Axiomatic Mathematics:
 (Un-)Decidability and (In-)Completeness

Saeed Salehi

University of Tabriz and $\mathbb{I P M}$

> http://SaeedSalehi.ir/

Tenth International Tbilisi Summer School in Logic and Language
Tbilisi, Georgia
22-27 September 2014

Axiom / Axiomatic / Axiomaitzation

Merriam-Webster: www.merriam-webster.com
Axiom:
a statement accepted as true as the basis for argument or inference Postulate

Axiomatic:
based on or involving an axiom or system of axioms
Axiomatization:
the act or process of reducing to a system of axioms

Axiom / Axiomatic / Axiomaitze

Oxford:
WWW.oxforddictionaries.com
Axiom:
a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy'

AXIOMATIC: self-evident or unquestionable
it is axiomatic that good athletes have a strong mental attitude Math: relating to or containing axioms

AxIOMATIZE: express (a theory) as a set of axioms the attempts that are made to axiomatize linguistics

Some High-School Axiomatizations

L. Henkin, The Logic of Equality, The American Mathematical Monthly 84 (1977) 597-612.

Every equality of $\langle\mathbb{N},+, 0\rangle$ can be derived from the axioms:
Associativity:
$x+(y+z)=(x+y)+z$
Commutativity: $\quad x+y=y+x$
Identity Element: $\quad x+0=x$
The same holds for $\langle\mathbb{Z},+, 0\rangle,\left\langle\mathbb{N}^{>0}, \cdot, 1\right\rangle,\langle\mathbb{N}, \cdot, 1\rangle,\langle\mathbb{Z}, \cdot, 1\rangle, \ldots$
For example the following (true) identity/equality can be derived (EXERCISES):

$$
x+y=y+(0+x)
$$

Some High-School Axiomatizations

L. Henkin, The Logic of Equality, The American Mathematical Monthly 84 (1977) 597-612.

Equalities of $\langle\mathbb{N},+, \cdot, 0,1\rangle$ and $\langle\mathbb{Z},+, \cdot, 0,1\rangle$ are axiomatized by

Associativity:
Commutativity:
Identity Element:
Distributivity \& Zero:

$$
\begin{array}{l|l}
x+(y+z)=(x+y)+z & x \cdot(y \cdot z) \\
x+y=y+x & x \cdot y=y \\
x+0=x & x \cdot 1=x \\
x \cdot(y+z)=(x \cdot y)+(x \cdot z) & x \cdot 0=0
\end{array}
$$

Can derive all the identities such as (EXERCISES):

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \quad(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n} y^{n-i} \\
& (x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 x z+2 y z \\
& (x+a) \cdot(x+b)=x^{2}+(a+b) x+a b
\end{aligned}
$$

Some High-School Axiomatizations

L. HENKIN, The Logic of Equality, The American Mathematical Monthly 84 (1977) 597-612.

In Logic we even axiomatize the very way of reasoning:
[(REF) $u=u$]
(SYM) if $u=v$ then $v=u$
(TRA) if $u=v$ and $v=w$ then $u=w$
(REP) if $u=v$ and $u^{\prime}=v^{\prime}$ then $u+u^{\prime}=v+v^{\prime}\left(u \cdot u^{\prime}=v \cdot v^{\prime}\right.$ etc.)
(SUB) if $u=v$ then $u[x \hookleftarrow t]=v[x \hookleftarrow t]$
$w[x \hookleftarrow t]$ results from w by substituting every occurrence of x with t
This actually axiomatizes the logic of equality.

Algebraic Axiomatizing "The Laws of Thought"

Language: $\perp, \top \neg \wedge, \vee \equiv$

Idempotence:	$p \wedge p \equiv p$	$p \vee p \equiv p$
Commutativity:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associativity:	$p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r$	$p \vee(q \vee r) \equiv(p \vee q) \vee r$
Distributivity:	$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$	
Distributivity:	$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$	
Tautology:	$p \wedge \top \equiv p$	$p \vee \top \equiv \top$
Contradiction:	$p \wedge \perp \equiv \perp$	$p \vee \perp \equiv p$
Negation:	$p \wedge(\neg p) \equiv \perp$	$p \vee(\neg p) \equiv \top$
Negation:		$\neg(\neg p) \equiv p$
DeMorgan:	$\neg(p \wedge q) \equiv(\neg p) \vee(\neg q)$	$\neg(p \vee q) \equiv(\neg p) \wedge(\neg q)$

Algebraic Axiomatizing "The Laws of Thought"

All the other laws can be proved by the above axioms; such as:

Absorption:
$p \wedge(p \vee q) \equiv_{C}(p \vee \perp) \wedge(p \vee q) \equiv_{D} p \vee(\perp \wedge q) \equiv_{C} p \vee \perp \equiv_{C} p$
Absorption:
$p \vee(p \wedge q) \equiv_{T}(p \wedge \top) \vee(p \wedge q) \equiv_{D} p \wedge(\top \vee q) \equiv_{T} p \wedge \top \equiv_{T} p$
(EXERCISES):

$$
\neg((p \vee \neg q) \wedge(\neg p \vee q)) \equiv(p \vee q) \wedge(\neg p \vee \neg q)
$$

$$
(p \wedge \neg[(q \wedge \neg r) \vee(\neg q \wedge r)]) \vee(\neg p \wedge[(q \wedge \neg r) \vee(\neg q \wedge r)]) \equiv
$$

$$
\equiv([(p \wedge \neg q) \vee(\neg p \wedge q)] \wedge \neg r) \vee(\neg[(p \wedge \neg q) \vee(\neg p \wedge q)] \wedge r)
$$

Propositional Logic (LAWS)

$$
\begin{array}{cc}
& \alpha \rightarrow \alpha \\
& \\
(\alpha \wedge \beta) \rightarrow \alpha & \alpha \rightarrow(\alpha \vee \beta) \\
(\alpha \wedge \beta) \rightarrow \beta & \beta \rightarrow(\alpha \vee \beta) \\
(\alpha \rightarrow \beta) \rightarrow(\neg \alpha \vee \beta) & (\neg \alpha \vee \beta) \rightarrow(\alpha \rightarrow \beta) \\
(*) \alpha \rightarrow(\beta \rightarrow \alpha) & (\neg \beta) \rightarrow(\beta \rightarrow \alpha) \\
(*)[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)] \\
(*)(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta) & (\alpha \rightarrow \beta) \rightarrow(\neg \beta \rightarrow \neg \alpha)
\end{array}
$$

