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Abstract. Purpose of this research area is the development of formal
methods and tools to deal with various geometries. Furthermore we aim
at a formal description of sketches in these geometries, which seem to be
a basic concept and useful tool. We develop Gentzen style calculi, prove
various properties of these calculi, and exhibit the equivalence of sketches
in the found formalization and proofs in the calculus. Further develop-
ment in the area of automatic deduction and proving with sketches and
the automated translation to proofs in a calculus are discussed.

1 Introduction

Learning geometry is one of the first things you do in school, and indeed it is
one of the most intuitive areas where proofs can be supported and explained
using sketches. But still geometries are defined by axioms and are therefore
open for a proof theoretic analysis. Furthermore sketches as they are used in
geometry are a very interesting area of research. Several computer programs
have been developed to work as “proving with sketches” (Dr. Genius, Geometers
SketchPad, et al.) and those programs are readily available on the Internet. So
why would anyone deal with sketches?
To cite from [Pol54a]:

We secure our mathematical knowledge by demonstrative reasoning,
but we support our conjectures by plausible reasoning. A mathemati-
cal proof is demonstrative reasoning, but the inductive evidence of the
physicist, the circumstantial evidence of the lawyer, the documentary
evidence of the historian, and the statistical evidence of the economist
belong to plausible reasoning.

The difference between the two kinds of reasoning is great and man-
ifold. Demonstrative reasoning is safe, beyond controversy, and final.
Plausible reasoning is hazardous, controversial, and provisional. Demon-
strative reasoning penetrates the sciences just as far as mathematics
does, but it is in itself (as mathematics is in itself) incapable of yield-
ing essentially new knowledge about the world around us. Anything new
that we learn about the world involves plausible reasoning [...]
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Accompanying the introduction of formal methods within mathematics and
logic less and less methods of proving where founded on a formal base and
therefor accepted as valid. One particular interesting example, and at the same
time one of the last ones, since it is from 1953, is the use of physical notions
in a proof of Schiitte [SvdW53], which would be impossible today. Nevertheless
it is of fundamental proof theoretic interest to understand the relation between
formal proofs and informal descriptions. If we improve our understanding of
these connections we could on the one hand better understand old proofs using
these methods and on the other hand really use this methods in new proofs.

The use of sketches in geometry resembles exactly the description given
above. They were used for plausible reasoning [Pol54a,Pol54b]. Ever since ancient
civilizations like the chinese, arian or greek cultures started to prove geometrical
theorems there where different forms of proving, different ways of assuring the
truth of statements. All these different forms where accepted as complete prov-
ing tools. The distinction between plausible and demonstrative reasoning has not
been made. With the beginning of strict formalization of mathematics and the
use of formal methods within mathematics, some of these proving techniques
have vanished or have changed the way they are used, because they couldn’t
stand the requirements of current science for a valid proving method. Some of
these methods still exist but have lost there importance because they where not
considered “timely” or formal enough to be used.

In our work we want to investigate the strength of non-standard proof meth-
ods in comparison with standard proof techniques via calculi. The purpose of
this paper is a short presentation on how far we have come with our development
of proof theory for geometries, which tools are available and what we can expect
and what we hope to achieve in the future.

2 Affine and projective geometry

The root of projective geometry is the parallel postulate introduced by Euclid
(c. 300 B.C.). The believe in the absolute truth of this postulate remains unshak-
able till the 19th century when the founders of non-Euclidean geometry—Carl
Friedrich Gauss (1777-1855), Nicolai Ivanovitch Lobachevsky (1793-1856), and
Johann Bolyai (1802-1860)—concluded independently that a consistent geome-
try denying Euclid’s parallel postulate could be set up.

Affine Geometry is an extension of projective geometry with a new predicate ||
and some new axioms. It should resemble the geometry of space we are living
in.

Both geometries deal with points and lines. These two elements are primi-
tives, which are not further defined. Two predicates are connecting these objects.
One predicate defines a relation between Points and Lines, called Incidence, writ-
ten P 7 g meaning the Point P incides with the line g. The second predicate
expresses the parallel property, written g || h.

