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Abstract. Free variable-tableaux have proven to be an adequate calcu-
lus for propositional modal logics. However, they have not materialized
into efficient theorem provers. In this paper, we present a variant of the
free-variable calculus presented in [3]. The distinctive features of our
formalism are the use of labels throughout the formulas (not only as pre-
fixes), with anonymous placeholders for universal variables, and a rigid
definition of a free-variable model. We give a proof for soundness and
completeness of our calculus for the modal logic K, provide a decision
procedure which returns a model for any satisfiable formula, and out-
line how standard simplification techniques can be used to optimize the
algorithm.

1 Introduction

The modal logic K, and more so, the Description Logic counterpart of its multi-
modal version, ALC, have established themselves in the field of Automated Rea-
soning. Extensions of ALC have proven to be adequate formalisms for reasoning
with knowledge and are now used as underlying formalisms of medical knowl-
edge bases, verification problems, and more recently, one of the Semantic Web
languages [16]. Highly optimized theorem provers [14,15,11] provide reasoning
services for these knowledge bases and problems. Secondly, the complexity class
of satisfiability checking in K, PSPACE, poses interesting challenges: while still
fully decidable, it strictly exceeds the complexity of propositional logic. While
the performance of systems in real-world applications is encouraging, it has been
observed that on encodings of QBF problems which (in the unbounded case) at-
tain the PSPACE complexity bound, the performance of modal and description
logic theorem provers still lags far behind that of dedicated QBF solvers [20].
Also, existing provers do not meet the theoretically possible EXPTIME bound
in running time for general ALC problems [6]. Among the suggested remedies are
simplification rules [19], nogood caching [6], and structural subsumption tests
[13]. In the prototype prover MODPROF [12], it was demonstrated that extensive
simplification can indeed lead to improved performance on benchmark problems.

It is known that even for PSPACE-complete problems, minimal satisfying
Kripke models may be exponential in space. For example, Ladner encodings [18]



of QBF problems tend to entail exponential-size minimal Kripke models. In the
classical tableau approach, each world must be visited, which inevitably leads to
exponential running time or worse!. (This observation is reflected in the results
reported in [21], especially those on Ladner-encoded QBF formulas.)

Free-variable tableau calculi are common in first-order logics, and they have
also been proposed for modal logics [1,3,10]. Essentially, all formulas are as-
signed labels which, unlike the labels in Fitting’s labelled tableau calculus [7],
may contain placeholders to allow reasoning in several worlds, concepts or in-
stances at once. As a result, the search space may be greatly reduced compared
to conventional tableaux [3]. 2. Another appeal of free-variable tableaux is their
flexibility with regard to the particular logic being modelled. With only slight
variations in the formalism, all basic normal logics can be modelled [3]. Further-
more, a decision procedure for some logics, including K, has been provided and
implemented in the theorem prover LeanK [2]. However, a lean implementation
has proven very inefficient, and we know of no published system which competes
in performance with the leaders in the field.

In this paper, we propose a free-variable representation format for formulas
of the modal logic K2, which preserves satisfiability. The novel features are
that modal operators within a formula are entirely replaced by labels, which are
composed of constants and occurrences of a wildcard *+ which can be instantiated
by any constant. This allows reasoning about several accessible worlds at once,
and at any level of nesting within the formula. The semantics are defined in
terms of free-variable models, which are sets of labelled literals whose labels may
also contain the * symbol, allowing a more compact representation than Kripke
models do. The free-variable formalism in its entirety is introduced in Section 3
of this paper.

In Section 4, we will proceed to devise a tableau calculus for free-variable
formulas, prove it sound and complete, and derive a decision procedure. In par-
ticular, we will show how a complete open branch provides a free-variable model.
It turns out that, after suitable preprocessing of the original formula, the tableau
calculus needs only one rule, in contrast to the four different types of rules in
the traditional tableau calculus for K[7] or the free-variable calculus in [3].

Our calculus, though independently developed, can be seen as a variant of the
calculus in [3]. In Section 5, we will compare the two approaches and highlight
the differences, showing how our calculus can be derived as a modification of
the latter. In the last section, we will give an outlook, with a specific focus on
the usefulness of our algorithm in deriving an efficient theorem prover, possible
simplification techniques, and implementation challenges.

