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Abstract

This paper introduces a cut-free hypersequent calculus for MTL ex-
tended with the (Hilbert) axiom ¬(α ∧ ¬α). The calculus is generated
by the PROLOG-program AxiomCalc, which implements the procedure
in [4]. Moreover, it shows that the resulting logic is standard complete.
This is done by checking the conditions in [1, 2] on the generated calculus,
which guarantee standard completeness for the considered logic.

1 Introduction

We introduce a cut-free hypersequent calculus for Monoidal t-norm logic MTL
extended with the axiom ¬(α ∧ ¬α). The analytic calculus for this logic is
obtained via a PROLOG-implementation of the procedure in [4]. Moreover, we
check whether the newly generated rule is convergent. This ensures standard
completeness for MTL extended with ¬(α ∧ ¬α), that is, completeness of the
logic with respect to algebras based on the truth values in [0, 1].

2 Preliminaries

The basic system we will deal with is Monoidal t-norm logic MTL which is the
logic of left-continuous t-norms1. It is obtained by adding the prelinearity axiom
(α → β) ∨ (β → α) to intuitionistic logic without contraction, see Table 1 for
the corresponding hypersequent calculus HMTL. MTL is standard complete.

Formulas of MTL are built from propositional variables and the constants
0 and 1 by using → (implication), ∧ (additive conjunction), · (multiplicative
conjunction), and ∨ (disjunction). We use ¬α as an abbreviation for α→ 0.

Metavariables α, β, . . . denote formulas, Π stands for stoups, i.e., either a
formula or the empty set, and Γ,∆, . . . for finite (possibly empty) multisets of
formulas.

∗http://www.logic.at/tinc/webaxiomcalc
1A t-norm is a commutative, associative, increasing function ∗ : [0, 1]2 → [0, 1] with identity

element 1. ∗ is left continuous iff whenever {xn}, {yn} (n ∈ N) are increasing sequences in
[0, 1] s.t. their suprema are x and y, then sup{xn ∗ yn : n ∈ N} = x ∗ y. The residuum of ∗ is
a function →∗ where x→∗ y = max{z | x ∗ z ≤ y}.
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G | Γ⇒ α G | α,∆⇒ Π

G | Γ,∆⇒ Π
(cut)

G | α⇒ α
(init)

G | 0⇒
(0l)

G | Γ⇒ α G | ∆⇒ β

G | Γ,∆⇒ α · β
(· r)

G | α, β,Γ⇒ Π

G | α · β,Γ⇒ Π
(· l)

G | Γ⇒ Π

G | 1,Γ⇒ Π
(1l)

G | Γ⇒ α G | β,∆⇒ Π

G | Γ, α→ β,∆⇒ Π
(→ l)

G | α,Γ⇒ β

G | Γ⇒ α→ β
(→ r)

G | Γ⇒
G | Γ⇒ 0

(0r)

G | Γ⇒ α G | Γ⇒ β

G | Γ⇒ α ∧ β
(∧r)

G | αi,Γ⇒ Π

G | α1 ∧ α2,Γ⇒ Π
(∧l)

G |⇒ 1
(1r)

G | α,Γ⇒ Π G | β,Γ⇒ Π

G | α ∨ β,Γ⇒ Π
(∨l)

G | Γ⇒ αi

G | Γ⇒ α1 ∨ α2
(∨r)

G | Γ⇒ Π

G | Γ, α⇒ Π
(wl)

G | Γ⇒ Π | Γ⇒ Π

G | Γ⇒ Π
(EC)

G

G | Γ⇒ Π
(EW )

G | Γ⇒
G | Γ⇒ Π

(wr)

G | Γ1,∆1 ⇒ Π1 G | Γ2,∆2 ⇒ Π2

G | Γ1,Γ2 ⇒ Π1 | ∆1,∆2 ⇒ Π2
(com)

Table 1: Hypersequent calculus HMTL for MTL

Definition 1 A hypersequent G is a multiset S1 | · · · | Sn where each Si for i =
1, . . . , n is a sequent, called a component of the hypersequent. A hypersequent
is called single-conclusion if all its components are single-conclusion.

The symbol “|” is intended to denote disjunction at the meta-level. In this
paper, we only consider single-conclusion (hyper)sequents. Given a sequent S
henceforth we will denote by LHS(S) its left hand side and by RHS(S) its
right hand side. Let S := Γ1,Γ2 ⇒ Π, we indicate by S[Γ1/Σ]l the sequent
Σ,Γ2 ⇒ Π.

