CHARACTERIZATION OF GÖDEL LOGICS WITH COUNTABLE TRUTH VALUE SETS

Work in Progress

The Logic of Soft Computing III

Norbert Preining
Setting the stage — Why to deal with countable Gödel logics

- V truth value set, closed under inf and sup, G_V is the set of formulas valid under all interpretations with respect to V.
Setting the stage — Why to deal with countable Gödel logics

- V truth value set, closed under \inf and \sup, G_V is the set of formulas valid under all interpretations with respect to V.
- Uncountable Gödel logics are well behaved (more or less)
Setting the stage — Why to deal with countable Gödel logics

- V truth value set, closed under inf and sup, G_V is the set of formulas valid under all interpretations with respect to V.
- Uncountable Gödel logics are well behaved (more or less)
- Non-axiomatizability arises from countable closed subsets
Setting the stage — Why to deal with countable Gödel logics

• V truth value set, closed under inf and sup, G_V is the set of formulas valid under all interpretations with respect to V.

• Uncountable Gödel logics are well behaved (more or less)

• Non-axiomatizability arises from countable closed subsets

• Order of number of different logics is determined by the countable case
Setting the stage — Why to deal with countable Gödel logics

- V truth value set, closed under inf and sup, G_V is the set of formulas valid under all interpretations with respect to V.

- Uncountable Gödel logics are well behaved (more or less)

- Non-axiomatizability arises from countable closed subsets

- Order of number of different logics is determined by the countable case

- Expressive power of Gödel logics

- Topological definition of Gödel logic
Axiomatizability of f.o. Gödel logics

- V is finite – axiomatizable
- V has a perfect kernel and 0 is either in the perfect kernel or isolated – axiomatizable
- V is countable or uncountable and 0 is not in the perfect kernel and not isolated – not axiomatizable
Cantor-Bendixon Derivatives and Ranks

Polish spaces, i.e. separable, completely metrizable topological spaces. \mathbb{R} is a Polish space.

\[X' = \{ x \in X : x \text{ is limit point of } X \} \]

\[X^0 = X \]
\[X^{\alpha+1} = (X^\alpha)' \]
\[X^\lambda = \bigcap_{\alpha<\lambda} X^\alpha, \text{ if } \lambda \text{ is limit ordinal.} \]

Theorem 1 Let X be a polish space. For some countable ordinal α_0, $X^\alpha = X^{\alpha_0}$ for all $\alpha \geq \alpha_0$ (X^{α_0} is the perfect kernel).
Countable compact topological spaces

If the space X is countable then $X^\infty = \emptyset$, since every nonempty perfect set has at least cardinality of the continuum.

$$\text{rk}(x) = \sup\{\alpha : x \in X^\alpha\}$$

$$|X|_{CB} = \sup\{\text{rk}(x) : x \in X\}$$

If X is countable we call

$$\tau(X) = (\alpha, n), \text{ with } \alpha = \alpha(X) = |X|_{CB}, \text{ } n = n(X) = |X|_{X|CB}$$

the topological type of X.
Example of topological types

Baaz result from 1996 separated logics with topological type $\tau = (1, n)$, i.e. the number of limit points increases, but the rank is constant 1.
Example of topological types

Baaz result from 1996 separated logics with topological type $\tau = (1, n)$, i.e. the number of limit points increases, but the rank is constant 1.

Here we present the case of topological type $\tau = (n, 1)$:
Example of topological types

Baaz result from 1996 separated logics with topological type $\tau = (1, n)$, i.e. the number of limit points increases, but the rank is constant 1.

Here we present the case of topological type $\tau = (n, 1)$:
Example of topological types

Baaz result from 1996 separated logics with topological type $\tau = (1, n)$, i.e. the number of limit points increases, but the rank is constant 1.

Here we present the case of topological type $\tau = (n, 1)$:
Example of topological types

Baaz result from 1996 separated logics with topological type \(\tau = (1, n) \), i.e. the number of limit points increases, but the rank is constant 1.

