TIMEOUT
 
The TRS could not be proven terminating. The proof attempt took 60026 ms.
The following DP Processors were used
Problem 1 was processed with processor DependencyGraph (9370ms).
 |  Problem 2 was processed with processor SubtermCriterion (3ms).
 |  Problem 3 was processed with processor SubtermCriterion (1ms).
 |  Problem 4 was processed with processor SubtermCriterion (2ms).
 |  Problem 5 was processed with processor SubtermCriterion (3ms).
 |  Problem 6 was processed with processor SubtermCriterion (1ms).
 |  Problem 7 was processed with processor SubtermCriterion (1ms).
 |  Problem 8 was processed with processor SubtermCriterion (2ms).
 |    |  Problem 16 was processed with processor PolynomialLinearRange4iUR (104ms).
 |  Problem 9 was processed with processor SubtermCriterion (3ms).
 |  Problem 10 was processed with processor SubtermCriterion (2ms).
 |  Problem 11 was processed with processor SubtermCriterion (1ms).
 |  Problem 12 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (5ms), PolynomialLinearRange4iUR (5039ms), DependencyGraph (7ms), PolynomialLinearRange4iUR (8026ms), DependencyGraph (5ms), PolynomialLinearRange8NegiUR (30000ms), ReductionPairSAT (timeout)].
 |  Problem 13 was processed with processor SubtermCriterion (4ms).
 |  Problem 14 was processed with processor SubtermCriterion (3ms).
 |  Problem 15 was processed with processor SubtermCriterion (2ms).
The following open problems remain:
Open Dependency Pair Problem 12
Dependency Pairs
| top#(mark(X)) | → | top#(proper(X)) |  | top#(ok(X)) | → | top#(active(X)) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, proper, U31, U21, top, cons, nil
 