! Model caching and model merging may alleviate the consequences but do not address
the problem.

2 Which is not to say that all satisfiable problems have polynomial-size free-variable
models. In fact, formulas with at least exponential-size models can be readily con-
structed.

3 The restriction to K was made chiefly for brevity. A generalization to ALC is straight-
forward, and we suggest that the formalism can be easily adapted to logics such as
KT and S4, as well as extensions with global and local assumptions.



2 Basic Concepts

We define the language of propositional modal logic as the set of all well-formed
expressions made from atoms (a set P of propositional variables, augmented by
the propositional constants T and L), the unary operators —, 0 and { (the latter
two are the modal operators), and the binary operators A and V. (The expres-
sion x — y is considered a variant of -z V y.) Atoms and negated variables are
also called positive and negative literals, respectively. The length of a formula F’
(written I[(F)) is defined as the total number of occurrences of atoms. Any sub-
string of a formula F' which is itself a well-formed formula is called a subformula.
The set vars(F') is defined as the set of variables mentioned anywhere in F'. The
modal depth of F, d(F), is defined to be 0 for atoms, 1 + d(G) for any formula
of the form OG or { G, and the maximal modal depth of any proper subformula
in F, for any other F'. A formula is said to be in Negation Normal Form (NNF)
if negations occur only in front of atoms.

A thorough treatment of the semantics of the modal logic K can be found
in standard works such as [4]. Here we only define it by way of Kripke models,
originally introduced in [17]. A Kripke model (W, R, V') consists of a finite, non-
empty set W of possible worlds, an accessibility relation R defined on W, and
a valuation function V : W x P — {true, false}. We further require the graph
(W, R) to be a directed tree with root wo*. Given a Kripke model, we recursively
define the conditions under which a world w € W satisfies a formula F' (written
w | F) or not (w [£ F'), depending on the main operator in F:

wkET.

wlE L.

wEz if V(w,z) = true

wE-F ifwlpF

wEumAwifwEa and w Eay

wEP VL fwlEpf orwl P

wEOF  iffor all w' € W such that wRw', w' |= F.

wE(F  if there exists some w' € W such that wRw' and w' |= F.

A Kripke model in which wo | F is called a (satisfying) model of F. We
say that a formula is K-valid (valid for short) if all Kripke models satisfy F'.
Conversely, a formula is called invalid (unsatisfiable), whenever there is no Kripke
model satisfying F', and satisfiable otherwise. We extend all these notions to sets
of formulas, defining w |= S if w |= F for all F in the set S.

Obviously, a formula is invalid iff its negation is valid. Therefore, to prove a
formula F' valid, we can show that —F has no model.

3 The Free-Variable Formalism

Let C be a fixed infinite set of constants, and * a symbol not contained in C,
the so-called wildcard.

4 The restriction is justified since K satisfies the tree model property. Graphs with
loops or converging branches are useful but will not be considered for lack of space.



A label of length n is an n-tuple of symbols from C U {x}. The kth element
of a label is called its kth position. The concatenation of two labels o1, o9 is
defined in the obvious way and denoted o702. The only label of length 0 is the
empty label, denoted £. We identify labels of length 1 with their one element,
e.g. o = c¢. Label o is called a prefiz of o, if there exists a label oy (possibly
empty) such that o = o105. A label is called ground, if it does not contain any
occurrence of x. Label oy is called an instance of o, if oy and o are of the same
length, and in the only positions where ¢ and o differ, ¢ has a *. Two labels o9
and o2 unify if they have a common instance (unifier); the most general unifier
(mgu) (o1,02) is the unifier with the maximum number of * positions.

3.1 Labelled Formulas
Definition 1. A labelled formula is inductively defined as follows:

— All (unlabelled) literals are labelled formulas.

— If F, F\ and F5 are labelled formulas and o a label, then o.F, =F, F; A F5,
and Fy V Fy are labelled formulas.

— Nothing else is a labelled formula.

We identify o1.(02.F) with (o102).F and €.F with F. The length l(¢) and depth
d(¢), and set of variables vars(¢) are defined similarly as for modal formulas.
We say that a set of formulas contains a label o, in case it contains a formula
09-F such that o is a prefix of o¢. A labelled formula is in labelled NNF, if all
negation operators occur in front of a propositional variable.