Projective geometry only uses the incidence (besides the equality), while
affine geometry uses both predicates. The axioms for affine geometry are the



following: (AG1) For every two distinct Points there is one and only one Line,
so that these two Points incide with this Line. (AG2) For a Point P and a line [
such that P T g there exists one and only one line m such that P Z m and [ || m.
(AG3) There are three noncollinear Points.

The axioms for projective geometry are (PG1) For every two distinct Points
there is one and only one Line, so that these two Points incide with this Line.
(PG2) For every two distinct Lines there is one and only one Point, so that
this Point incides with the two Lines. (PG3) There are four Points, which never
incide with a Line defined by any of the three other Points.

These are very basic geometries and we are a long way from Euclidean ge-
ometry, where higher concepts like angle, distance etc. are introduced. But this
reduction to a few basic concepts really allows the proof theoretic analysis, while
the introduction of higher concepts complicates the analysis to the point of im-
possibility.

3 Calculus LpgK for projective geometry

We have developed a calculus LpgK for projective geometry ([Pre96,Pre97])
which is suitable for doing projective geometry, and with some adaptions to the
notations also affine geometry ([Pre01]). This calculus has been analyzed and
various theorems have been proven. Most important is that the cut elimination
theorem from Gentzens LK can be extended to LpgK. A more general ana-
lyzation of proof theory for theories of this kind is done in [Neg01], where some
very interesting results are shown.

The language of the calculus is a typed with two types for points and lines,
otherwise it is similar to the basic LK. The constants Ayg,...,Dq are used to de-
note the four Points obeying (PG3). The notation [P(Q)] is used for the connection
con(P, Q) of two Points and the notation (gh) for the intersection intsec(g, h)
of two Lines to agree with the classical notation in projective and affine geome-
tries. Finally Z (P, g) will be written P Z g. The formalization of terms, atomic
formulas and formulas is a standard technique and can be found in [Tak87].

The initial sequents are the logical ones (A — A with A is atomic) and the
mathematical initial sequents are formulas of one of the following forms:

1. > PZ[PQ] and = Q Z [PQ].
2. = (gh) Z g and — (gh) T h.
3. - =2 where z is a free variable.

The rules for the calculus are the usual logical rules, the usual rules for
equality and the following mathematical rules

I APIg 'sAQIg P=Q, = A
I'— APQl=g
> AXT[YZ
I'—-A
where #(X,Y, Z) and X,Y,Z € {Aq, Bo,Co, Do}

(PG1-ID)

(Erase)



3.1 Cut elimination theorem for LpgK

We will not give a formal proof but the idea behind the proof: The process of
eliminating the cuts is an extension of Gentzens method. For this the proofs
are first brought into a normal form where all the mathematical rules are in
front of the logical rules (and both are interspersed with structural rules). In
the first part geometry is practiced in the sense that in this part the knowledge
about projective planes is used. The second part is a logical part connecting the
statements from the geometric part to more complex statements with logical
connectives. It is easy to see, that for every proof in LpgK there is a proof in
normal form of the same endsequent.

The central lemma for the elimination of cuts is the following which eliminates
one cut from a proof:

Lemma 1. For every proof in normal form with only one cut there is a proof
in normal form of the same endsequent without a cut.

PROOF (Sketch, detailed exposition in [Pre96]):

STEP 1: We will start with the cut-elimination procedure as usual in LK as
described e.g. in [Tak87]. This procedure shifts a cut higher and higher till the
cut is at an axiom where it can be eliminated trivially. Since in our case above
all the logical rules there is the (atom)-part, the given procedure will only shift
the cut in front of this part.

STEP 2: The cut is already in front of the (atom)-part: First all the inferences
not operating on the cut-formulas or one of its predecessors are shifted under
the cut-rule. Then the rule from the right branch over the cut-rule are shifted on
the left side by applying the dual rules' in inverse order. Finally we get on the
right side either a logical axiom or a mathematical axiom. The case of a logical
axiom is trivial, in case of the mathematical axiom the rules from the left side
are applied in inverse order on the antecedent of the mathematical axiom which
yields a cut-free proof.