 Problem 1: DependencyGraph
Dependency Pair Problem
Dependency Pairs
| proper#(cons(X1, X2)) | → | proper#(X1) |  | proper#(length(X)) | → | length#(proper(X)) | 
| proper#(U11(X1, X2)) | → | proper#(X1) |  | active#(U21(X)) | → | U21#(active(X)) | 
| U11#(mark(X1), X2) | → | U11#(X1, X2) |  | active#(take(X1, X2)) | → | take#(active(X1), X2) | 
| proper#(U11(X1, X2)) | → | proper#(X2) |  | active#(isNat(length(V1))) | → | isNatList#(V1) | 
| active#(U11(tt, L)) | → | s#(length(L)) |  | top#(mark(X)) | → | proper#(X) | 
| length#(mark(X)) | → | length#(X) |  | active#(take(X1, X2)) | → | active#(X2) | 
| active#(length(X)) | → | active#(X) |  | active#(U31(tt, IL, M, N)) | → | take#(M, IL) | 
| isNat#(ok(X)) | → | isNat#(X) |  | and#(mark(X1), X2) | → | and#(X1, X2) | 
| proper#(U31(X1, X2, X3, X4)) | → | U31#(proper(X1), proper(X2), proper(X3), proper(X4)) |  | active#(isNatIList(cons(V1, V2))) | → | isNat#(V1) | 
| isNatIList#(ok(X)) | → | isNatIList#(X) |  | active#(take(s(M), cons(N, IL))) | → | isNat#(M) | 
| proper#(U21(X)) | → | U21#(proper(X)) |  | cons#(mark(X1), X2) | → | cons#(X1, X2) | 
| active#(take(s(M), cons(N, IL))) | → | isNat#(N) |  | active#(isNatIList(cons(V1, V2))) | → | and#(isNat(V1), isNatIList(V2)) | 
| top#(ok(X)) | → | active#(X) |  | active#(and(X1, X2)) | → | and#(active(X1), X2) | 
| U31#(mark(X1), X2, X3, X4) | → | U31#(X1, X2, X3, X4) |  | proper#(isNatList(X)) | → | proper#(X) | 
| active#(U31(tt, IL, M, N)) | → | cons#(N, take(M, IL)) |  | proper#(isNat(X)) | → | isNat#(proper(X)) | 
| take#(ok(X1), ok(X2)) | → | take#(X1, X2) |  | proper#(U21(X)) | → | proper#(X) | 
| active#(isNat(s(V1))) | → | isNat#(V1) |  | active#(take(s(M), cons(N, IL))) | → | and#(isNat(M), isNat(N)) | 
| active#(U31(X1, X2, X3, X4)) | → | U31#(active(X1), X2, X3, X4) |  | proper#(isNat(X)) | → | proper#(X) | 
| active#(isNatIList(cons(V1, V2))) | → | isNatIList#(V2) |  | active#(isNatList(cons(V1, V2))) | → | and#(isNat(V1), isNatList(V2)) | 
| active#(take(s(M), cons(N, IL))) | → | and#(isNatIList(IL), and(isNat(M), isNat(N))) |  | active#(take(s(M), cons(N, IL))) | → | U31#(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N) | 
| active#(U11(X1, X2)) | → | U11#(active(X1), X2) |  | active#(s(X)) | → | s#(active(X)) | 
| s#(ok(X)) | → | s#(X) |  | active#(isNatList(take(V1, V2))) | → | and#(isNat(V1), isNatIList(V2)) | 
| proper#(length(X)) | → | proper#(X) |  | active#(take(X1, X2)) | → | take#(X1, active(X2)) | 
| proper#(s(X)) | → | s#(proper(X)) |  | active#(zeros) | → | cons#(0, zeros) | 
| top#(ok(X)) | → | top#(active(X)) |  | active#(take(s(M), cons(N, IL))) | → | isNatIList#(IL) | 
| U11#(ok(X1), ok(X2)) | → | U11#(X1, X2) |  | proper#(isNatIList(X)) | → | isNatIList#(proper(X)) | 
| cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) |  | proper#(U11(X1, X2)) | → | U11#(proper(X1), proper(X2)) | 
| active#(U31(X1, X2, X3, X4)) | → | active#(X1) |  | proper#(U31(X1, X2, X3, X4)) | → | proper#(X4) | 
| proper#(and(X1, X2)) | → | and#(proper(X1), proper(X2)) |  | active#(cons(X1, X2)) | → | cons#(active(X1), X2) | 
| active#(length(cons(N, L))) | → | U11#(and(isNatList(L), isNat(N)), L) |  | proper#(and(X1, X2)) | → | proper#(X2) | 
| length#(ok(X)) | → | length#(X) |  | active#(isNatList(cons(V1, V2))) | → | isNatList#(V2) | 
| active#(U11(X1, X2)) | → | active#(X1) |  | U21#(ok(X)) | → | U21#(X) | 
| proper#(U31(X1, X2, X3, X4)) | → | proper#(X2) |  | top#(mark(X)) | → | top#(proper(X)) | 
| proper#(cons(X1, X2)) | → | proper#(X2) |  | proper#(U31(X1, X2, X3, X4)) | → | proper#(X3) | 
| proper#(isNatIList(X)) | → | proper#(X) |  | take#(X1, mark(X2)) | → | take#(X1, X2) | 
| isNatList#(ok(X)) | → | isNatList#(X) |  | active#(U11(tt, L)) | → | length#(L) | 
| proper#(s(X)) | → | proper#(X) |  | proper#(isNatList(X)) | → | isNatList#(proper(X)) | 
| proper#(take(X1, X2)) | → | take#(proper(X1), proper(X2)) |  | active#(isNatList(cons(V1, V2))) | → | isNat#(V1) | 
| active#(cons(X1, X2)) | → | active#(X1) |  | take#(mark(X1), X2) | → | take#(X1, X2) | 
| and#(ok(X1), ok(X2)) | → | and#(X1, X2) |  | proper#(and(X1, X2)) | → | proper#(X1) | 
| active#(U21(X)) | → | active#(X) |  | active#(length(cons(N, L))) | → | isNatList#(L) | 
| proper#(take(X1, X2)) | → | proper#(X1) |  | U31#(ok(X1), ok(X2), ok(X3), ok(X4)) | → | U31#(X1, X2, X3, X4) | 
| active#(isNatList(take(V1, V2))) | → | isNat#(V1) |  | active#(length(cons(N, L))) | → | isNat#(N) | 
| active#(length(X)) | → | length#(active(X)) |  | U21#(mark(X)) | → | U21#(X) | 
| active#(length(cons(N, L))) | → | and#(isNatList(L), isNat(N)) |  | active#(take(X1, X2)) | → | active#(X1) | 
| proper#(take(X1, X2)) | → | proper#(X2) |  | active#(isNatIList(V)) | → | isNatList#(V) | 
| active#(isNatList(take(V1, V2))) | → | isNatIList#(V2) |  | active#(take(0, IL)) | → | U21#(isNatIList(IL)) | 
| s#(mark(X)) | → | s#(X) |  | proper#(cons(X1, X2)) | → | cons#(proper(X1), proper(X2)) | 
| active#(s(X)) | → | active#(X) |  | proper#(U31(X1, X2, X3, X4)) | → | proper#(X1) | 
| active#(and(X1, X2)) | → | active#(X1) |  | active#(take(0, IL)) | → | isNatIList#(IL) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
The following SCCs where found
| proper#(isNat(X)) → proper#(X) | proper#(cons(X1, X2)) → proper#(X1) | 
| proper#(U31(X1, X2, X3, X4)) → proper#(X2) | proper#(U11(X1, X2)) → proper#(X1) | 
| proper#(cons(X1, X2)) → proper#(X2) | proper#(isNatIList(X)) → proper#(X) | 
| proper#(U31(X1, X2, X3, X4)) → proper#(X3) | proper#(take(X1, X2)) → proper#(X2) | 
| proper#(and(X1, X2)) → proper#(X1) | proper#(U31(X1, X2, X3, X4)) → proper#(X4) | 
| proper#(s(X)) → proper#(X) | proper#(length(X)) → proper#(X) | 
| proper#(U11(X1, X2)) → proper#(X2) | proper#(and(X1, X2)) → proper#(X2) | 
| proper#(take(X1, X2)) → proper#(X1) | proper#(U31(X1, X2, X3, X4)) → proper#(X1) | 
| proper#(isNatList(X)) → proper#(X) | proper#(U21(X)) → proper#(X) | 
| U31#(ok(X1), ok(X2), ok(X3), ok(X4)) → U31#(X1, X2, X3, X4) | U31#(mark(X1), X2, X3, X4) → U31#(X1, X2, X3, X4) | 
| isNat#(ok(X)) → isNat#(X) | 
| take#(mark(X1), X2) → take#(X1, X2) | take#(X1, mark(X2)) → take#(X1, X2) | 
| take#(ok(X1), ok(X2)) → take#(X1, X2) | 
| U21#(ok(X)) → U21#(X) | U21#(mark(X)) → U21#(X) | 
| isNatList#(ok(X)) → isNatList#(X) | 
| s#(mark(X)) → s#(X) | s#(ok(X)) → s#(X) | 
| isNatIList#(ok(X)) → isNatIList#(X) | 
| cons#(mark(X1), X2) → cons#(X1, X2) | cons#(ok(X1), ok(X2)) → cons#(X1, X2) | 
| length#(mark(X)) → length#(X) | length#(ok(X)) → length#(X) | 
| active#(s(X)) → active#(X) | active#(take(X1, X2)) → active#(X2) | 
| active#(take(X1, X2)) → active#(X1) | active#(length(X)) → active#(X) | 
| active#(and(X1, X2)) → active#(X1) | active#(U31(X1, X2, X3, X4)) → active#(X1) | 
| active#(U11(X1, X2)) → active#(X1) | active#(U21(X)) → active#(X) | 
| active#(cons(X1, X2)) → active#(X1) | 
| U11#(ok(X1), ok(X2)) → U11#(X1, X2) | U11#(mark(X1), X2) → U11#(X1, X2) | 
| and#(ok(X1), ok(X2)) → and#(X1, X2) | and#(mark(X1), X2) → and#(X1, X2) | 
| top#(mark(X)) → top#(proper(X)) | top#(ok(X)) → top#(active(X)) | 
 