Intuitively, each ‘*’ represents a ‘0, and each ¢ € C represents a distinct ‘() .
The distinctness of possible worlds is made explicit by choosing different con-
stants. Such a distinction is not required for the necessity operator. This is why
we need only one wildcard symbol; it is understood that different occurrences
of * can be instantiated by different constants. We will manifest our intuition
when we introduce the semantics of labelled formulas.

Throughout this paper, it will be convenient to refer to certain parts of a set
of labelled formulas:

Definition 2. Given o set S of labelled formulas, the set generated by ¢ €
C U {x} (written S..) is the set {o.F : co.F € S or x0.F € S}. The model S,
generated by a label 0 = ¢; ... cy is the set ((Sey)es - --)ep-

3.2 Free-Variable Models

As the next step towards defining the semantics of labelled formulas, we will
now define their models.

Definition 3. A set of labelled formulas of the form o.w where v is either T
or a propositional variable, and o is a (not necessarily ground) label, is called a
free-variable model.



We will now establish the relationship between Kripke models and free-
variable models. The worlds of the Kripke models should be the ground labels
explicitly or implicitly defined in the free-variable model, without including any
unnecessary labels®, while ensuring that they form a rooted tree with no miss-
ing intermediate nodes. The following definition, adapted from [3], affords this
property:

Definition 4. A ground label is called realized (justified) by a model M, if one
of the following applies:

— € 1s always realized by any model.
— o.c is realized by M, if o is realized by M, and M contains a label of the
form og.c, where o is an instance of og.

Proposition 1. The graph G consisting of the ground labels realized by M , with
directed edges (o,0') iff o' = o.c with some ¢ € C, is a directed tree with root €.

Proof. By definition, ¢ is always realized, and we can easily see from Definition
4 that every prefix of a label realized by M is also realized by M. Therefore,
there exists a directed path from e to any other label in G. Finally, every label
of the form o.c is the successor of exactly one label o, which finishes the proof.

Given a free-variable model M, we construct a Kripke model as follows: Let
G = (W, R) be the graph as in Proposition 1, and wy = ¢. Define V(o,v) =
true if there exists a formula og.v in M such that o is an instance of og; set
V(o,v) = false in all other cases. This completes the construction of the Kripke
model (W, R, V) with root wg, which we denote K(M).

It is also possible to encode redundant information in free-variable formulas.
For example, the formula *.¢ states that ¢ must be true in all ground labels
of length 1; if no such label is realized by the model in question, then *.¢ is
vacuously true, regardless of ¢. Thus, even the formula *. L is satisfied e.g. by the
empty model. To identify labels which may never get instantiated, we introduce
a counterpart to Definition 4:

Definition 5. A label is realizable in a set of labelled formulas S (not necessarily
a model), if one of the following applies:

— ¢ is always realizable.

— o.c is realizable in S if o is.

— o.x is realizable in S if S contains a label of the form og.c for some constant
¢, and og and o unify.

Ezample 1. Let C = {1,2}, and V = {p, q,r, s}, and consider the free-variable
model M = {1.p,1x.p, 2%.r,x1.q,*2.T}. All labels in this model are realizable,
and the realized ground labels are exactly the labels ¢, 1, 2, 11, 12, 21, and 22.
The Kripke model obtained from the above construction is displayed graphically
in Figure 1, where z and T mean that z is assigned true and false, respectively.

% Including “too many” worlds sounds harmless but may in fact lead to unsoundness.
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Fig. 1. A Kripke model for Example 1.

3.3 Semantics of labelled formulas

With the definitions of the previous section, we can now formally define the
semantics of labelled formulas.

Definition 6. We say that the free-variable model M satisfies, or is a model for
a labelled formula F, written M |= F, if the appropriate condition below applies
(91, 2 are labelled formulas, x € P, c€ C):

ME=T.

MW 1.

ME=zx ifex € M.

MlE-¢ M.

ME=d¢p 1N if M |=¢1 and M = ¢a.

ME¢ Ve if M =¢1 or M | ¢o.

M Ec.¢ if there exists a label co in M, and M, = ¢.

M E *.¢ if for all ¢ € C such that a label co exists in M, M, = ¢.

