a conjunction of prenex formulas. The results of the last section amount to
the following central “preprocessing steps” for automated theorem proving:

• Testing validity of F can be reduced to testing validity of a purely existential for-
mula ∃xG (Corollary 3.6).
• Testing 1-satisfiability of F can be reduced to testing 1-satisfiability of a purely

universal formula ∀xG′ (Corollary 3.14).

Note that the first problem is Σ1-complete (because G4∞ is recursively axiomatizable [19]),
whereas the second problem is Π1-complete [20], just like the corresponding problems for
classical logic. However, in contrast to classical logic, the problems are not simply dual to
each other: to obtain G′ we even had to extend the signature of F and G by introducing
a new predicate symbol. Nevertheless we can treat ∃xG and ∀xG′ in the same manner for
our next step towards efficient theorem proving: translating the quantifier free part (G, G′)
into a suitable normal form.

In our case this normal form will directly correspond to so-called order clauses that
refer to the (classical) theory of dense linear orders with endpoints. In this manner both,

the validity and the 1-satisfiability problem for prenex G4∞, are reduced to detecting the
(un)-satisfiability of specific sets of order clauses. For handling the latter problem we can
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rely on results from the literature on automated theorem proving using ordered chaining
resolution, as we will point out in Section 4.2.

In fact, a particular normal form for propositional formulas of G4∞, called chain normal
form, has already been described in the literature, see e.g., [3, 8]. To recall this notion let us

use, in addition to the abreviations C and E (Definition 3.9), also A , B as an abbreviation

for 4(A↔ B). Clearly ‖A , B‖I = 1 iff ‖A‖I = ‖B‖I .

Definition 4.1. Let F be a quantifier-free formula of G4∞ and let A1, . . . , An be the atoms
occurring in F . A 4-chain over F is a formula of the form

(⊥ on0 Aπ(1)) ∧ (Aπ(1) on1 Aπ(2)) ∧ · · · ∧ (Aπ(n−1) onn−1 Aπ(n)) ∧ (Aπ(n) onn >)

where π is a permutation of {1, . . . , n}, oni is either C or ,, but at least one of the oni’s
stands for C.

By Chains(F ) we denote the set of all 4-chains over F .

The following follows immediately from Theorem 17 of [3].

Theorem 4.2. Let F be of the form
∧

1≤i≤n ∀xi4Fi, where Fi is quantifier free. Then

there exist Γi ⊆ Chains(Fi) for all 1 ≤ i ≤ n such that

|=
G4∞

F ↔
∧

1≤i≤n

∨
C∈Γi

C.

While Theorem 4.2 can be used, in principle, to translate Skolemized formulas into a
kind of disjunction normal form, the translation as well as the resulting normal form is
excessively complex in general. To appreciate the problem, note that Chains(F ) contains a
super-exponential number of different 4-chains (with respect to the length of F ) in general.
Clearly we need an alternative translation to normal form to obtain a practically feasible
proof method. A suitable normal form is presented below.

4.1. Structural Translation to Order Clauses. It is well known from classical logic
that the combinatorial explosion that may arise in any language preserving translation
of arbitrary complex formulas into conjunctive normal form can be avoided by a structural
translation. The latter introduces new predicate symbols to define appropriate abbreviations

of subformulas, see [26, 7]. Our translation of Skolemized G4∞-formulas to clausal form
proceeds in an analogous manner. We consider this as a two-step process that can roughly
be described as follows:

(1) The quantifier free part is efficiently reduced to a formula of an extended language,
involving a conjunction of simple equivalences that introduce new predicate symbols
as abbreviations for subformulas (“definitional normal form”).

(2) The resulting G4∞-formula is translated into a set of clauses, where the literals are
of the form s < t or s ≤ t, referring to the (classical) theory of dense total orders
with endpoints (“definitional clause form”).

For step 1 we introduce the following notions. (Remember that negations ¬F appear as
F → ⊥.)