Propositional Logic (RuLES)

$$
(*) \frac{\alpha, \alpha \rightarrow \beta}{\beta} \quad \frac{\alpha \rightarrow \beta, \beta \rightarrow \gamma}{\alpha \rightarrow \gamma}
$$

Axiomatizing Propositional Logic

$\mathrm{AX}_{1} \alpha \rightarrow(\beta \rightarrow \alpha)$
$\mathrm{AX}_{2}[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
$\mathrm{AX}_{3}(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
$\operatorname{RUL} \frac{\alpha, \alpha \rightarrow \beta}{\beta}$

Some Theorems (EXERCISES):

$$
\begin{aligned}
& \alpha \rightarrow \alpha \\
& (\neg \beta) \rightarrow(\beta \rightarrow \alpha) \\
& (\alpha \rightarrow \beta) \rightarrow(\neg \beta \rightarrow \neg \alpha)
\end{aligned}
$$

$$
[(\alpha \rightarrow \beta) \rightarrow \alpha] \rightarrow \alpha
$$

Axiomatizing Predicate Logic

Gödel's Completeness Theorem (1929)

From An Axiomatization of (Logically) Valid Formulas:

- $\alpha \rightarrow(\beta \rightarrow \alpha) \quad$ - $(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
- $[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
- $\forall x \varphi(x) \rightarrow \varphi(t) \quad$ - $\varphi \rightarrow \forall x \varphi[x$ is not free in φ]
- $\forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi)$

With the Modus Ponens Rule:

- $\frac{\varphi, \varphi \rightarrow \psi}{\psi}$

All the Universally Valid Formulas CAN be generated.

Axiomatizing Predicate Logic

Some Theorems (EXERCISES):

- $\forall x(\varphi \rightarrow \psi) \longleftrightarrow[\varphi \rightarrow \forall x \psi] \quad[x$ is not free in φ]
- $[\neg \forall x \varphi(x) \rightarrow \forall x \psi(x)] \longrightarrow \forall x[\neg \varphi(x) \rightarrow \psi(x)]$
- $\neg \forall x \neg[\forall y \theta(x, y)] \longrightarrow \forall y \neg \forall x \neg \theta(x, y)$
- $\exists y \forall x(\varphi(y) \rightarrow \varphi(x)) \quad$ http://en.wikipedia.org/wiki/Drinker_paradox
- $\exists y \forall x(\varphi(x) \rightarrow \varphi(y))$
- $\neg \exists y \forall x[\theta(x, y) \longleftrightarrow \neg \theta(x, x)] \quad$ (Russel1's) Barber Paradox
- $\forall x \neg[\varphi \longleftrightarrow \neg \varphi]$
- $\forall x \exists y \forall z(\theta(x, y) \wedge[\theta(y, z) \rightarrow \theta(x, z)]) \longrightarrow$

$$
\neg \forall u(\varphi(u) \leftrightarrow \forall v[\theta(u, v) \rightarrow \neg \varphi(v)]) \text { Yablo's paradox }
$$

First-Order Logic (Semantics)

Fix a domain: a set to whose members the variables refer. We will use the sets of numbers:

Natural (\mathbb{N}), Integer (\mathbb{Z}), Rational (\mathbb{Q}), Real (\mathbb{R}), Complex (\mathbb{C}).
Tarski's Definition of Truth defines satisfiability of a formula in a structure (by induction).

Examples:
$\triangleright \mathbb{N} \not \vDash \forall x \exists y(x+y=0) \quad$ but $\mathbb{Z} \models \forall x \exists y(x+y=0)$.
$\triangleright \mathbb{Z} \not \vDash \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$ but $\mathbb{Q} \models \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$.
$\triangleright \mathbb{Q} \mid \vDash \forall x \exists y(0 \leqslant x \rightarrow[y \cdot y=x])$ but $\mathbb{R} \models \forall x \exists y(0 \leqslant x \rightarrow[y \cdot y=x])$.
$\triangleright \mathbb{R} \not \vDash \forall x \exists y(y \cdot y+x=0) \quad$ but $\mathbb{C} \models \forall x \exists y(y \cdot y+x=0)$.

Axiomatizing Mathematical Structures

The Theory of Order $(<)$

Cantor: Every Countable Dense Linear Order Without Endpoints Is Isomorphic to $\langle\mathbb{Q},<\rangle$.
Thus, the theory of "dense linear orders without endpoints" fully axiomatizes the theory of $\langle\mathbb{Q},<\rangle$:

- $\forall x, y(x<y \rightarrow y \nless x)$
- $\forall x, y, z(x<y<z \rightarrow x<z)$
- $\forall x, y(x<y \vee x=y \vee y<x)$
- $\forall x, y(x<y \rightarrow \exists z[x<z<y])$
- $\forall x \exists y(x<y)$
- $\forall x \exists y(y<x)$

Anti-Symmetric Transitive Linear
Dense
No Last Point
No Least Point

Axiomatizing Mathematical Structures

The Theory of Order $(<)$

Also $\langle\mathbb{R},<\rangle$ is a model of this theory. So, the theories of $\langle\mathbb{Q},<\rangle$ and $\langle\mathbb{R},<\rangle$ can be axiomatized as "dense linear order without endpoints".

Though the First-Order Theories of $\langle\mathbb{Q},<\rangle$ and $\langle\mathbb{R},<\rangle$ are equal, these structures are very different: $\langle\mathbb{R},<\rangle$ is complete (every bounded subset has a supremum) while $\langle\mathbb{Q},<\rangle$ is not.

Axiomatizing Mathematical Structures

The Theory of Order $(<)$

The Theory of Order in \mathbb{Z} is Characterized as: Linear Discrete Order Without EndPoints in the language $\{S,<\}$ where $S(x)=x+1$ is the successor function, definable by $<: S(x)=z \Longleftrightarrow \forall y(x<y \leftrightarrow z \leqslant y)$.

- $\forall x, y(x<y \rightarrow y \nless x)$
- $\forall x, y, z(x<y<z \rightarrow x<z)$
- $\forall x, y(x<y \vee x=y \vee y<x)$
- $\forall x, y(x<y \leftrightarrow S(x)<y \vee S(x)=y)$
- $\forall x \exists y(x=S(y))$

Anti-Symmetric Transitive Linear Discrete Order Predecessor

These Completely Axiomatize the Whole Theory of $\langle\mathbb{Z}, S,<\rangle$.