 Problem 2: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| proper#(cons(X1, X2)) | → | proper#(X1) |  | proper#(isNat(X)) | → | proper#(X) | 
| proper#(U31(X1, X2, X3, X4)) | → | proper#(X2) |  | proper#(cons(X1, X2)) | → | proper#(X2) | 
| proper#(U11(X1, X2)) | → | proper#(X1) |  | proper#(U31(X1, X2, X3, X4)) | → | proper#(X3) | 
| proper#(isNatIList(X)) | → | proper#(X) |  | proper#(take(X1, X2)) | → | proper#(X2) | 
| proper#(and(X1, X2)) | → | proper#(X1) |  | proper#(U31(X1, X2, X3, X4)) | → | proper#(X4) | 
| proper#(length(X)) | → | proper#(X) |  | proper#(s(X)) | → | proper#(X) | 
| proper#(U11(X1, X2)) | → | proper#(X2) |  | proper#(and(X1, X2)) | → | proper#(X2) | 
| proper#(take(X1, X2)) | → | proper#(X1) |  | proper#(U31(X1, X2, X3, X4)) | → | proper#(X1) | 
| proper#(isNatList(X)) | → | proper#(X) |  | proper#(U21(X)) | → | proper#(X) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| proper#(cons(X1, X2)) | → | proper#(X1) |  | proper#(isNat(X)) | → | proper#(X) | 
| proper#(U31(X1, X2, X3, X4)) | → | proper#(X2) |  | proper#(cons(X1, X2)) | → | proper#(X2) | 
| proper#(U11(X1, X2)) | → | proper#(X1) |  | proper#(isNatIList(X)) | → | proper#(X) | 
| proper#(U31(X1, X2, X3, X4)) | → | proper#(X3) |  | proper#(take(X1, X2)) | → | proper#(X2) | 
| proper#(and(X1, X2)) | → | proper#(X1) |  | proper#(U31(X1, X2, X3, X4)) | → | proper#(X4) | 
| proper#(length(X)) | → | proper#(X) |  | proper#(s(X)) | → | proper#(X) | 
| proper#(U11(X1, X2)) | → | proper#(X2) |  | proper#(and(X1, X2)) | → | proper#(X2) | 
| proper#(take(X1, X2)) | → | proper#(X1) |  | proper#(U31(X1, X2, X3, X4)) | → | proper#(X1) | 
| proper#(isNatList(X)) | → | proper#(X) |  | proper#(U21(X)) | → | proper#(X) | 
 