Definition 4.3. For any quantifier free formula F of the form F1 ◦F2, where ◦ ∈ {∧,∨,→},
let

df(F )
def
= [pF (x) , (pF1(x1) ◦ pF2(x2))]
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where pF , pF1 , pF2 are new predicate symbols and x, x1, x2 are the tuples of variables occur-
ring in F, F1, F2, respectively. If F is of the form 4F1 then

df(F )
def
= [pF (x) , 4pF1(x1)].

If F is atomic then pF (x) is simply an alternative denotation for F .

Depending on whether we are interested in 1-satisfiability or in validity we need two
different normal forms based on the equivalences introduced in Definition 4.3.

Definition 4.4. Let A be a quantifier free formula. The definitional normal form for
1-satisfiability is defined as

DFsat(A)
def
= 4pA(x) ∧

( ∧
F∈nsf(A)

df(F )
)

The definitional normal form for validity is defined as

DFval(A)
def
=
( ∧
F∈nsf(A)

df(F )
)
→4pA(x)

In both cases, nsf(A) denotes the set of all non-atomic subformulas of A, x is the tuple of
variables occurring in A, and pA is a new predicate symbol.

To prove the soundness of the definitional normal form for validity for existential for-
mulas the following lemma is needed. Its proof requires Herbrand’s Theorem.

Lemma 4.5. For all quantifier free formulas A of G4∞: |=
G4∞
∃xA⇔|=

G4∞
∃x4A.

Proof. The direction from right to left is trivial. The other direction is obtained as follows:

|=
G4∞
∃xA

⇒ |=
G4∞

∨n
i=1A(ti) for appropriate t1, . . . , tn by Theorem 3.4 (Herbrand Theorem)

⇒ |=
G4∞
4
∨n
i=1A(ti) since |=

G4∞
F iff |=

G4∞
4F

⇒ |=
G4∞

∨n
i=14A(ti) by Lemma 2.5(2)

⇒ |=
G4∞
∃x4A(x) by laws of G4∞.

Note that in the second and in the last step we used the fact that for quantifier free A(x)
the formula ∃xA(x) is already in Skolem form.

We remark that the above lemma does not hold when A is not quantifier free.

Lemma 4.6. Let A be a quantifier free formula with free variables x.

(a) ∀xA is 1-satisfiable iff ∀xDFsat(A) is 1-satisfiable.
(b) ∃xA is valid iff ∃xDFval(A) is valid.

Proof. Note that all the relevant subformulas of DFsat(A) and DFval(A) are preceded by an
occurrence of 4. Thus we obtain in the same manner as for the definitional normal forms
of classical logic (see [26, 7]) that valI(df(F (x))) = 1 iff valI(F (x)) = valI(pF (x)) for all
subformulas F of A. Consequently we have:

(∗1) Every model of A can be extended to a model of DFsat(A); conversely every model
of DFsat(A) is also a model of A.

(∗2) All extensions of a model of A to the language that additionally contains the new
predicate symbols pF for F ∈ nsf(A) are models of DFval(A); conversely every model
I of DFval(A) where valI(pA(x)) = 1 is also a model of A.
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To obtain (a) from (∗1) it suffices to remember that, for arbitrary formulas F , ∀xF is
1-satisfiable iff F there is an interpretation I such that I[d/x] is a model of F for every
variable assignment [d/x].

To obtain (b) something more is needed, since in general an interpretation vI can be
a model for ∃xF even if ‖F (x)‖I[d/x] < 1 for each variable assignment. However note that
this cannot happen if F is of the form 4G. More precisely:

(∗3) For all fomulas G, |=
G4∞
∃x4G iff for every interpretation I there is a variable

assignment [d/x] such that ‖G(x)‖I[d/x] = 1.

Therefore, using Lemma 4.5, we argue as follows:

|=
G4∞
∃xA

⇔ |=
G4∞
∃x4A by Lemma 4.5

⇔ |=
G4∞
∃x4DFval(A) by (∗2) and (∗3)

⇔ |=
G4∞
∃xDFval(A) by Lemma 4.5

We now switch to step 2 of the translation into clausal form, which results in a “logic
free” syntax by considering all predicate symbols as function symbols and the special

atomic formulas > and ⊥ as constant symbols. More precisely, an atomic G4∞-formula
like p(x, f(x, y)) will no longer be considered to be a formula of the new language, but now
simply appears as a term containing two binary function symbols. We will use T to denote
the set of all terms arising in this manner.