Axiomatizing Mathematical Structures

The Theory of Order $(<)$

Zero (0) and Successor (S) are definable in $\langle\mathbb{N},\langle \rangle$:

$$
u=0 \Longleftrightarrow \forall x(\neg x<0) \text { and } v=S(u) \Longleftrightarrow \forall x(x<v \leftrightarrow x \leqslant u)
$$

H. B. Enderton, A Mathematical Introduction to Logic, 2nd ed. Academic Press 2001.

The theory of $\langle\mathbb{N}, 0, S,<\rangle$ can be completely axiomatized by

- $\forall x, y(x<y \rightarrow y \nless x)$
- $\forall x, y, z(x<y<z \rightarrow x<z)$
- $\forall x, y(x<y \vee x=y \vee y<x)$
- $\forall x, y(x<y \leftrightarrow S(x)<y \vee S(x)=y)$
- $\forall x(x \neq 0 \rightarrow \exists y[x=S(y)])$
- $\forall x(x \nless 0)$

Anti-Symmetric
Transitive Linear
Discrete Order Successor Least Point

Axiomatizing Mathematical Structures

The Theory of Addition (+)

The structures $\langle\mathbb{Q},+\rangle,\langle\mathbb{R},+\rangle$ and $\langle\mathbb{C},+\rangle$ have, surprisingly, the same theory: Non-Trivial Torsion-Free Divisible Abelian Groups:

- $\forall x, y, z(x+(y+z)=(x+y)+z)$
- $\forall x, y(x+y=y+x)$
- $\forall x(x+0=x)$
- $\forall x(x+(-x)=0)$
- $\forall x \exists y(\underbrace{y+\cdots+y}=x), \quad n=2,3, \cdots$ n-times
- $\forall x(\underbrace{x+\cdots+x}_{n-\text { times }}=0 \longrightarrow x=0), n=2,3, \cdots$
- $\exists x(x \neq 0)$

Associativity
Commutativity
Additive Identity
Additive Inverse
Divisibility

Torsion-Freeness

Non-Triviality

Definability

The Theory of Addition (+)

Zero (0) and the minus function (-) are definable in $\langle\mathbb{Q},+\rangle,\langle\mathbb{R},+\rangle$ and $\langle\mathbb{C},+\rangle$ (and also in $\langle\mathbb{Z},+\rangle$):
$u=0 \Longleftrightarrow u+u=u$
$u=-v \Longleftrightarrow u+v=0 \quad(\Longleftrightarrow(u+v)+(u+v)=u+v)$
Let us note that the above definition of 0 works also in $\langle\mathbb{N},+\rangle$.
Moreover, order $(<)$ is definable in $\langle\mathbb{N},+\rangle$
(but not in $\langle\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C},+\rangle$):
$u<v \Longleftrightarrow \exists x(x+x \neq x \wedge x+u=v)$

Axiomatizing Mathematical Structures

The Theory of Addition (+)

The Theory of $\langle\mathbb{Z},+\rangle$ is Axiomatizable as
Non-Trivial Torsion-Free Abelian Group with Division Algorithm.
Axioms of $\langle\mathbb{Z}, 0,1,-,+\rangle$:

- $\forall x, y, z(x+(y+z)=(x+y)+z)$
- $\forall x(x+0=x)$
- $\forall x, y(x+y=y+x)$
- $0 \neq 1$
- $\forall x \exists y\left(\bigvee_{i<n}(x=n \cdot y+i)\right)$
- $\forall x(x+(-x)=0)$
- $\forall x(n \cdot x=0 \rightarrow x=0)$
$n \cdot \alpha=\underbrace{\alpha+\cdots+\alpha}_{n-\text { times }}$
G. S. Boolos, et. al., Computability and Logic, 5th ed. Cambridge University Press 2007.
C. SMORYŃSKI, Logical Number Theory I: an introduction, Springer 1991.

Axiomatizing Mathematical Structures

The Theory of Addition (+)

The Theory of $\langle\mathbb{N},+\rangle$ is Axiomatizable as Non-Trivial Discretely Ordered Abelian Monoid with Division Algorithm. Axioms of $\langle\mathbb{N}, 0,1,+,<\rangle$:

```
- \(\forall x, y, z(x+(y+z)=(x+y)+z)\)
- \(\forall x, y, z(x<y \rightarrow x+z<y+z)\)
- \(\forall x, y, z(x<y<z \rightarrow x<z)\)
- \(\forall x, y(x<y \vee x=y \vee y<x)\)
- \(\forall x, y(x<y \longleftrightarrow x+1 \leqslant y)\)
- \(\forall x \exists y\left(\bigvee_{i<n}(x=n \cdot y+i)\right)\)
```

- $\forall x(x+0=x)$
- $\forall x, y(x+y=y+x)$
- $\forall x, y(x \nless x)$
- $\forall x(0 \leqslant x)$
- $\forall x(n \cdot x=0 \rightarrow x=0)$
$n \cdot \alpha=\underbrace{\alpha+\cdots+\alpha}_{n-\text { times }}$

Axiomatizing Mathematical Structures

The Theory of Addition and Order $(+,<)$

The structure $\langle\mathbb{Z}, 0,1,-,+,<\rangle$ can be axiomatized as
Non-Trivial Discretely Ordered Abelian Group with Division Algorithm:

- $\forall x, y, z(x+(y+z)=(x+y)+z)$
- $\forall x, y(x+y=y+x)$
- $\forall x(x+0=x)$
- $\forall x(x+(-x)=0)$
- $\forall x, y(x<y \rightarrow y \nless x)$
- $\forall x, y, z(x<y<z \rightarrow x<z)$
- $\forall x, y(x<y \vee x=y \vee y<x)$
- $\forall x, y(x<y \longleftrightarrow x+1<y \vee x+1=y)$
- $\forall x, y, z(x<y \rightarrow x+z<y+z)$
- $\forall x \exists y\left(\bigvee_{i<n}(x=n \cdot y+i)\right), n=2,3, \cdots$

Axiomatizing Mathematical Structures

The Theory of Addition and Order $(+,<)$

$\langle\mathbb{Q}, 0,-,+,<\rangle$ and $\langle\mathbb{R}, 0,-,+,<\rangle$ have, again surprisingly, the same theory of Non-Trivial Ordered Divisible Abelian Groups:

- $\forall x, y, z(x+(y+z)=(x+y)+z)$
- $\forall x, y(x+y=y+x)$
- $\forall x(x+0=x)$
- $\forall x(x+(-x)=0)$
- $\forall x, y(x<y \rightarrow y \nless x)$
- $\forall x, y, z(x<y<z \rightarrow x<z)$
- $\forall x, y(x<y \vee x=y \vee y<x)$
- $\forall x, y, z(x<y \rightarrow x+z<y+z)$
- $\forall x \exists y(n \cdot y=x), n=2,3, \cdots$
- $\exists x(x \neq 0)$

So Far ...