A formula is called satisfiable if it has a model, otherwise unsatisfiable. Two
formulas ¢; and ¢ are equivalent if they are satisfied by the same models, and
contradictory if ¢ A ¢= is unsatisfiable. M satisfies a set of formulas if it satisfies
every formula in it. All these terms are analogously defined for sets of formulas.

We state an important corollary, leaving its proof to the reader:

Corollary 1. M E 0.¢ iff M, |= ¢ for any realized ground instantiation o' of
o, and the longest ground prefiz of o is realized in M.

A free-variable model, viewed as a set of formulas, is always satisfied by itself,
but also by any model M’ with M C M".

As a major difference to K where the possibility operator does not distribute
over conjunctions, it’s easy to prove that all labels do, including constants®:

Corollary 2. For any label o and any two labelled formulas ¢1, ¢, we have the
logical equivalence o.(¢1 A ¢2) = 0.1 A 0.¢5.

% However, labels do not distribute over disjunctions, an asymmetry which will be
reflected in the definition of And/Or Normal form.



We are now ready to introduce satisfiability-preserving conversions from K-
formulas to labelled formulas. We impose the (important) restriction that the
K-formulas be in Negation Normal Form.

Theorem 1. There exists an algorithm which, given a K-formula F in NNF,
takes linear time in the length of the input to construct a labelled formula ¢
in labelled NNF, such that any free-variable model M satisfies ¢ exactly when
K (M) is a Kripke model for F. Therefore, ¢ is satisfiable iff F is.

Proof. Let us first state the algorithm. Given a formula F', we keep an array of
labels A(S) for each subformula S of F', which we initialize to A(S) = . The
algorithm returns label(F'). where label(S) is defined as follows:

If Sis T, L, or a literal, return S.

If S is S; o Ss for any binary propositional connective, set A(S1) = A\(S2) =
A(S), and return label(S;) o label(Ss).

If S is O, set A(Sp) = A(S)*, and return *.label(Sy).

If S is { So, find a constant ¢ € C such that A(S)c does not unify with A(S’)
for any subformula S’. Then set A(Sp) = A(S)¢, and return c.label(Sy).

It is easy to see that label(S) is in NNF provided S is, as no new negation
symbols are introduced. Next, we prove the statement about the complexity of
the algorithm. Observe that every subformula is accessed three times: to initialize
A(S), to set A(S), and to determine label(S). In the fourth case above, we can
avoid checking all subformulas of F' for matching labels (which could result in
quadratic run-time behaviour): we simply choose a fresh constant from C, each
time the rule is encountered”. The correctness proof is left to the reader.

Another conversion, based on Corollary 2, will allow for a more concise
tableau calculus. We define the (labelled) And/Or Normal Form (NF) as follows:
All literals are in labelled And/Or NF; if further o; is a label, and ¢; is a disjunc-
tion of formulas in labelled And/Or NF for i = 1,...,n, then ¢ = A\, 0;.¢; is
in labelled And/Or NF. (This conjunction can be equivalently written as a set
{o1-¢1,...,0n.¢n}, a notation we will use frequently.)

Proposition 2. Every labelled formula in Negation Normal Form can be con-
verted to an equivalent formula in And/Or Normal Form. The transformation
can be done in O(d($)l(¢)) time and space.

Proof. The conversion simply consists of “factoring out” labels preceding con-
junctions, which by Corollary 2 transforms formulas into equivalent formulas.
To see the complexity result, observe that factoring out increases the size of
each subformula in ¢ by at most the length of the longest possible label in the
And/Or NF of ¢, which is bounded by d(¢).

" Yet another feasible approach, in analogy to [3], is to assign a Godelization of Sp to
¢, so syntactically identical formulas are mapped to the same constant, which may
lead to improvements if Sp is complex.



Ezample 2. Converting the formula § pA ) pADO(QgA ) —g) AO((p — Op) A
(-p = O-p))AOO((pVrVs)A(gV—s)) successively into NNF, labelled NNF and
labelled And/Or NF, yields the formula (written as a set) S = {1.p, 2.-p, x1.g,
*2.5g, *.(—p V %.p), *.(p V *.mp), *xx.(p V 1 V 8),%*.(¢ V —s)}. (The constants 1
and 2 can be reused, since they do not occur in the same position as the first
occurrences of 1 and 2.) The model shown in Example 1 satisfies this set.