Here we present the case of topological type \(\tau = (n, 1) \):
From $V_↓$ to $V_{↓*}$

The set $V_↓$ is well known:

$$V_↓ = \{1/n : n \geq 1\} \cup \{0\}$$

Extending this we use

$$\mathbb{N}' = \mathbb{N} \setminus \{0, 1\}, \quad S_n = \mathbb{N}'^n, \quad S = \bigcup_{n \geq 0} S_n \quad S_{↓n} = \bigcup_{k=0}^n S_k$$

Lemma 1 There is a function $f : S \rightarrow \mathbb{R}$ such that the following properties hold:

1. $f(\overrightarrow{s_n}) < f(\overrightarrow{s_n, s_{n+1}}) < f(\overrightarrow{s_{n-1}, s_n - 1})$

2. $\inf_{s_{n+1} \in \mathbb{N}'} f(\overrightarrow{s_{n+1}}) = f(\overrightarrow{s_n})$
From V_\downarrow to V_{\downarrow^*} (cont.)

\[
f(()) = 0 \quad f(s_n, s_{n+1}) = f(s_n') + \frac{1}{\prod_{i=1}^{n} s_i^2} \cdot \frac{1}{s_{n+1}}
\]
From V_1 to V_{\downarrow^*} (cont.)

\[f(()) = 0 \quad f(\overrightarrow{s_n}, s_{n+1}) = f(\overrightarrow{s_n}) + \frac{1}{\prod_{i=1}^{n} s_i^2} \cdot \frac{1}{s_{n+1}} \]

Gödel Logics with Countable Truth Value Set
The class $G_{\downarrow*}$

Let $I_n = f(S_{\downarrow n}) \cup \{0, 1\}$.

Properties of I_n: closed set, $I'_n = I_{n-1}$

$$G_{\downarrow n} = \{G_V : \exists f : (V, \leq, \inf, \sup) \mapsto (I_n, \leq, \inf, \sup)\}$$

and

$$G_{\downarrow*} = \bigcup_{n>0} G_{\downarrow n}$$

Theorem 2 There are formulas A_n such that

1. $\forall k \geq n \forall G_V \in G_{\downarrow k} : A_n \notin G_V$

2. $\forall k < n \forall G_V \in G_{\downarrow k} : A_n \in G_V$
The separation formulas

Basic principle is the usage of a special case of *tertium non datur*:

\[
\exists x (A(x) \supset A(y)) \lor (\exists x (A(x) \supset A(y)) \supset A(y))
\]

This can be used in the following way

\[
L_0(X, x_i) = \exists x_i (X(x_i) \supset \forall x'_i X(x'_i)) \supset \forall x_i X(x_i)
\]

where \(X\) can be any formula with a designated variable occurrence,

\[
L_{i,n}(P) = \forall x_1 \ldots \forall x_{i-1} L_0(\forall x_{i+1} \ldots \forall x_n P(x_1, \ldots, x_i, \cdot, x_{i+1}, \ldots, x_n), x_i)
\]

with \(P\) a predicate symbol and

\[
A_n = \bigwedge_{i=1}^{n} L_{i,n}(P, x_i) \supset \forall x_1 \ldots \forall x_n P(x_1, \ldots, x_n)
\]
The countermodel for $A_n \notin G_{\downarrow k}$ for $k \geq n$

We will use the domain of \mathbb{N}' and define the valuation of the atomic formulas as follows:

$$I(P(s_1, \ldots, s_n)) = f(s_1, \ldots, s_n).$$

Consider again the formula A_n

$$A_n = \bigwedge_{i=1}^{n} (\text{inf} \neq \text{min} \ (\text{level} \ n)) \supset \forall x_1 \ldots \forall x_n P(x_1, \ldots, x_n)$$

The $\text{inf} \neq \text{min}$ part is valid under the above evaluation, but only for large, i.e. deep enough nested models. For $k < n$ there is at least one level where it collapses, rendering the whole formula true.
Plans for the future

- Extension to include suprema and mixed truth value sets (partly done)
Plans for the future

- Extension to include suprema and mixed truth value sets (partly done)
- Capping the complexity at ω, i.e. reducing logics with CB-rank larger than ω to such ones with smaller (in progress)
Plans for the future

- Extension to include suprema and mixed truth value sets (partly done)
- Capping the complexity at ω, i.e. reducing logics with CB-rank larger than ω to such ones with smaller (in progress)
- Different limit point types at the same level – completely unknown for the moment
Plans for the future

- Extension to include suprema and mixed truth value sets (partly done)
- Capping the complexity at ω, i.e. reducing logics with CB-rank larger than ω to such ones with smaller (in progress)
- Different limit point types at the same level – completely unknown for the moment
- Characterization of Gödel logics not extensionally in terms of ‘sentences valid in V’, but intensionally via topological properties (CB rank, type of limit points, etc)
Plans for the future

- Extension to include suprema and mixed truth value sets (partly done)
- Capping the complexity at ω, i.e. reducing logics with CB-rank larger than ω to such ones with smaller (in progress)
- Different limit point types at the same level – completely unknown for the moment
- Characterization of Gödel logics not extensionally in terms of ‘sentences valid in V’, but intensionally via topological properties (CB rank, type of limit points, etc)
- Settle the question on the numbers of different Gödel logics