Definition 4.7. An order literal is an expression of the form s < t or s ≤ t, where s, t ∈ T.
An order clause is a finite set of literals, representing a disjunction of its elements.6

Semantically order clauses refer to the following classical structure.

Definition 4.8. By a dense total order O we mean an interpretation of the predicate
symbols < and ≤, taking terms in T as arguments, where < refers to a strict and dense
total (linear) order and ≤ is interpreted as the reflexive closure of <. If, in addition, the
endpoint axioms ∀x(⊥ ≤ x), ∀x(x ≤ >), and ⊥ < > are satisfied we call O a DTOE-model.

A set of order clauses S is DTOE-satisfiable if the conjunction of elements of S has
a dense total order with endpoints ⊥ and > as a model; otherwise S is called DTOE-
unsatisfiable.

The normal form that will be used in the next section is a translation of the definitional
normal forms in Definition 4.4 into suitable order clauses.

Definition 4.9. Let A, B, and C be atomic formulas.

cl(C , (A ∧B))
def
= {{C ≤ A}, {C ≤ B}, {A ≤ C,B ≤ C}}

cl(C , (A ∨B))
def
= {{A ≤ C}, {B ≤ C}, {C ≤ A,C ≤ B}}

cl(C , (A→ B))
def
= {{A ≤ B,C ≤ B}, {> ≤ C,B < A},

{> ≤ C,C ≤ B}, {B ≤ C}}
cl(C , 4A)

def
= {{C ≤ ⊥,> ≤ A}, {> ≤ C,A < >}}

6In [11] order clauses are defined as multisets. However it follows from results in [11] concerning redun-
dancy that we may alternatively define clauses as sets.
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For a quantifier free formula G the definitional clause form for 1-satisfiability is defined as

CFsat(G)
def
= {{> ≤ pG(x)}} ∪

⋃
F∈nsf(G)

cl(df(F ))
)

and the definitional clause form for validity is defined as

CFval(G)
def
= {{pG(x) < >}} ∪

⋃
F∈nsf(G)

cl(df(F ))
)
,

where nsf(G) denotes the set of all non-atomic subformulas of G, x is the tuple of variables
occurring in G, and pG is a new predicate symbol.

Lemma 4.10. Let A be a quantifier free formula with free variables x.

(a) ∀xDFsat(A) is 1-satisfiable iff CFsat(A) is DTOE-satisfiable.
(b) ∃xDFval(A) is valid iff CFval(A) is DTOE-unsatisfiable.

Proof. We have to check that the clauses specified in Definition 4.9 are equivalent to the
corresponding subformulas involving ‘,’ in the definitional forms specified in Definition 4.4.

• C , (A→ B): it is not difficult to see that the following formulas are equivalent in

G4∞, i.e. for each interpretation I we have

‖4(C ↔ (A→ B))‖I = ‖(A E B ∧4C) ∨ (B CA ∧ C E B ∧B E C)‖I .
By applying the law of distribution to the formula at the right hand side we obtain
the conjunction of the following six formulas (note that we can express 4C by the
equivalent formula > E C, cf. Definition 3.9):

A E B ∨ B CA (1)
A E B ∨ C E B (2)
A E B ∨ B E C (3)
> E C ∨ B CA (4)
> E C ∨ C E B (5)
> E C ∨ B E C (6)

Note that conjunct (1) is valid and that B E C is entailed by (6). B E C in turn
entails conjuncts (3) and (6). Thus we obtain the following four conjuncts that

directly correspond to cl(C , (A→ B)):

A E B ∨ C E B
> E C ∨ B CA
> E C ∨ C E B
B E C

• C , (A∧B): 4(C ↔ (A∧B)) is easily seen to be equivalent to the conjunction of

C E A
C E B
A E C ∨ B E C

that directly correspond to cl(C , (A ∧B)).
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• C , (A ∨B): 4(C ↔ (A ∨B)) is equivalent to the conjunction of

A E C
B E C
C E A ∨ C E B

that directly correspond to cl(C , (A ∨B)).