 Problem 3: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| U11#(ok(X1), ok(X2)) | → | U11#(X1, X2) |  | U11#(mark(X1), X2) | → | U11#(X1, X2) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| U11#(ok(X1), ok(X2)) | → | U11#(X1, X2) |  | U11#(mark(X1), X2) | → | U11#(X1, X2) | 
 
 Problem 4: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| and#(ok(X1), ok(X2)) | → | and#(X1, X2) |  | and#(mark(X1), X2) | → | and#(X1, X2) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| and#(ok(X1), ok(X2)) | → | and#(X1, X2) |  | and#(mark(X1), X2) | → | and#(X1, X2) | 
 
 Problem 5: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| U31#(ok(X1), ok(X2), ok(X3), ok(X4)) | → | U31#(X1, X2, X3, X4) |  | U31#(mark(X1), X2, X3, X4) | → | U31#(X1, X2, X3, X4) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| U31#(ok(X1), ok(X2), ok(X3), ok(X4)) | → | U31#(X1, X2, X3, X4) |  | U31#(mark(X1), X2, X3, X4) | → | U31#(X1, X2, X3, X4) | 
 
 Problem 6: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| length#(mark(X)) | → | length#(X) |  | length#(ok(X)) | → | length#(X) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| length#(mark(X)) | → | length#(X) |  | length#(ok(X)) | → | length#(X) | 
 