$$
\{<\},\{+\} \text { and }\{+,<\}
$$

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	$\langle\mathbb{N},<\rangle$	$\langle\mathbb{Z},<\rangle$	$\langle\mathbb{Q},<\rangle$	$\langle\mathbb{R},<\rangle$	-
$\{+\}$	$\langle\mathbb{N},+\rangle$	$\langle\mathbb{Z},+\rangle$	$\langle\mathbb{Q},+\rangle$	$\langle\mathbb{R},+\rangle$	$\langle\mathbb{C},+\rangle$
$\{+,<\}$	$\langle\mathbb{N},+,<\rangle$	$\langle\mathbb{Z},+,<\rangle$	$\langle\mathbb{Q},+,<\rangle$	$\langle\mathbb{R},+,<\rangle$	-

$\Delta_{1}=$ Axiomatizable
(and so Decidable)

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-

Axiomatizing Mathematical Structures

Theory of Addition and Multiplication (,$+ \cdot$) the case of $\langle\mathbb{C},+, \cdot\rangle$
Tarski: The (First-Order Logical) Theory of the Structure $\left\langle\mathbb{C}, 0,1,-,{ }^{-1},+, \cdot\right\rangle$ is Decidable and Can Be Axiomatized As an Algebraically Closed Field.

- $x+(y+z)=(x+y)+z$
- $x+y=y+x$
- $x+0=x$
- $x+(-x)=0$
- $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
- $0 \neq 1$
- $\exists x\left(x^{n}+\mathbf{a}_{1} x^{n-1}+\mathbf{a}_{\mathbf{2}} x^{n-2}+\cdots+\mathbf{a}_{\mathbf{n}-\mathbf{1}} x+\mathbf{a}_{\mathbf{n}}=0\right)$

Axiomatizing Mathematical Structures

Theory of Addition and Multiplication (,$+ \cdot \cdot$ the case of $\langle\mathbb{R},+, \cdot\rangle$
Tarski: The (First-Order Logical) Theory of the Structure $\left\langle\mathbb{R}, 0,1,-,{ }^{-1},+, \cdot,<\right\rangle$ is Decidable and Can Be Axiomatized
As a Real Closed (Ordered) Field.

- $x+(y+z)=(x+y)+z$
- $x+y=y+x$
- $x+0=x$
- $x+(-x)=0$
- $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
- $x<y<z \rightarrow x<z$
- $x<y \rightarrow x+z<y+z$
- $x<y \wedge 0<z \rightarrow x \cdot z<y \cdot z$
- $\exists x\left(x^{2 n+1}+\mathbf{a}_{\mathbf{1}} x^{2 n}+\cdots+\mathbf{a}_{\mathbf{2 n}} x+\mathbf{a}_{\mathbf{2 n}+\mathbf{1}}=0\right)$
- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- $x \cdot y=y \cdot x$
- $x \cdot 1=x$
- $x \neq 0 \rightarrow x \cdot x^{-1}=1$
- $0 \neq 1$
- $x<y \vee x=y \vee y<x$
- $x \nless x$
- $0<z \rightarrow \exists y(z=y \cdot y)$

Some References

- G. Kreisel, J. L. Krivine, Elements of Mathematical Logic: model theory, North Holland 1967.
- Z. Adamowicz, P. Zbierski, Logic of Mathematics: a modern course of classical logic, Wiley 1997.
- J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Springer 1998.
- S. Basu, R. Pollack, M.-F. Coste-Roy, Algorithms in Real Algebraic Geometry, 2nd ed. Springer 2006.

Axiomatizing Mathematical Structures

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{\cdot\}$	$\langle\mathbb{N}, \cdot\rangle$	$\langle\mathbb{Z}, \cdot\rangle$	$\langle\mathbb{Q}, \cdot\rangle$	$\langle\mathbb{R}, \cdot\rangle$	$\langle\mathbb{C}, \cdot\rangle$
$\{\cdot,<\}$	$\langle\mathbb{N}, \cdot,<\rangle$	$\langle\mathbb{Z}, \cdot,<\rangle$	$\langle\mathbb{Q}, \cdot,<\rangle$	$\langle\mathbb{R}, \cdot,<\rangle$	-
$\{+, \cdot\}$	$\langle\mathbb{N},+, \cdot\rangle$	$\langle\mathbb{Z},+, \cdot\rangle$	$\langle\mathbb{Q},+, \cdot\rangle$	$\langle\mathbb{R},+, \cdot\rangle$	$\langle\mathbb{C},+, \cdot\rangle$
$\{+, \cdot,\langle \}$	$\langle\mathbb{N},+, \cdot,<\rangle$	$\langle\mathbb{Z},+, \cdot,<\rangle$	$\langle\mathbb{Q},+, \cdot,<\rangle$	$\langle\mathbb{R},+, \cdot,\rangle\rangle$,	-
\mathbf{E}	$\langle\mathbb{N}, \exp \rangle$	-	-	$\left\langle\mathbb{R},+, \cdot, e^{x}\right\rangle$	$\left\langle\mathbb{C},+, \cdot, e^{x}\right\rangle$

$\ln \langle\mathbb{N}, \exp \rangle$ we have
$u \cdot v=w \Longleftrightarrow \forall x[\exp (x, w)=\exp (\exp (x, u), v)] \quad x^{w}=\left(x^{u}\right)^{v}$
$u+v=w \Longleftrightarrow \forall x[\exp (x, w)=\exp (x, u) \cdot \exp (x, v)] \quad x^{w}=x^{u} \cdot x^{v}$

Axiomatizability of Mathematical Structures

We study the Axiomatizability Problem for the Following Structures:

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	$\langle\mathbb{N},<\rangle$	$\langle\mathbb{Z},<\rangle$	$\langle\mathbb{Q},<\rangle$	$\langle\mathbb{R},<\rangle$	-
$\{+\}$	$\langle\mathbb{N},+\rangle$	$\langle\mathbb{Z},+\rangle$	$\langle\mathbb{Q},+\rangle$	$\langle\mathbb{R},+\rangle$	$\langle\mathbb{C},+\rangle$
$\{\cdot\}$	$\langle\mathbb{N}, \cdot\rangle$	$\langle\mathbb{Z}, \cdot\rangle$	$\langle\mathbb{Q}, \cdot\rangle$	$\langle\mathbb{R}, \cdot\rangle$	$\langle\mathbb{C}, \cdot\rangle$
$\{+,<\}$	$\langle\mathbb{N},+,<\rangle$	$\langle\mathbb{Z},+,<\rangle$	$\langle\mathbb{Q},+,<\rangle$	$\langle\mathbb{R},+,<\rangle$	-
$\{+, \cdot\}$	$\langle\mathbb{N},+, \cdot\rangle$	$\langle\mathbb{Z},+, \cdot\rangle$	$\langle\mathbb{Q},+, \cdot\rangle$	$\langle\mathbb{R},+, \cdot\rangle$	$\langle\mathbb{C},+, \cdot\rangle$
$\{\cdot,<\}$	$\langle\mathbb{N}, \cdot,<\rangle$	$\langle\mathbb{Z}, \cdot,<\rangle$	$\langle\mathbb{Q}, \cdot,<\rangle$	$\langle\mathbb{R}, \cdot,,<\rangle$	-
$\{+, \cdot,<\}$	\backslash	\backslash	\backslash	\mid	-
\mathbf{E}	$\langle\mathbb{N}, \exp \rangle$	-	-	$\left\langle\mathbb{R},+, \cdot, e^{x}\right\rangle$	$\left\langle\mathbb{C},+, \cdot, e^{x}\right\rangle$

Definability of $<\mathrm{By}+$ and .

Order Is Definable By Addition And Multiplication.

Why not consider $\{+, \cdot,<\}$?
The Order Relation < is Definable by + and - as

- in $\mathbb{N}: \quad a \leqslant b \Longleftrightarrow \exists x(x+a=b)$.
- in $\mathbb{R}: \quad a \leqslant b \Longleftrightarrow \exists x(x \cdot x+a=b)$.
for \mathbb{Z} Use Lagrange's Four Square Theorem; Every Natural (Positive) Number Can Be Written As A Sum Of Four Squares.
- in $\mathbb{Z}: \quad a \leqslant b \Longleftrightarrow \exists \alpha, \beta, \gamma, \delta\left(a+\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=b\right)$. for \mathbb{Q} Lagrange's Theorem Holds Too: $0 \leqslant r=m / n=(m n) / n^{2}=$ $\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right) / n^{2}=(\alpha / n)^{2}+(\beta / n)^{2}+(\gamma / n)^{2}+(\delta / n)^{2}$.
- in $\mathbb{Q}: \quad a \leqslant b \Longleftrightarrow \exists \alpha, \beta, \gamma, \delta\left(a+\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=b\right)$.

$$
a<b \Longleftrightarrow a \leqslant b \wedge a \neq b
$$

$$
a \leqslant b \Longleftrightarrow a<b \vee a=b
$$

The Theory of Multiplication

Mainly Missing ...

Skolem Arithmetic $\langle\mathbb{N}, \cdot\rangle$:
Patrick Cegielski, Théorie Élémentaire de la Multiplication des Entiers Naturels, in C. Berline, K. McAloon, J.-P. Ressayre (eds.) Model Theory and Arithmetics, LNM 890, Springer 1981, pp. 44-89.
$\langle\mathbb{Z}, \cdot\rangle,\langle\mathbb{Q}, \cdot\rangle,\langle\mathbb{R}, \cdot\rangle$ and $\langle\mathbb{C}, \cdot\rangle$?
Missing in the literature. Maybe because:

- almost the same proofs can show the decidability of $\langle\mathbb{Z}, \cdot\rangle(?)$
- the decidability of $\langle\mathbb{R}, \cdot\rangle$ and $\langle\mathbb{C}, \cdot\rangle$ follows from the decidability of $\langle\mathbb{R},+, \cdot\rangle$ and $\langle\mathbb{C},+, \cdot\rangle$ (Tarski's Theorems)
but an axiomatization for their theories ... still missing!
- and $\langle\mathbb{Q}, \cdot\rangle$? $\quad \cdots$ again missing!

The Theory of Multiplication and Order

- The Theory of $\langle\mathbb{R}, \cdot,<\rangle$ Is Decidable by Tarski's Result (1931). Still No Axiomatization In the Literature
- The Theory of $\langle\mathbb{N}, \cdot,<\rangle$ Is Equivalent to that of $\langle\mathbb{N},+, \cdot\rangle$, and The Theory of $\langle\mathbb{Z}, \cdot \cdot,<\rangle$ Is Equivalent to that of $\langle\mathbb{Z},+, \cdot\rangle$: by Robinson's Result (1949) + is Definable in $\langle\mathbb{N}, \mathbb{Z}, \cdot,<\rangle$ by Tarski's Identity: $x+y=z \Longleftrightarrow[S(x \cdot y)=S(x) \cdot S(y) \wedge z \cdot S(z)=z] \bigvee$

$$
[S(x \cdot z) \cdot S(y \cdot z)=S(z \cdot z \cdot S(x \cdot y)) \wedge z \cdot S(z) \neq z] .
$$

Recall S is definable by $<$ in \mathbb{N} (and in \mathbb{Z})

- and $\langle\mathbb{Q}, \cdot,<\rangle$? $\quad \cdots$ still missing!

Axiomatizability of Mathematical Structures State of the Art — so far ...

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	$?$	$\Delta_{1}^{?}$	$\Delta_{i}^{?}$
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	\square		\square	Δ_{1}	Δ_{1}
$\{\cdot,<\}$	\square	\square	$?$	$\Delta_{i}^{?}$	-
\mathbf{E}	\square	-	-	$i ?$	\square

Definability

and Interpretability

- By Gödel's result $\langle\mathbb{N},+, \cdot\rangle$ can define exp.
- $\langle\mathbb{N},+, \cdot\rangle$ can interpret $\langle\mathbb{Z},+, \cdot\rangle: \mathbb{Z}=\mathbb{N} \cup\{x \mid \exists y \in \mathbb{N}(y+x=0)\}$,
- and also $\langle\mathbb{Q},+, \cdot\rangle: \mathbb{Q}=\{x \mid \exists y \in \mathbb{Z}, z \in \mathbb{N}(z \neq 0 \wedge z \cdot x=y)\}$.
- $\langle\mathbb{Z},+, \cdot\rangle$ can define $\mathbb{N}\left(=\left\{\sum_{i=1}^{4} x_{i}^{2} \mid x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z}\right\}.\right)$
- So can $\langle\mathbb{Q},+, \cdot\rangle$ (Robinson's Theorem 1949).
- $\left\langle\mathbb{C},+,, e^{x}\right\rangle$ defines $\mathbb{Z}\left(=\left\{x \mid \forall y, z\left[y^{2}+1=0 \wedge e^{y \cdot z}=1 \rightarrow e^{x \cdot y \cdot z}=1\right]\right\}\right)$ and also \mathbb{N} and \mathbb{Q}.

Problem (Open)

Can $\left\langle\mathbb{C},+, \cdot, e^{x}\right\rangle$ define \mathbb{R} ?