3.4 Complementary Formulas and Clashes

We now state “obvious” cases for a set of formulas to be unsatisfiable, which the
tableau algorithm will recognize as tableau closures:

Definition 7. A clash is a formula of the form o.L with a realizable label o, or
a set of two formulas {o1.x¢,02.~x}, where o1 and oy are unifiable and (o1, 02)
1s realizable.

This is a purely syntactic notion. Also, observe that only atomic formulas
constitute a clash. In practice, recognizing contradictions between non-atomic
formulas as early as possible is desirable [6]. Yet, the definition accurately reflects
the semantic notion of unsatisfiability and is strong enough for our purposes:

Proposition 3. If a set of formulas contains a clash, it is unsatisfiable. Con-
versely, o disjunction-free formula in And/Or NF (written as a set) is satisfiable,
provided it contains no clash. A model is obtained by removing all occurrences
of the form o.L and replacing negative literals o.—~x with 0. T .

Proof. The first half of the proof is obtained by induction over the length of the
labels of the formula(s) involved in the clash. For the converse, it is easy to show
that the model constructed as above for a clash-free formula S satisfies each
formula in S. Note that contradictory literals in S can only occur with labels
which are not realizable, which does not affect the correctness of the model.

Notice that we cannot simply remove negative literals from S, as their labels,
if realizable, are an essential part of the model; only labels which are already
realizable in other formulas in S may be dropped.

4 The Free-Variable Tableau Algorithm

The only step remaining in the model construction is to eliminate the disjunc-
tions in the And/Or Normal Form. Our tableau calculus accomplishes just that.
We specify it here in its most basic form. Our definition of semantic tableaux
follows the standard set forth e.g. in [7]. Let Sp be a set of formulas in labelled
And/Or NF. A semantic tableau for Sy is a tree whose nodes are sets of for-
mulas, with root node Sp, constructed recursively as follows: The singleton tree
({So},0) is a tableau. If T is a tableau, then we call the paths from root Sp to
leaves in T branches. (We identify a branch with the set union of all its nodes.)



A tableau T is created from T by applying the following rule to a branch B in
T (also called tableau expansion):

o.(B1V---VB)

! !
g 01,1-¢1,1 g 0r,1-¢r,1

; (1)

! !
'O, k1 D1, kn o'ork, Dr.k,

That is: If S is the leaf node of B, and the premise 0.(81 V- - -V ;) is a formula
in B, where 3; = {01,1.¢1,1,---,01,k:-®1,k, } (j = 1,...,7), then the tree obtained
from T by appending the nodes (conclusions) {o'o1,1.¢1,1,.--,0 01,k - D1k }> - - -
{o'or1.0r1,...,0'00k, Prk.} to S, with o' being a realized ground instance of
o0, is a tableau for Sp. This is where the effort of converting to And/Or NF pays
off: In an ordinary modal K tableau system, even when normal forms are used,
at least four different rules are needed, one for each propositional and modal
operator (except —). In our calculus, only one rule to break up disjunctions
remains; the others are implicitly contained in the conversion.

A branch S is closed, if it contains a clash, otherwise it is open. Finally, a
tableau is closed, if all its branches are closed, and open otherwise.

Note that the same tableau rule could be applied to the same premise on
a branch arbitrarily often, thus producing the same conclusions over and over
again. A tableau expansion like this would never terminate, which we want to
avoid. Therefore, we allow a rule application to the current branch B only if it
is admissible to B, that is, when the premise is on the branch, but none of the
conclusions is a set of instances of formulas already on B. We call a branch B
complete, provided that no rule has any instances admissible to B.

Clearly, the tableau rule applies exactly to all formulas on the current branch
which are not disjunction-free. Furthermore, every label occurring in Sy, or
anywhere on any branch, has only finitely many realized ground instances, so
each disjunction can be expanded only finitely many times according to the
tableau rule. Observe further that each rule application produces only formulas
in And/Or NF; each consequence contains fewer disjunctions than the premise,
and none of the labels can become longer than d(Sp). Since we start out with
finitely many disjunctions, even accounting for nested ones, each branch of the
tableau will become complete after finitely many rule applications. Therefore,
we can state our first result:

Proposition 4. Ezpansion of a free-variable tableau for any set Sy in And/Or
NF terminates after finitely many admissible rule applications in a tableau in
which every branch is either closed or complete.