• C , 4A: 4(C ↔ 4A) is equivalent to the conjunctions of the following two
disjunctions

C E ⊥ ∨ > E A
> E C ∨ AC>

that directly correspond to cl(C , 4A).

So far we have argued about equivalences within G4∞. But note that formulas of the form
A E B or ACB evaluate to either 0 or 1 in every interpretation. Therefore disjunction and
conjunction reduce to their classical counterparts and we can directly translate A E B and
ACB into order literals A ≤ B and A < B, respectively. In this manner we obtain sets of

order clauses that are DTOE-satisfiable iff the corresponding G4∞-formulas are 1-satisfiable.
In the case of CFsat(A) the clause {> ≤ pG(x)} directly codes the claim that A ∈ 1SAT,
whereas for CFval(A) the clause {pG(x) < 1} ensures that A is valid iff CFval(A) is DTOE-
unsatisfiable.

Remark 4.11. A somewhat different structural clause form has been described in [3]. Here,
following [8], we have eliminated a number of redundancies from the originally described
sets of order clauses.

The following theorem combines the various steps of the current and the last section
and points out the efficiency of the overall translation.

Theorem 4.12. Let A =
∧

1≤i≤mAi where Ai are prenex formulas of G4∞. Then one can

construct in polynomial time sets of order clauses Ssat(A) and Sval(Ai), where 1 ≤ i ≤ n,
such that

(a) A ∈ 1SAT iff Ssat(A) is DTOE-satisfiable.
(b) |=

G4∞
A iff Sval(Ai) is DTOE-unsatisfiable for each i ∈ {1, . . . , n}.

Proof. (a) By Corollary 3.14 we obtain a formula B =
∧

1≤i≤n∀xiBi, where the Bi are
quantifier free, such that A ∈ 1SAT iff B ∈ 1SAT. Remember that the conjunction of for-
mulas corresponds to the union of sets of clauses. Therefore the combination of Lemmas 4.6
and 4.10 implies that A is 1-satisfiable iff Ssat(A) =

⋃
1≤i≤n CFsat(Bi) is DTOE-satisfiable.

(b) By Corollary 3.6 we obtain a formula B =
∧

1≤i≤n∃xiBi, where the Bi are quantifier

free, such that |=
G4∞

A iff |=
G4∞

B. Since a conjunction is valid iff every conjunct is valid,

Lemmas 4.6 and 4.10 reduce the problem of checking whether |=
G4∞

A to checking whether

for each i ∈ {1, . . . , n} the clause set Sval(Ai) = CFval(Bi) is DTOE-unsatisfiable.
It finally remains to observe that Ssat(A) and the Sval(Ai) are of polynomial size with

respect to the size of A. In particular note that H∃(q, A) (Definition 3.10) and SKOq(Ai)
(Definition 3.7) increase the overall size of the formula only by a linear number of symbols.
Also the definitional clause forms (Definition 4.9) are linear in the size of A. Consequently,
all mentioned transformations can clearly be done in polynomial time.
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Example 4.13. We claim that the following formula is valid in G4∞:

A = ∃x∀y(4p(y)→ p(x)) .

While simple, this example is nevertheless of some interest. In particular note that removing

the occurrence of 4 in A results in a formula that is not any longer valid in G4∞, although
it is classically valid.

According to Section 3.1 we obtain the Skolemized form of A as

∃x(4p(f(x))→ p(x)) .

To compute the definitional normal form we have to introduce the following two “definitions”
of subformulas as described in Definition 4.3:

df(4p(f(x)): p1(x) , 4p(f(x)),

df(p1(x)→ p(x)): p2(x) , (p1(x)→ p(x)).