EXAMPLE: A trivial example should explain this method: The proof

1 =22 > T1 =T9 T1=U—>T1=U
Ty = I3 —> Ty = I3 1 =22,T1 =U—> T2 =U
T2 =2T3,T1 =T2,T1 =U—>T3=1U I3 =Uu —
To =T3,T1 =T2,T1 = U —

(Cut)

will be transformed to
Tog =3 > T2 =23 T3 =U—
1 =Ty > T1 = T2 To =T3,T2 =U —
1 = T2,T2 = T3,T1 = U —

Theorem 1 (Cut Elimination for LpgK). If there is a proof of a sequent
II - I' in LpgK, then there is also a proof without a cut.

! E.g. (trans:left) and (trans:right) are dual rules



ExaMPLE: We will present an example proof and the corresponding proof with-
out a cut. We want to prove that for every line there is a point not on that line,
in formula: (Vg)(3X)(X T g).

We will first give the proof in words and then in LpgK.

ProoF: (Words) When Ay 7 g then take Ay for X. Otherwise Ag Z g. Next if
By T g take By for X. If also By Z g then take Cy, since when Ay and By lie on
g, then g = [AgBo] and Co T [AoBo] = g by (PG3).

Proor: (LpgK)

Bol—g—>Bol—g

BoTg—BoTg  Bod g—Bod g o m
AoTg— Aoy —+BoZg,BoT g BoZ g— (3X)XT g) AcZg,BoZTg— (3X)(XT g)
AgZg—ApTyg AoZ g—AoT g —+BoZgVBoZIyg BoZgVByZ g,A0Zg— (AX)(XT 9) (Cut)
—-A0Zg,AcF g AoZ g— (3X)XT g) AoZg— (3X)(XT g)
— Ao ZgVAT g Ao I gVALZ g—(3X)XT g) (Cut)
- (3X)(X T g)
= (V9)3X)(X T g)
Hl :
AO Ig — AO Ig BO Ig — BO Ig AO = BO — C() 7 [A()Bo] — CO A [A(]Bo] (Erase)
AO Ig,BO A g—g= [A()B()] C() A [A()Bo] —
A07Zg,BoTg,CoTg—
AT g,BoIg— (IX)(X T g)
The cut-elimination procedure? yields a cut-free proof of the same end-
sequent:
AO Ig — BO Ig BO A g — BO Ig AO = BO — C(] 7T [A(]Bo] — CO A [A()BO] (Erase)

AoZ g,BoT g— g=[AoBo] Co I [AoBo] —
Ao T 9,ByT g,Co T g—
=A% 9.B0% 9.CoF g
- (3X)(XT 9),3X)(XT 9),FX)(XT g)
-+ (3X)(XT g)
- (Vg)EX)(X T g) Q

4 Sketches in affine and projective geometry

Most of the proofs in projective geometry are illustrated by a sketch. But this
method of a graphical representation of the maybe abstract facts is not only used
in areas like projective geometry, but also in other fields of mathematics. The

2 or a close look



difference between these sketches and the sketches used in projective geometry
(and similar fields) is the fact, that proofs in projective geometry deal with
geometric objects like Points and Lines, which are indeed objects we can imagine
and draw on a piece of paper.

So the sketch in projective geometry has a more concrete task than only
illustrating the facts, since it exhibits the incidences, which is the only predi-
cate constant besides equality really needed in the formalization of projective
geometry. It is a sort of proof by itself and so potentially interesting for a proof-
theoretic analysis.

If we are interested in the concept of the sketch in mathematics in general
and in projective geometry in special then we must set up a formal description
of what we mean by a sketch. This is necessary if we want to be more concrete
on facts on sketches.

We will evolve the definition of sketches and constructions for the affine case,
the ones for the projective case can be obtained by dropping all occurrences of
rules, cases etc regarding ||

All Points and Lines are combined in the sets called 7p and 7, respectively.

To ensure consistency inside a set of starting objects, they must obey one
rule, namely that if a compound term is in the set, than all of its subterms are
also in the set. This is the reason for the next definition.

Definition 1 (admissible set of terms). Let M be a subset of T(C), the set
of terms over C, a set of constants, then M is called admissible if it obeys the
following rules:

o (V[XY]e M)(X,Y e M)
o (V(gh) € M)(g,h e M)

The idea is to define a set of Points, Lines and certain combinations of them
(the intersection points and connection lines) and to let the sketch be a subset
of all possible atomic formulas over these terms.