4.1 Soundness and Completeness

Let us now show that the tableau calculus is correct, given our semantics for
labelled formulas:

Proposition 5. The application of rule (1) is semantically correct, that is, every
model for an instance of its premise is a model for one of its conclusions.



Proof. Let M be a model for the formula ¢.(8; V ...V ). By Corollary 1,
My = (B1 V...V B,) for any realized ground instance o' of o. Therefore, by
Definition 6, M, |= f;, and further My |= 05 5.¢;; forall j = 1,..., k;, for some
i. Once again by Corollary 1, we conclude that M satisfies all the formulas in
one of the conclusions.

Proposition 6. Let T' be a tableau for Sy, and T' o tableau generated from T
by a single rule application. Let B and B' be two corresponding branches in T
and T', respectively. Then the set of formulas on B is satisfiable if and only if
the set of formulas on B’ is satisfiable. The two branches are satisfied by exactly
the same models.

Proof. If the branch is untouched by the tableau expansion, there is nothing to
show. Otherwise, one of the formulas on B is used as the premise for rule (1).
Therefore, a model for B also satisfies this premise, and by Proposition 5, it also
satisfies one of the conclusions. The converse is trivial, as the set of formulas on
B is a subset of B’, whence any model of B’ is a model of B.

Remembering Proposition 3 which said that a set of formulas containing a
clash is unsatisfiable, Proposition 6 allows us to go back up along the expansion
steps of a closed tableau to the root tableau Sy and conclude:

Corollary 3. (Soundness) If a tableau for a set Sy is closed, then Sy is unsat-
isfiable.

To show completeness and decidability, let us assume that a tableau for Sy
has been expanded completely, meaning that every branch is either closed or
complete. This is possible in finitely many steps, according to Proposition 4.

Proposition 7. The set of formulas on a complete branch is satisfiable if and
only if the set of all disjunction-free formulas on the branch is satisfiable. A
model of this set is also a model of the entire branch.

Proof. Note that one direction of this proof is trivial as before. We will only
sketch the proof of the other direction which makes use of a variant of so-called
Hintikka sets [8]. These sets are defined so that for any formula of the shape
0.(B1 V...V ;) in the set, for each realized ground instance o’ of o, at least one
disjunct ¢'.8; is also contained in the set. Now if M is a model which satisfies
all the “elementary”, disjunction-free formulas in the set, then by Proposition 5
M also satisfies the “compound” formulas. Finally, it is easy to show that the
formulas on a complete branch are a Hintikka set as defined, from which the
proof follows.

Now recall Proposition 3, which says that any unsatisfiable set of disjunction-
free formulas contains a clash. Putting this result and Propositions 6 and 7
together, we obtain that every branch of a tableau of an unsatisfiable set Sy
contains a clash, which shows:

Corollary 4. (Completeness) If Sy is unsatisfiable, then Sy has a closed tableau.

10



Soundness and completeness results prove the correctness of a tableau cal-
culus. In practice however, we wish to decide whether a given Sy is satisfiable,
without having to try all possible tableaux for Sy. To this end, we expand the
tableau by admissible expansion rules only, until either all branches are closed
(in which case we know Sy is unsatisfiable) or we find a complete open branch,
which means that the subset of all disjunction-free formulas is clash-free and
hence satisfiable; Proposition 3 lets us obtain a model which, by Propositions 7
and 6, is also a model for Sy. This shows:

Corollary 5. For any set Sy of free-variable formulas in And/Or NF, starting
with o tableau So and applying rule (1) in any order, until all branches are
closed or one branch is complete, provides a finite decision procedure for Sg.
Each complete open branch of any tableau for Sy provides a model for Sy.

Finally, we wish to show the correctness of the calculus with regard to the
original logic K. Consider an arbitrary K-formula F. First, F' can be converted
into an equivalent formula F' in NNF. Then Theorem 1 and its proof provided
an algorithm to convert F" into a labelled formula ¢ in NNF, which is satisfiable
if and only F' is. By Corollary 2, ¢ can be converted to an equivalent formula
¢' in And/Or NF, to which the tableau algorithm can be applied, which decides
(in finite time) whether ¢', and hence F, is satisfiable. If M is a model offered by
a complete open branch for ¢', we can step back through the array of theorems
and conclude that K (M) is a Kripke model for F. Hence:

Theorem 2. The labelled formula formalism with the conversions as specified in
Section 3.3, and free-variable tableaw algorithm as specified in Section 4, provide
a sound and complete decision and model finding procedure for K.