The corresponding order clauses according to Definition 4.9 are as follows:
cl(p1(x) , 4p(f(x)):

1 : {p1(x) ≤ ⊥,> ≤ p(f(x))}
2 : {> ≤ p1(x), p(f(x)) < >}

cl(p2(x) , (p1(x)→ p(x)):
3 : {p1(x) ≤ p(x), p2(x) ≤ p(x)}
4 : {> ≤ p2(x), p(x) < p1(x)}
5 : {> ≤ p2(x), p2(x) ≤ p(x)}
6 : {p(x) ≤ p2(x)}

Since we are interested in validity we have to add
7 : {p2(x) < >}

to obtain CFval(4p(f(x))→ p(x)) as specified in Definition 4.9.
We will continue this example in Section 4.2 to illustrate a machine oriented proof of

the DTOE-unsatisfiability of CFval(4p(f(x))→ p(x)).

4.2. Ordered Chaining Resolution. The results of the previous sections, as summarized

in Theorem 4.12, reduce the validity as well as the 1-satisfiability problem for prenex G4∞
to checking DTOE-(un)satisfiability of certain sets of order clauses. Fortunately, efficient
theorem proving for various types of order clauses has already received considerable atten-
tion in the literature; see [12, 11] and the references given there. We finally just extract
from this literature what is needed in our specific case.

We recall some basic notions from automated deduction (see, e.g., [23]). In particular
we identify a substitution σ with a set {x1 ← t1, . . . , xn ← tn} and define codom(σ) =
{t1, . . . , tn}. Eσ denotes the result of applying σ to an expression E, i.e. Eσ is obtained
by replacing for each i ∈ {1, . . . , n} all occurrences of the variable xi in E by the term
ti. Finally, recall that a substitution σ is called the most general unifier (mgu) of terms
s1, . . . , sn if s1σ = . . . = snσ and if in addition for all other substitutions ρ where s1ρ =
. . . = snρ we have siρ = (siσ)τ for some substitution τ .

We consider the following rules (cf. [11]) for order clauses:

Irreflexivity Resolution:
C ∪ {s < t}

Cσ

where σ is the mgu of s and t
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(Factorized) Chaining:

C ∪ {u1 C1 s1, . . . , um Cm sm} D ∪ {t1 C′1 r1, . . . , tn C′n rn}
Cσ ∪Dσ ∪ {uiσ Ci,j rjσ | 1 ≤ i ≤ m, 1 ≤ n}

where σ is the mgu of s1, . . . , sm, t1, . . . , tn and Ci,j is < if and only if either Ci is
< or C′j is <. Moreover, t1σ occurs in Dσ only in inequalities r‘C t1σ.

These two rules constitute a refutationally complete inference system for the theory of all
total orders in presence of set EqF of clauses

{xi < yi, yi < xi | 1 ≤ i ≤ n} ∪ {f(x1, . . . , xn) ≤ f(y1, . . . , yn)},
where f ranges over the set F of function symbols of the signature. Observe that, in

translating a formula P from prenex G4∞ into a set of order clauses CFsat(P ), we treat
the predicate symbols of P as function symbols. Additional function symbols occur from
Skolemization.

The inference system is not yet sufficiently restrictive for efficient proof search. We
follow [11] and add conditions to the rules that refer to some complete reduction order �
(on the set of all terms). We write s 6� t if ¬(s � t) and s 6= t; and “t is basic in (clause)
C” if tC s ∈ C or sC t ∈ C.

Maximality Condition for Irreflexivity Resolution: sσ is a maximal term in Cσ.
Maximality Condition for Chaining: (1) uiσ 6� s1σ for all 1 ≤ i ≤ n, (2) viσ 6�
t1σ for all 1 ≤ i ≤ m, (3) uσ 6� s1σ for all terms u that are basic in C, and (4)
vσ 6� t1σ for all terms v that are basic in D.

For our purposes it is convenient to view the resulting inference system MC� as a set
operator.

Definition 4.14. MC�(S) is the set of all conclusions of Irreflexivity Resolution or Max-
imal Chaining where the premises are (variable renamed copies of) members of the set
of clauses S. Moreover, MC0

�(S) = S, MCi+1
� (S) = MC�(MCi

�(S)) ∪ MCi
�(S), and

MC∗�(S) =
⋃
i≥0 MCi

�(S).