The universe of formulas FUp(M) is simple all well formed formulas with
predicates in P and terms in M. P will only be {Z,||,=} or {Z,||}. The set FU
contains all the possible positive statements which can be made over the termset
M.

We wish to approximate real sketches as close as possible, and therefore we
should not allow multiple instances of the same object, i.e. we require that a
object (Point, Line) has a unique name and does not have different names in
different parts. We require a proper state within our construction and therefore
do not allow ambiguous information, which can arise from the following situation,
called critical constellation:

Definition 2 (Critical Constellation). Let P and @ be terms in 7p and g
and h terms in 7z. Than we call the appearance of the following four formulas

a critical constellation:
PIglPTh
QZgQZTh

We will denote such critical constellations by (P, Q;g,h).



Such a constellation is called critical, because from these four formulas it
follows that either P = @ or g = h (or both), but we cannot determine which
one of these alternatives without supplementary information.

When constructing any sketch we start from some assumptions over a set
of constants and then construct new objects and deduce new relations. From
a proof-theoretic point of view these first assumptions are the left side of the
deduced sequent, i.e. the assumptions from which you deduce the fact.

Now we come to the definition of the sketch. We require a sketch to be a set
describing all the incidences in the sketch. But we also require that this subset is
closed under trivial incidences, which means that if we talk about a Line which
is the connection of Points, then we require that the trivial formulas express that
these two Points lie on the corresponding Line.

Further we require that no critical constellations occur in a sketch. That
arises from the fact that we wish that every geometric object is described only
by one logical object, i.e. one term. Since a critical constellation implies the
equality of two logical objects, which we cannot determine automatically, we
want to exclude such cases.

Definition 3 (Sketch). Let M be an admissible termset over a set of constants
C; {A07 BO: 007 [AOBO]7 AR [BOCO]} c M;

let £ be a subset of FUz |3 (M) U Flyz,,=3(M) with Ag # Bo, ..., Bo # Co,
Ao T [BoCol,..., Bo T [AeCo] € €,

let Q be a set of equalities and let the triple (M, E,Q) obey the following require-
ments:

VX, Y e M,mp)([XY]EMD(XT[XY))eEANY I[XY]) €
(Vg,h € M,7c)((gh) e MD ((gh) Tg) € EA((gh) Th)e &)  (S.1)
(=3z,y € M)(P(z,y) € EA-P(z,y) € E)

(mIzeM)((z#£x)€f) (5.2)
there are no critical constellations in € (S.3)
(Vz e M)((z =2) € Q) (S.4)

Then we call the triple S = (M, &,Q) a sketch.

We will call the violation of S.2 a direct contradiction.
A small example should aid understanding of the concepts: In this sketch the
different sets are (where the incidences of the constants are lost!):

C= {P)QaRaXJ'g}
M = {P,Q;R;X;ga[RQ]}

m{Z,Z}Z{PIgaQIgaRIg7XIg7 1.3
PT[RQ|,QZ[RQ],RI[RQ],XT[RQ],
P=Q,P=RP=X,Q=R,Q=X,R=X,
g9 = [RQ]} 1 X

g:{QI[RQ]aRI[RQ]aXIgaPI: gaQI gaRqt g,
PT [QRL,X T [QR]} @

[ Yus]




Note that one sketch is only one stage in the process of a construction, which
starting from some initial assumptions forming a sketch deduces more and more
facts and so constructs more and more complex sketches.

4.1 Actions on Sketches

Till now a sketch is only a static concept, nothing could happen, you cannot
“construct”. So we want to give some actions on a sketch, which construct a new
sketch with more information. The new sketch may not have the properties S.1—-
S.3, but it must be a semisketch:

Definition 4 (Semisketch). A semisketch is a sketch that need not obey to S.2
and S.3.

These actions should correspond to similar actions in real world, i.e. actions
taken when one draws a sketch. After these actions are defined we can explain
what we mean by a construction in this calculus for construction.

The following list defines the allowed actions and what controls have to be
executed. The following list describes the changes that have to be done on the
quadruple of a sketch when we carry out the corresponding action.