As in the case of sequent calculus, the hypersequent calculus consists of
initial axioms, logical rules, the cut-rule and structural rules. Initial axioms,
logical rules and the cut-rule are essentially the same as in the sequent calcu-
lus. The only difference is that a (possibly empty) side hypersequent G may
occur in hypersequents. The structural rules are divided into two groups: in-
ternal structural rules and external structural rules. The former are applied to
formulas within sequents. External rules instead manipulate the components
of a hypersequent and therefore increase the expressive power of hypersequent
calculus with respect to sequent calculus.

The notion of proof in HMTL is defined as usual. Let R be a set of rules. If
there is a proof in HMTL extended with R (HMTL+R, for short) of a sequent
S0 from a set of sequents S, we say that S0 is derivable from S in HMTL+R
and write S `HMTL+R S0 . We write `HMTL+R α if ∅ `HMTL+R⇒ α.

Two hypersequent rules (hr0) and (hr1) are equivalent (in HMTL) if the
relations `HMTL+(hr0) and `HMTL+(hr1) coincide when restricted to sequents.

2.1 Substructural Hierarchy

The substructural hierarchy is a novel classification of Hilbert axioms based on
the logical connectives of MTL.
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Figure 1: The substructural hierarchy [4]

Definition 2 (Substructural Hierarchy) [4] Let A be a set of atomic for-
mulas. For n ≥ 0, the sets Pn,Nn of formulas are defined as follows:

P0 ::= N0 ::= A
Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0

A graphical representation of the substructural hierarchy is depicted in Figure 1.
Note that the arrows → stand for inclusions ⊆ of the classes.

2.2 From axioms to analytic rules

The axiom ¬(α ∧ ¬α) is within the class N2 of the substructural hierarchy [4].
Using the algorithm in [4], the axiom

¬(α ∧ ¬α)

can be transformed into the following rule to be added to the hypersequent cal-
culus HMTL:

G | Γ1,Γ1 ⇒
G | Γ1 ⇒

Theorem 3 (Soundness and Completeness.) The axiom ¬(α ∧ ¬α) is
equivalent (in presence of the axiom (α → β) ∨ (β → α)) to the newly gen-
erated rule.

Proof. See [4, 3].

Theorem 4 (Cut-Admissibility.) The cut rule is admissible in the calculus
HMTL extended with the newly generated rule.

Proof. See [4].

A cut-elimination procedure can be found in [6].

3 Standard completeness for MTL+¬(α ∧ ¬α)
Let (r) be any hypersequent rule generated by the procedure in [4] where Si, Cj

denote sequents

G | S1 . . . G | Sm

G | C1 | . . . | Cq
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Definition 5 Let G|Si and G|Sj be among the premises of (r).

(0-pivot) G|Si is a 0-pivot if there is an s ∈ {1, . . . , q} such that RHS(Si) =
RHS(Cs) and the different metavariables in the LHS(Si) are contained
in those of LHS(Cs).

(n-pivot) G|Sj is an n-pivot for G|Si, for n > 0, if the following conditions hold:

– G|Sj is a 0-pivot

– RHS(Si) = RHS(Sj)

– LHS(Sj) = LHS(Si[
Γ1/∆1 , . . .

Γn /∆n ]l) for Γ1, . . .Γn ∈ LHS(Si)
and ∆1, . . .∆n ∈ LHS(Sj)

– G|Sj is a (n-1)-pivot for n premises G|Sj1 , .. ,G|Sjn , and for i = 1..n
LHS(Sj) = LHS(Sji [

Γ1/∆1
, . . . ,Γi−1 /∆i−1

, . . . ,Γi+1 /∆i+1
,Γn /∆n

]l)

Definition 6 A completed hypersequent rule (r) is convergent if for each premise
G|Si one of the following conditions holds: (1) RHS(Si) = ∅, (2) G|Si is a 0-
pivot, or (3) there is a premise G|Sj which is an n-pivot for G|Si, with n > 0.

Lemma 7 The rule equivalent to the axiom ¬(α ∧ ¬α) is convergent.

Proof. Consider again the generated rule:

G | Γ1,Γ1 ⇒
G | Γ1 ⇒

The premise(s) of the rule satisfy condition (2) in Definition 6.

Theorem 8 The logic formalized by the calculus HMTL extended with any con-
vergent rule is standard complete.

Proof. See [1].

Hence, MTL extended with ¬(α ∧ ¬α) is standard complete.
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