The set consisting of the three clauses {⊥ ≤ y}, {y ≤ >}, and {⊥ < >}, corresponding
to the endpoint axioms, is called Ep. The set consisting of {y ≤ x, d(x, y) < y} and
{y ≤ x, x < d(x, y)}, corresponding to the usual density axiom, is called Do.

The following completeness theorem follows directly from Theorem 2 of [11].

Theorem 4.15. S has a dense total order with endpoints 0 and 1 as a model if and only
if MC∗�(S ∪EqF ∪Ep ∪Do) does not contain the empty clause.

Remark 4.16. Even more refined “chaining calculi” for handling orders have been defined
by Bachmair and Ganzinger in [11, 12]. However, MC� turns out to be quite appropriate
for our context. (In particular, since the problem of “variable chaining” does not occur for
the sets of clauses considered here).

Example 4.17. (Example 4.13 continued) According to Theorem 4.15 we should add the
sets of clauses EqF, Ep, and Do to CFval(4p(f(x))→ p(x)), in order to guarantee that
Irreflexivity Resolution and Chaining suffice to derive the empty clause, witnessing the
validity of ∃x(4p(f(x)→ p(x)) and consequently also of ∃x∀y(4p(y)→ p(x)). However it
turns out that only the following subset of clauses is actually needed for this purpose:
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From CFval(4p(f(x))→ p(x)):
1 : {p1(x) ≤ ⊥,> ≤ p(f(x))}
4 : {> ≤ p2(x), p(x) < p1(x)}
7 : {p2(x) < >}

From Ep:
E1 : {⊥ ≤ y}
E2 : {y ≤ >}

The empty clause can be derived as follows:

8 : {> ≤ >, p(x) < p1(x)} from chaining 7 and 4
9 : {p(x) < p1(x)} by irreflexivity resolving 8

10 : {p1(x) < ⊥,> ≤ p(f(x))} from chaining 1 and 9
11 : {⊥ < ⊥,> ≤ p(f(x))} from chaining 10 and E1

12 : {> ≤ p(f(x))} by irreflexivity resolving 11
13 : {> < p1(f(x))} from chaining 12 and 9
14 : {> ≤ >} from chaining 13 and E2

15 : {} by irreflexivity resolving 14

5. Conclusion

We took up the challenge of providing logical foundations for efficient theorem proving

for G4∞, i.e., Gödel logic augmented by the projection operator 4. In contrast to classical

logic, testing validity of a G4∞-formula F is not equivalent to testing the (1-)unsatisfiability
of ¬F . However both problems are important in view of intended applications. Unfortu-

nately, efficient proof search methods for unrestricted first-order G4∞ seem, at least currently,

to be out of reach. In particular, Skolemization for full G4∞, even without 4, is an open
problem. Consequently, we have focused on the (still very expressive) prenex fragment of

G4∞ and described a proof search method that remains as close as possible in spirit to res-
olution based theorem proving for classical logic. In particular this allows us to treat both
problems, testing validity and testing 1-unsatisfiability, in a uniform manner. While, as we
have shown by proving a version of Herbrand’s theorem, standard Skolemization preserves

validity for prenex G4∞, we had to come up with a novel, extended form of Skolemization
for satisfiability. In both cases, Skolemized formulas are efficiently translated into a specific
structural normal form. This consists of sets of order clauses, where the literals are of the
from s < t or s ≤ t. We have finally explained how chaining resolution, a well investi-
gated proof search method for order clauses, can be employed to check unsatisfiability in a
machine oriented manner.

We like to emphasize that our results not only provide a basis for automated proof

search, but also demonstrate a number of interesting logical properties of G4∞ that distin-
guish it, e.g., from other fuzzy logics [18]. For example, the fact that the set of 1-unsatisfiable

prenex formulas of G4∞ is recursively enumerable (as trivially implied by our results) has
not been known previously.
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[2] M. Baaz. Infinite-valued Gödel logics with 0-1-projections and relativizations. In Proceedings Gödel
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Eds: P. Cintula, P. Hájek, C. Noguera. College Publications, pp. 585–627, 2011.

[10] M. Baaz, N. Preining and R. Zach. First-order Gödel logics. Annals of Pure and Applied Logic
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