In the following listing we will use the function closure(Q) on a set of equal-
ities (). This function deduces all equalities which are consequences of the set
Q. This is a relatively easy computation. If we have Q = {z = z,y = y,z =
Z,& =Y,y = z}, then the procedure returns @ U {z = z}. This function is used
to update the set @ of a sketch after a substitution.

Joining of two Points X,Y; Symbol: [XY]: M' = M + [XY], & =
E+{XT[XY]Y I[XY]}, Q =@+ ([XY] =[XY]). The requirements (S.1)
and (S.4) are fulfilled since the necessary formulas are added to £ and @. This
action can produce a semisketch from a sketch.

Intersection of two Lines g, h; Symbol (gh): Dual to the joining of two
points, but this action will only be allowed if in £ there is g |f h-

Assuming a new Object C in general position, Symbol {C}: M' =
M+C,E =€, Q =Q+(C=C). That §' is a sketch is trivial, since C is a
completely new constant. C' must be a constant of type 7p or 7.

Giving the Line [XY] a new name g := [XY]; Symbol g := [XY]:
M = M[[XY]/g], & = E[[XY]/g], Q" = Q[[XY]/g]- S' is a sketch since this
operation is only a name-change. Note that g must not be in M.

Drawing a line parallel to g through P; Symbol h :=|| (¢,P) M' =
M+h,cE'=EU{g||h,PTh},Q =Q+ (h=h).

Giving the Point (gh) a new name P := (gh); Symbol P := (gh)
Dual to giving an intersection-point a name. Note that P must not be in M.

Identifying two Points v and ¢; Symbol u =t M' = M\ {u}, &' =
Elu/t], Q' = closure(Q U {u = t}). Note that the set Q' can contain terms ¢ not
in M’. This action can produce a semisketch from a sketch.

Identifying two Lines [ and m; Symbol [ =m
Dual to identifying two Points.



Using a “Lemma”: Adding ¢t Z u; Symbol t Zu M' =M, E'=E+ (T
u), @' = Q. This action can produce a semisketch from a sketch.

Adding a negative literal t T u; Symbol t T u M' =M, &' =+ (7
u), @' =Q.

Adding a negative literal ¢t # u; Symbolt #u M' = M, &' = E+(t # u),
Q' =Q.

To deduce a fact with sketches we connect the concept of the sketch and the
concept of the actions into a new concept called construction. This construction
will deduce the facts.

Definition 5 (Construction). A construction is a rooted and directed tree
with a semisketch attached to each node and an action attached to each vertex
and satisfying the following conditions: If a vertex with action A leads from node
N1 to node N, then Ny is obtained from N1 by carrying out the action on Nj.
If from a node N there is a vertex labeled . ..

- with [XY] or (gh), then X #Y or {g # h,g [ h} is contained in EN.

- with h:=|| (g, P), {C}, g := [XY], P := (gh), then there is no other vertex
from N.

- with PT g, X =Y, g|| h, then there is exactly one other vertex labeled
with the negate of the other formula. This is called o case-distinction.

Furthermore if £ attached to a node . ..

- wyields a direct contradiction, then it has no successor,

- contains formulas PZ g, PZ h, g || h and g # h then there is no successor,
the node is contradictory.

- is a semisketch but not a sketch, i.e. that there are critical constellations,
let (P,Q;g,h) be one of them, then there are exactly two successors, one
labeled with the action P = @ and one labeled with the action g = h.

What is deduced by a construction: A formula is true when it is true in all the
models of the given calculus. The distinct models in a construction are achieved
by case-distinctions. So if a formula should be deduced by a construction, it must
be in all the leafs of the tree. But since some leafs end with contradictions and
from the logical principle “ex falso quodlibet” we only require that a formula,
which should be deduced, has to be in all leafs which are not contradictory.

We also have to pay attention to the way a construction handles identities.
Since in a construction an identity is carried out in the way that all occurrences
of one term are substituted for the other, we not only prove an atomic formula,
but also all the formulas which are variants with respect to the corresponding
set ). This notion will now be defined.