Axiomatizing Mathematical Structures

The Theory of Multiplication (.)

An Axiomatization for The Multiplicative Theory of \mathbb{C} :
Let $\omega_{k}=\cos (2 \pi / k)+i \sin (2 \pi / k)$ be a k-th root of the unit; so $1, \omega_{k},\left(\omega_{k}\right)^{2}, \cdots,\left(\omega_{k}\right)^{k-1}$ are all the k-th roots of the unit.
The Structure $\left\langle\mathbb{C}, 0, \omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \ldots,{ }^{-1}, \cdot\right\rangle$ Is Axiomatized By:

- $\forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$
- $\forall x(x \cdot 1=x)$
- $\forall x\left(x \neq 0 \rightarrow x \cdot x^{-1}=1\right)$
- $\forall x, y(x \cdot y=y \cdot x)$
- $\forall x\left(x^{n}=1 \longleftrightarrow \bigvee_{i<n} x=\left(\omega_{n}\right)^{i}\right) \quad \bullet \forall x(x \cdot 0=0 \neq 1)$
- $\bigwedge_{i \neq j<n}\left(\omega_{n}\right)^{i} \neq\left(\omega_{n}\right)^{j}$

Axiomatizing Mathematical Structures

The Theory of Multiplication (•)

The Real Numbers \mathbb{R} :

Indeed, $\left\langle\mathbb{R}^{>0}, 1,,^{-1}, \cdot\right\rangle$ is a
non-trivial torsion-free divisible abelian group:

- $\forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$
- $\forall x\left(x \cdot x^{-1}=1\right)$
- $\forall x\left(x^{n}=1 \rightarrow x=1\right)$
- $\exists x(x \neq 1)$
- $\forall x(x \cdot 1=x)$
- $\forall x, y(x \cdot y=y \cdot x)$
- $\forall x \exists y\left(x=y^{n}\right)$

Axiomatizing Mathematical Structures

The Theory of Multiplication (•)

The Real Numbers \mathbb{R} :

The Structure $\left\langle\mathbb{R},-1,0,1,{ }^{-1}, \cdot, \mathscr{P}\right\rangle$

$$
[\mathscr{P}(x) \equiv " x>0 "]
$$

Can Be Axiomatized By:

- $\forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$
- $\forall x\left(x \neq 0 \rightarrow x \cdot x^{-1}=1\right)$
- $\forall x\left(\mathscr{P}(x) \longleftrightarrow \exists y\left[y \neq 0 \wedge x=y^{2 n}\right]\right)$
- $\forall x\left(x^{2 n}=1 \longleftrightarrow x=1 \vee x=-1\right)$
- $\forall x(x \cdot 0=0 \neq 1)$
- $\forall x\left(x^{2 n+1}=1 \rightarrow x=1\right)$
- $\neg \mathscr{P}(0) \wedge \mathscr{P}(1) \wedge \neg \mathscr{P}(-1)$
- $\forall x(x \neq 0 \rightarrow[\neg \mathscr{P}(x) \leftrightarrow \mathscr{P}(-x)]) \quad-x=(-1) \cdot x$
$\bullet \forall x, y(\mathscr{P}(x \cdot y) \longleftrightarrow[\mathscr{P}(x) \wedge \mathscr{P}(y)] \vee[\mathscr{P}(-x) \wedge \mathscr{P}(-y)])$

Axiomatizing Mathematical Structures

The Theory of Multiplication (•)

The Rational Numbers \mathbb{Q} :

The Theory of $\left\langle\mathbb{Q}^{>0}, 1,{ }^{-1}, \cdot\right\rangle$ Can Be Axiomatized By:

- $\forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$
- $\forall x, y(x \cdot y=y \cdot x)$
- $\forall x(x \cdot 1=x)$
- $\forall x\left(x \cdot x^{-1}=1\right)$
- $\forall x\left(x^{n}=1 \longrightarrow x=1\right)$
- $\forall y_{1}, \ldots, y_{k} \exists x \forall z \mathbb{M}_{i=1}^{k}\left(x^{n} \cdot y_{i} \neq z^{m_{i}}\right) \quad m_{1}, \ldots, m_{k} \nmid n$

Axiomatizing Mathematical Structures

The Theory of Multiplication (•)

The Rational Numbers \mathbb{Q} :
The structure $\left\langle\mathbb{Q}^{\geqslant 0}, 0,1,{ }^{-1}, \cdot\right\rangle$ can be axiomatized by axiomatizing $\left\langle\mathbb{Q}^{>0}, 1,{ }^{-1}, \cdot\right\rangle$ plus $\forall x(x \cdot 0=0 \neq 1)$.

The structure $\left\langle\mathbb{Q}, 0,1,^{-1}, \cdot, \mathscr{P}\right\rangle$ can be axiomatized by axiomatizing $\left\langle\mathbb{Q}^{>0}, 1,{ }^{-1}, \cdot\right\rangle$ plus $\forall x(x \cdot 0=0 \neq 1)$, and

- $(-1) \cdot(-1)=1$
- $\neg \mathscr{P}(0) \wedge \mathscr{P}(1) \wedge \neg \mathscr{P}(-1)$
- $\forall x(x \neq 0 \longrightarrow[\neg \mathscr{P}(x) \leftrightarrow \mathscr{P}(-x)]) \quad-x=(-1) \cdot x$
- $\forall x, y(\mathscr{P}(x \cdot y) \longleftrightarrow[\mathscr{P}(x) \wedge \mathscr{P}(y)] \vee[\mathscr{P}(-x) \wedge \mathscr{P}(-y)])$

Axiomatizing Mathematical Structures

The Theory of Multiplication and Order $(\cdot,<)$

The Rational Numbers \mathbb{Q} :
$\left\langle\mathbb{Q}^{>0}, 1,{ }^{-1}, \cdot,<\right\rangle$ Can Be Axiomatized By:

- $\forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$
- $\forall x, y(x \cdot y=y \cdot x)$
- $\forall x\left(x \cdot 1=x \wedge x \cdot x^{-1}=1\right)$
- $\forall x, y(x<y \rightarrow y \nless x)$
- $\forall x, y, z(x<y<z \rightarrow x<z)$
- $\forall x, y(x<y \vee x=y \vee y<x)$
- $\forall x, y, z(x<y \rightarrow x \cdot z<y \cdot z)$
- $\forall y_{1}, \ldots, y_{k} \exists x \forall z \mathbb{M}_{i=1}^{k}\left(x^{n} \cdot y_{i} \neq z^{m_{i}}\right) \quad m_{1}, \ldots, m_{k} \nmid n$
- $\forall x, y\left(x<y \rightarrow \exists z\left[x^{n}<z<y^{n}\right]\right)$ $n=1,2,3, \cdots$