5 Comparison to Previous Approaches

The use of variables in labelled tableaux for modal logics is nothing new. Most
notably, the already mentioned work by Beckert and Goré [2, 3] is a comprehen-
sive treatment of free-variable tableaux for various modal logics. Although our
own approach has been derived independently, it can be viewed as a variation
of Beckert and Goré’s free-variable tableaux. In the following, we will highlight
the connections and important differences between the two approaches. For the
purpose of this survey, familiarity with the terminology in [3] is assumed.

— In [3], two notions of variables are used: universal and free variables. Uni-
versal variables arise from the necessity operator; they can stand in for any
successor world (constant). Free variables arise from branching on a disjunc-
tion prefixed by universal variables. They are no longer universal in that
occurrences of the same free variable in different branches must be instanti-
ated with the same constant to preserve soundness.

The wildcard symbol in our approach represents universal variables. Since
they can be arbitrarily renamed, we can represent them by an anonymous

11



variable %, with the understanding that two occurrences of * can be instan-
tiated differently.

Our approach does not provide any equivalent to free variables. In rule (1),
the label 0 must be instantiated by a realized ground label. We thus lose
the power of reasoning with several instances of the disjunction at once; in
fact, one can show that our free-variable tableau requires the same number
of branches as an equivalent tableau with ground labels only. (However,
the branches themselves can still be represented more compactly, thanks
to occurrences of * in literals.) In those cases where other formulas on the
branch do not require a ground instantiation and renaming, the approach in
[3] is strictly stronger.

We have given a rigid definition of free-variable models which is novel. The
implementation of LeanK does not return a satisfying model, although it is
claimed that such a model is easy to obtain [2]. A K-satisfiable tableau (Def-
inition 3.10 in [3]) can rightfully be viewed as a model. However, obtaining a
Kripke model from a K-satisfiable tableau is not straightforward, potentially
involving different branches of the tableau for different instantiations of the
free variables. The advantage of abandoning the use of free variables is that
all labelled literals pertaining to a free-variable model can be found on one
single branch, just as in our approach.

Free-variable models are a powerful representation format of Kripke models.
For example, in a model where all labels of length n consisting of the con-
stants 0 and 1 are represented, the formula *™.p represents truth assignments
of p in 2™ worlds. Furthermore, free-variable models are consistent by defi-
nition, and they represent a unique Kripke model. We acknowledge, though,
that our basic tableau algorithm does not adequately exploit this expressive
power, since all occurrences of * in labels of disjunctions are replaced by
constants during the proof search.

In our approach, a formula in NNF is pre-processed in two steps: in-situ
replacement of all modal operators by labels (Theorem 1), and conversion
to And/Or Normal Form (Proposition 2). The proper tableau calculus then
requires only one expansion rule, which is really a combination of the a-,
B-, and v-rules of the classical modal tableau calculus [7] and can be simu-
lated by a classical tableau with fixed prioritization of rule application, as
B-rules are delayed until no other rule can be applied. This prioritization
is preferrable as it minimizes branching. We have effectively removed the
nondeterminism in choosing a suitable tableau rule; we only need to choose
the next instance of a disjunction to branch on, as well as the order of sub-
branches to expand. A further benefit of representation in And/Or Normal
form is that it will simplify the implementation of the calculus. Subformulas
are of exactly the same form and can be represented by the same data struc-
tures as the main formula. Any techniques used on the main formula, such as
tableau expansion, simplification, caching etc., can be used on subformulas
as well, thus enhancing the effect of these respective techniques.
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The tableau calculus in [3] can be modified to simulate our preprocessing
step by allowing rule applications in subformulas and deferring application
of the disjunctive rule until all other rule applications have been performed.

— The calculus in [3] requires a substitution rule and a closure rule. The former
is needed to ensure that labels involved in clashes are realizable (or justified);
it is not necessary in the absence of free variables. The closure rule requires
existence of a justified ground instantiation of two labels in order to close
a branch, whereas we require that their mgu be realizable. It can be shown
that these two notions are equivalent8.