Definition 6. Two atomic formulas P(t1,u1) and P(t2,us) are said to be equiv-
alent with respect to @, where Q is a set of equalities, in symbols P(t1,u1) =gy
P(to,us), when (t1 = t2), (u1 = u2) € Qn (or the symmetric one).

Now we can define the notion of what a construction deduces:



Definition 7. A construction deduces a set of atomic formulas A iff for all
A € A there is a not contradictory leaf, where
either A€ Qn or (3B € E(N))A =) B.

The meaning of this definition is that if a construction deduces A then the
disjunction of all formulas in A is proved by this construction.

4.2 An example for an affine construction

We will prove the following sentence of affine geometry with a construction:
F@,m,n)Am||nAPZIANPZIm)D (3Q)(QZIANQIn)

Le. if two lines (m, n) are parallel and another line (I) intersects with one of
them, then it intersects also with the other one.

The construction is given in fig. 1. First the assumptions are build up by
simple case distinction, this is an automatic process, then the proof by sketch
follows closely any other proof by distinction whether [ || n or not. In case it is
parallel node 9 is reached and closed because it yields a contradiction (P Z I,
PZm,l| m,l# m).If they are not parallel we can construct the intersection
point (nl) and are finished. Therefore the construction proves the above formula
(if the implication is transformed into a disjunction).

Y

m|ln Im Llfn

Q = (In)

11

Fig. 1. An affine construction

5 Translation of Sketches to Proofs and back

We will explain how to go from sketches in affine geometry as defined above to
proofs in a formal calculus and how to obtain a set of sketches that prove the
same as a proof in a formal calculus.



The translation is done by transforming a given affine construction into a
projective one, which in turn can be translated into a proof according to [BP02].
A similar route is used for the reverse direction: If we have a proof of a formula
in affine geometry we transform it into a formula in projective geometry, build
the corresponding projective sketch and translate it into an affine sketch.

Both translations are based on the well known fact that you can complete
an affine geometry with one line at infinity to a projective geometry, and that
you can strip down a projective geometry by deletion of one line to an affine
geometry. In these cases parallel means that the intersection point of two lines
incides with the taken out or added line.

It is easy to prove the axioms of affine geometry are valid in this new struc-
ture: Axiom (AG1) is the same in projective geometry, for axiom (AG2) just
define m := [P(lu)]. It is obvious that P Z m and that this line is unique.
Finally the last axiom (AG3) is a trivial consequence from the last axiom of
projective geometry.

On the other hand we can extend any affine geometry by adding a line u
which holds all the meeting points of parallel lines to a projective geometry.

Lemma 2. By adding/deleting one Line to/from an affine/projective geometry
we obtain a projective/affine geometry.

So we can define parallel by incidence and the added line as

gllh:=(g="n)Vv((gh) T u).
The proof of the following lemmas can be found in [Pre01].

Lemma 3. Any construction in affine geometry can be translated into a con-
struction in projective geometry.

Now we show that we can do the reverse process, too. We start with a formula,
of affine geometry. Then we rewrite the axioms and add the line v to obtain
a formula in projective geometry. This one can be proven by sketches (again
according to [BP02]). Finally we have to transform the sketches in projective
geometry back into affine geometry.

Lemma 4. The construction in projective geometry of a Herbrand disjunction
of an affine geometry formula can be transformed into a construction in affine
geometry.

Citing from [BP02] and as a consequence of the above lemmata we can state:

Theorem 2. For any formula proven in any reasonable® and sound calculus for
projective geometry, there is a construction which deduces this formula.

Theorem 3. Affine sketches and proofs are equivalent in the sense that any
proof of an affine sentence can be translated into a (set of) construction(s) which
deduce the same sentence, and any affine construction can be transformed into
a proof.

3 i.e. a calculus comparable to LpgK



6 Future directions

There are three main directions of further development:

— Implementing a sketching tool and translate these sketches to proofs.
— Refine the notion of sketching.
— Extend the calculus and the notion of sketching to higher geometries.

The first one could be very rewarding in analyzing the ways proofs by sketches
are carried out. With this information at hand we could refine the notion of
sketches to better fit the real process of sketching. With this new informations
we could go on to the inclusion of higher notions like angle, distance etc to cover
parts of Euclidean geometry.
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