Axiomatizing Mathematical Structures

The Theory of Multiplication and Order ($\cdot,<$)

The Rational Numbers \mathbb{Q} : Axiomatizing $\left\langle\mathbb{Q},-1,0,1,{ }^{-1}, \cdot,<\right\rangle$:
$\bullet \forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$

- $\forall x(x \cdot 1=x)$
- $\forall x\left(x \neq 0 \longrightarrow x \cdot x^{-1}=1\right)$
- $\forall x, y(x \cdot y=y \cdot x)$
$\bullet x\left(x^{2 n}=1 \longleftrightarrow x=1 \vee x=-1\right)$
- $\forall x(x \cdot 0=0 \neq 1)$
- $\forall x\left(x^{2 n+1}=1 \longrightarrow x=1\right)$
- $-1<0<1$
- $\forall x(x \neq 0 \longrightarrow[x \nless 0 \leftrightarrow 0<-x])$ $-x=(-1) \cdot x$
$\bullet \forall x, y(0<x \cdot y) \longleftrightarrow[0<x \wedge 0<y] \vee[0<-x \wedge 0<-y])$
- $\forall x, y(x<y \rightarrow y \nless x) \quad \bullet \forall x, y, z(0<z \wedge x<y \rightarrow x \cdot z<y \cdot z)$
$\bullet \forall x, y(x<y \vee x=y \vee y<x) \quad \bullet \forall x, y, z(x<y<z \rightarrow x<z)$
- $\forall y_{1}, \ldots, y_{k} \exists x \forall z \mathbb{N}_{i=1}^{k}\left(x^{n} \cdot y_{i} \neq z^{m_{i}}\right)$
$m_{1}, \ldots, m_{k} \nmid n$
- $\forall x, y\left(x<y \rightarrow \exists z\left[x^{2 n+1}<z<y^{2 n+1}\right]\right)$
$n=1,2,3, \cdots$
- $\forall x, y\left(0<x<y \rightarrow \exists z\left[x^{2 n}<z<y^{2 n}\right]\right)$

$$
n=1,2,3, \cdots
$$

Axiomatizing Mathematical Structures

The Theory of Multiplication and Order ($\cdot,<$)

The Real Numbers \mathbb{R} :

$\left\langle\mathbb{R}^{>0}, 1,{ }^{-1}, \cdot,<\right\rangle$ is a Non-Trivial Ordered Divisible Abelian Group.

- $\forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$
- $\forall x, y(x \cdot y=y \cdot x)$
- $\forall x(x \cdot 1=x)$
- $\forall x\left(x \cdot x^{-1}=1\right)$
- $\forall x, y(x<y \rightarrow y \nless x)$
- $\forall x, y, z(x<y<z \rightarrow x<z)$
- $\forall x, y(x<y \vee x=y \vee y<x)$
- $\forall x, y, z(x<y \rightarrow x \cdot z<y \cdot z)$
- $\forall x \exists y\left(y^{n}=x\right), n=2,3, \cdots$
- $\exists x(x \neq 1)$

Axiomatizing Mathematical Structures

The Theory of Multiplication and Order ($\cdot,<$)

The Real Numbers \mathbb{R} : Axiomatizing $\left\langle\mathbb{R},-1,0,1,{ }^{-1}, \cdot,<\right\rangle$:

```
\(\bullet \forall x, y, z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)\)
- \(\forall x(x \cdot 1=x)\)
- \(\forall x\left(x \neq 0 \longrightarrow x \cdot x^{-1}=1\right)\)
- \(\forall x, y(x \cdot y=y \cdot x)\)
- \(\forall x\left(0<x \longleftrightarrow \exists y\left[y \neq 0 \wedge x=y^{2 n}\right]\right)\)
- \(\forall x \exists y\left(x=y^{2 n+1}\right)\)
- \(\forall x\left(x^{2 n}=1 \longleftrightarrow x=1 \vee x=-1\right)\)
- \(\forall x(x \cdot 0=0 \neq 1)\)
- \(\forall x\left(x^{2 n+1}=1 \rightarrow x=1\right)\)
- \(-1<0<1\)
- \(\forall x(x \neq 0 \rightarrow[x \nless 0 \leftrightarrow 0<-x])\)
\(-x=(-1) \cdot x\)
\(\bullet \forall x, y(0<x \cdot y) \longleftrightarrow[0<x \wedge 0<y] \vee[0<-x \wedge 0<-y])\)
- \(\forall x, y(x<y \longrightarrow y \nless x)\)
- \(\forall x, y, z(x<y<z \longrightarrow x<z)\)
- \(\forall x, y(x<y \vee x=y \vee y<x)\)
- \(\forall x, y, z(0<z \wedge x<y \longrightarrow x \cdot z<y \cdot z)\)
```


Axiomatizability of Mathematical Structures State of the Art — so far ...

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	\square		\square	Δ_{1}	Δ_{1}
$\{\cdot,<\}$	\square	\square	Δ_{1}	Δ_{1}	-
\mathbf{E}	\square	-	-	$i ?$	\square

Axiomatizability of Mathematical Structures

Addition and Multiplication - Separately and Together
Axiomatizability of $\langle\mathbb{N},+\rangle$ (called Presburger Arithmetic) and $\langle\mathbb{Z},+\rangle$ was proved by Presburger in 1929 (\& Skolem 1930).

Axiomatizability of the Theories $\langle\mathbb{N}, \cdot\rangle$ (called Skolem Arithmetic) and $\langle\mathbb{Z}, \cdot\rangle$ was announced by Skolem in 1930.

So, an axiomatization was expected for $\langle\mathbb{N},+, \cdot\rangle \ldots$
(First-Order) Induction Principle (for a predicate formula φ)
$\operatorname{Ind}_{\varphi}: \quad \varphi(0) \wedge \forall x[\varphi(x) \rightarrow \varphi(S x)] \longrightarrow \forall x \varphi(x)$

Axiomatizability of Mathematical Structures

Addition and Multiplication - Separately and Together

An Axiomatization for Presburger Arithmetic $\langle\mathbb{N}, 0,1,+\rangle$:

- $x+1 \neq 0$
- $x+1=y+1 \rightarrow x=y$
- $x+0=x$
- $x+(y+1)=(x+y)+1$
- $\varphi(0) \wedge \forall x[\varphi(x) \rightarrow \varphi(x+1)] \longrightarrow \forall x \varphi(x) \varphi \in \operatorname{Formulas}(0,1,+)$.