 Problem 7: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| active#(s(X)) | → | active#(X) |  | active#(take(X1, X2)) | → | active#(X2) | 
| active#(take(X1, X2)) | → | active#(X1) |  | active#(length(X)) | → | active#(X) | 
| active#(and(X1, X2)) | → | active#(X1) |  | active#(U31(X1, X2, X3, X4)) | → | active#(X1) | 
| active#(U11(X1, X2)) | → | active#(X1) |  | active#(U21(X)) | → | active#(X) | 
| active#(cons(X1, X2)) | → | active#(X1) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| active#(s(X)) | → | active#(X) |  | active#(take(X1, X2)) | → | active#(X2) | 
| active#(length(X)) | → | active#(X) |  | active#(take(X1, X2)) | → | active#(X1) | 
| active#(and(X1, X2)) | → | active#(X1) |  | active#(U31(X1, X2, X3, X4)) | → | active#(X1) | 
| active#(U11(X1, X2)) | → | active#(X1) |  | active#(U21(X)) | → | active#(X) | 
| active#(cons(X1, X2)) | → | active#(X1) | 
 
 Problem 8: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| take#(mark(X1), X2) | → | take#(X1, X2) |  | take#(X1, mark(X2)) | → | take#(X1, X2) | 
| take#(ok(X1), ok(X2)) | → | take#(X1, X2) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| take#(mark(X1), X2) | → | take#(X1, X2) |  | take#(ok(X1), ok(X2)) | → | take#(X1, X2) | 
 
 Problem 16: PolynomialLinearRange4iUR
Dependency Pair Problem
Dependency Pairs
| take#(X1, mark(X2)) | → | take#(X1, X2) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, proper, U31, U21, top, cons, nil
Strategy
Polynomial Interpretation
- 0: 0
- U11(x,y): 0
- U21(x): 0
- U31(x1,x2,x3,x4): 0
- active(x): 0
- and(x,y): 0
- cons(x,y): 0
- isNat(x): 0
- isNatIList(x): 0
- isNatList(x): 0
- length(x): 0
- mark(x): x + 2
- nil: 0
- ok(x): 0
- proper(x): 0
- s(x): 0
- take(x,y): 0
- take#(x,y): y + x + 1
- top(x): 0
- tt: 0
- zeros: 0
There are no usable rules
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
| take#(X1, mark(X2)) | → | take#(X1, X2) | 
 
 Problem 9: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| U21#(ok(X)) | → | U21#(X) |  | U21#(mark(X)) | → | U21#(X) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| U21#(ok(X)) | → | U21#(X) |  | U21#(mark(X)) | → | U21#(X) | 
 
 Problem 10: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| isNatList#(ok(X)) | → | isNatList#(X) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| isNatList#(ok(X)) | → | isNatList#(X) | 
 
 Problem 11: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| isNatIList#(ok(X)) | → | isNatIList#(X) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| isNatIList#(ok(X)) | → | isNatIList#(X) | 
 
 Problem 13: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| isNat#(ok(X)) | → | isNat#(X) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| isNat#(ok(X)) | → | isNat#(X) | 
 
 Problem 14: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| cons#(mark(X1), X2) | → | cons#(X1, X2) |  | cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| cons#(mark(X1), X2) | → | cons#(X1, X2) |  | cons#(ok(X1), ok(X2)) | → | cons#(X1, X2) | 
 