— In our approach, we prefer using € as label for the initial formula; in [3], this
label is 1. For all modal logics in which the rooted tree model property holds,
this is a legitimate choice, and the difference is solely a matter of taste. The
empty label fits our calculus better, since labels inside formulas can also be
empty.

— The diamond rule in [3] uses a Gddelization of the formula A as label to rep-
resent () A. Hence, occurrences of syntactically identical formulas would be
represented by the same label, thus avoiding duplicated efforts in expanding
this formula. Our preprocessing algoritm (Theorem 1) could do the same;
however, other low-cost techniques such as lexical normalization [15] detect
a much larger subclass of equivalent formulas.

To summarize, the only fundamental difference of the free-variable tableau
calculus in [3] compared to ours is its use of free variables. This makes it strictly
more powerful in theory. However, it is not clear that free variables provide an
advantage in practice, especially since the need for a substitution rule creates
additional nondeterminism, and since satisfying models are less straightforward
to obtain from satisfiable tableaux. The drawback of not having free variables
to represent several instances may be offset in practice by techniques like model
caching, model merging or absorption.

6 Implementability and Conclusions

Despite having only one tableau rule and being easy to prove sound and com-
plete, the basic calculus does not give rise to a powerful algorithm at all. This
is because the label of a disjunctive formula must be instantiated by a ground
label, which is tantamount to creating all the branches of an equivalent classical
tableau. Furthermore, we need to test for admissibility of the tableau rule to
each instance of a premise, in order to obtain a finite decision procedure. To
solve the second problem, we can simply maintain a list app(c.¢) of (not neces-
sarily ground) instances of ¢ to which a disjunction ¢.¢ has already been applied.
Application of rule (1) is restricted to realized ground instances which are not
instances of any element in app(o.¢). If no disjunction has any such instances,
the current branch is complete.

8 Indeed, LeanK first unifies the labels of two clashing literals and then checks if the
result is realizable.
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To address the first problem, we must reduce the number of rule applications,
since each of them branches. We expect simplification to be a helpful approach.
For example, if a formula *1.p exists on the current branch, we need not branch
on the disjunction #x.(pV q) for instances of x1, since a stronger formula already
holds in these instances. So we simply add *1 to the labels in app(x*x.(pV q)). We
claim that a simplification algorithm can be devised which will greatly reduce
branching in Ladner encodings [18] of QBF problems. A careful treatment of
simplification including an implementation to prove this claim is currently in
progress and will be presented in a future publication.

Beyond simplification, optimization strategies from [3, 14, 15] can be adapted,
such as backjumping, model caching, heuristics, model merging, factorization etc.
Caching in particular promises to work favourably with labelled formulas, which
we also leave as future work to demonstrate.

Finally, we must decide on the order of application of the tableau rule. A
depth-first approach seems most feasible; however, the And/Or Normal Form
allows us to break this default order and branch on subformulas first, if for
example, this subformula likely leads to closure. A good heuristic to find these
cases is essential.

To summarize, the free-variable formalism presented here offers these main
advantages:

— The different steps of satisfiability finding in K are cleanly separated, and
their complexities can be highlighted: First, K-formulas are converted into
free-variable formulas in And/Or NF in linear time and space (provided
the modal depth is bounded); thereby we create a “template” of a Kripke
tree. Then the tableau algorithm, consisting of only one rule, branches on
the disjunctions, taking exponential space and double-exponential time in
the basic version, determining variable assignments in the form of labelled
literals. To close a tableau branch, we check a set of labelled literals for
clashes, which is closely related to satisfiability in the description logic ALE
and NP-complete [5].

— Implementations of the classical labelled tableau calculus [7] typically search
breadth-first or depth-first through the worlds (ground labels) of a model. In
a free-variable tableau algorithm, we can find clashes deep in the model tree
und thus close a branch before time is wasted expanding consistent formulas
with shorter labels.

— We have given a definition of free-variable models which allows a more com-
pact representation of satisfying models than is possible with Kripke models.

— To exploit the expressive power of free-variable models and improve the
performance of the tableau algorithm, simplification and other techniques
can be devised, reducing the need to instantiate labels with % placeholders.
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