 Problem 15: SubtermCriterion
Dependency Pair Problem
Dependency Pairs
| s#(mark(X)) | → | s#(X) |  | s#(ok(X)) | → | s#(X) | 
Rewrite Rules
| active(zeros) | → | mark(cons(0, zeros)) |  | active(U11(tt, L)) | → | mark(s(length(L))) | 
| active(U21(tt)) | → | mark(nil) |  | active(U31(tt, IL, M, N)) | → | mark(cons(N, take(M, IL))) | 
| active(and(tt, X)) | → | mark(X) |  | active(isNat(0)) | → | mark(tt) | 
| active(isNat(length(V1))) | → | mark(isNatList(V1)) |  | active(isNat(s(V1))) | → | mark(isNat(V1)) | 
| active(isNatIList(V)) | → | mark(isNatList(V)) |  | active(isNatIList(zeros)) | → | mark(tt) | 
| active(isNatIList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) |  | active(isNatList(nil)) | → | mark(tt) | 
| active(isNatList(cons(V1, V2))) | → | mark(and(isNat(V1), isNatList(V2))) |  | active(isNatList(take(V1, V2))) | → | mark(and(isNat(V1), isNatIList(V2))) | 
| active(length(nil)) | → | mark(0) |  | active(length(cons(N, L))) | → | mark(U11(and(isNatList(L), isNat(N)), L)) | 
| active(take(0, IL)) | → | mark(U21(isNatIList(IL))) |  | active(take(s(M), cons(N, IL))) | → | mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)) | 
| active(cons(X1, X2)) | → | cons(active(X1), X2) |  | active(U11(X1, X2)) | → | U11(active(X1), X2) | 
| active(s(X)) | → | s(active(X)) |  | active(length(X)) | → | length(active(X)) | 
| active(U21(X)) | → | U21(active(X)) |  | active(U31(X1, X2, X3, X4)) | → | U31(active(X1), X2, X3, X4) | 
| active(take(X1, X2)) | → | take(active(X1), X2) |  | active(take(X1, X2)) | → | take(X1, active(X2)) | 
| active(and(X1, X2)) | → | and(active(X1), X2) |  | cons(mark(X1), X2) | → | mark(cons(X1, X2)) | 
| U11(mark(X1), X2) | → | mark(U11(X1, X2)) |  | s(mark(X)) | → | mark(s(X)) | 
| length(mark(X)) | → | mark(length(X)) |  | U21(mark(X)) | → | mark(U21(X)) | 
| U31(mark(X1), X2, X3, X4) | → | mark(U31(X1, X2, X3, X4)) |  | take(mark(X1), X2) | → | mark(take(X1, X2)) | 
| take(X1, mark(X2)) | → | mark(take(X1, X2)) |  | and(mark(X1), X2) | → | mark(and(X1, X2)) | 
| proper(zeros) | → | ok(zeros) |  | proper(cons(X1, X2)) | → | cons(proper(X1), proper(X2)) | 
| proper(0) | → | ok(0) |  | proper(U11(X1, X2)) | → | U11(proper(X1), proper(X2)) | 
| proper(tt) | → | ok(tt) |  | proper(s(X)) | → | s(proper(X)) | 
| proper(length(X)) | → | length(proper(X)) |  | proper(U21(X)) | → | U21(proper(X)) | 
| proper(nil) | → | ok(nil) |  | proper(U31(X1, X2, X3, X4)) | → | U31(proper(X1), proper(X2), proper(X3), proper(X4)) | 
| proper(take(X1, X2)) | → | take(proper(X1), proper(X2)) |  | proper(and(X1, X2)) | → | and(proper(X1), proper(X2)) | 
| proper(isNat(X)) | → | isNat(proper(X)) |  | proper(isNatList(X)) | → | isNatList(proper(X)) | 
| proper(isNatIList(X)) | → | isNatIList(proper(X)) |  | cons(ok(X1), ok(X2)) | → | ok(cons(X1, X2)) | 
| U11(ok(X1), ok(X2)) | → | ok(U11(X1, X2)) |  | s(ok(X)) | → | ok(s(X)) | 
| length(ok(X)) | → | ok(length(X)) |  | U21(ok(X)) | → | ok(U21(X)) | 
| U31(ok(X1), ok(X2), ok(X3), ok(X4)) | → | ok(U31(X1, X2, X3, X4)) |  | take(ok(X1), ok(X2)) | → | ok(take(X1, X2)) | 
| and(ok(X1), ok(X2)) | → | ok(and(X1, X2)) |  | isNat(ok(X)) | → | ok(isNat(X)) | 
| isNatList(ok(X)) | → | ok(isNatList(X)) |  | isNatIList(ok(X)) | → | ok(isNatIList(X)) | 
| top(mark(X)) | → | top(proper(X)) |  | top(ok(X)) | → | top(active(X)) | 
Original Signature
Termination of terms over the following signature is verified: isNatIList, mark, and, isNat, 0, isNatList, s, zeros, tt, take, length, active, U11, ok, U31, proper, U21, nil, cons, top
Strategy
Projection
The following projection was used:
Thus, the following dependency pairs are removed: 
| s#(mark(X)) | → | s#(X) |  | s#(ok(X)) | → | s#(X) |