So, a candid axiomatization for $\langle\mathbb{N}, 0,1,+, \cdot\rangle$ is A Set of Basic Axioms on $0,1,+, \cdot,<$ Plus Induction Scheme for all $\varphi \in \operatorname{Formulas}(0,1,+, \cdot,<)$.

Axiomatizability of Mathematical Structures

Addition and Multiplication

Peano's Axiomatic System

(Peano's Arithmetic-PA)

- $x+1 \neq 0$
- $x+1=y+1 \longrightarrow x=y$
- $x+0=x$
- $x+(y+1)=(x+y)+1$
- $x \cdot 0=0$
- $x \cdot(y+1)=(x \cdot y)+x$
- $x \neq 0 \longrightarrow \exists y[x=y+1]$
- $\varphi(0) \wedge \forall x[\varphi(x) \rightarrow \varphi(x+1)] \longrightarrow \forall x \varphi(x) \quad \varphi \in \operatorname{Formulas}(0,1,+, \cdot,<)$
- $x \leqslant y \Longleftrightarrow \exists z(z+x=y)$

Axiomatizability of Mathematical Structures

Addition and Multiplication
Second Candidate:
Can True Arithmetic $\operatorname{Th}(\langle\mathbb{N}, 0,1,+, \cdot\rangle)$ be regarded as an axiomatization for the theory of $\langle\mathbb{N}, 0,1,+, \cdot\rangle$?

Any Set of Sentences Can Be Regarded As A Set of Axioms Only When

 It Is A Recursively (Computably) Enumerable Set Of Sentences!Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.

Axiomatizability of Mathematical Structures

Addition and Multiplication

```
<N,0,1,+,.`
```

Gödel's First Incompleteness Theorem:
$\mathrm{Th}(\mathbb{N},+, \cdot)$ is Not Computably Enumerable.

$$
\text { In Particular, } P A \varsubsetneqq \operatorname{Th}(\mathbb{N},+, \cdot)!
$$

An Immediate Corollary:
$\operatorname{Th}(\mathbb{Z},+, \cdot)$ is Not Computably Enumerable. Neither is $\operatorname{Th}(\mathbb{Q},+, \cdot)$.
and for that matter
$\operatorname{Th}\left(\mathbb{C},+, \cdot, e^{x}\right)$ is not computably enumerable, either.

Axiomatizability of Mathematical Structures

A Rather Complete Picture

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
$\{<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{\cdot\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}
$\{+,<\}$	Δ_{1}	Δ_{1}	Δ_{1}	Δ_{1}	-
$\{+, \cdot\}$	x_{1}	x_{1}	x_{1}	Δ_{1}	Δ_{1}
$\{\cdot,<\}$	x_{1}	x_{1}	Δ_{1}	Δ_{1}	-
\mathbf{E}	x_{1}	-	-	$i ?$	x_{1}

Exponentiation

Tarski's Exponential Function Problem

http://en.wikipedia.org/wiki/Tarski's_exponential_function_problem
D. MARKER, Model Theory and Exponentiation, Notices AMS 43 (1996) 753-759.
A. Macintyre, A. J. Wilkie, On the Decidability of the Real Exponential Field, in P. Odifreddi (ed.) Kreiseliana: about and around Georg Kreisel, A. K. Peters (1996) pp. 441-467.

is equivalent to Weak Schanuel's Conjecture:

there is an effective procedure that, given $n \geqslant 1$ and exponential polynomials in n variables with integer coefficients f_{1}, \cdots, f_{n}, g produces an integer $\eta \geqslant 1$ that depends on $n, f_{1}, \cdots, f_{n}, g$ and such that if $\alpha \in \mathbb{R}^{n}$ is a non-singular solution of the system $\bigwedge_{1 \leqslant i \leqslant n} f_{i}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right)$ then either $g(\alpha)=0$ or $|g(\alpha)|>\eta^{-1}$.

Problem (Open)

Can The Theory Of $\left\langle\mathbb{R},+, \cdot, e^{x}\right\rangle$ Be Axiomatized? (In A Computably Enumerable Way)?

Computably Enumerable vs. Computably Decidable

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.
Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Post-Kleene's Theorem: A Set is Computably Decidable if and only if Both it and its Complement are Computably Enumerable.
If the theory of a structure $\operatorname{Th}(\mathfrak{A})$ is computably enumerable then so is its complement: $\operatorname{Th}(\mathfrak{A})^{\mathfrak{C}}=\{\neg \varphi \mid \varphi \in \operatorname{Th}(\mathfrak{A})\}$, whence it is decidable. Thus
$\operatorname{Th}(\mathfrak{A})$ is decidable $\Longleftrightarrow \mathfrak{A}$ is axiomatizable (in a c.e. way)

A High-School Axiomatization Problem - Again

Tarski's High School Algebra Problem:

http://en.wikipedia.org/wiki/Tarski's_high_school_algebra_problem
Can Every Equality of $\langle\mathbb{N}, 1,+, \cdot, \exp \rangle$ Be Derived From:

- $x+(y+z)=(x+y)+z$
- $x+y=y+x$
- $x \cdot 1=x$
- $x^{1}=x$
- $x^{y+z}=x^{y} \cdot x^{z}$
- $x^{y \cdot z}=\left(x^{y}\right)^{z}$
- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- $x \cdot y=y \cdot x$
- $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
- $1^{x}=1$
- $(x \cdot y)^{z}=\left(x^{z}\right) \cdot\left(y^{z}\right)$
?
J. DONER \& A. TARSKI, An Extended Arithmetic of Ordinal Numbers, Fundamenta Mathematicæ 65 (1969) 95-127.

A High-School Axiomatization Problem - Again

sparked a lot of interest across the science community ...

- D. Richardson, Solution of the Identity Problem for Integral Exponential Functions, Zeitschr. Math. Log. Grund. Math. 15 (1969) 333-340.
- A. Macintyre, The Laws of Exponentiation, Model Theory and Arithmetic, LNM 890 (1981) 185-197.
- A. Wilkie, On Expatiation-A Solution to Tarski's High School Algebra Problem (1981), Connections b. Model Theory \& Algebraic \& Analytic Geometry (2000) 107-129.
- C. W. Henson \& L. A. Rubel, Some Applications of Nevanlinna Theory to Mathematical Logic: Identities of Exponential Functions, Trans. AMS 282 (1984) 1-32.
- R. Gurevič, Equational Theory of Positive Numbers with Exponentiation, Proc. AMS 94 (1985) 135-141.
- R. Gurevič, Equational Theory of Positive Numbers with Exponentiation Is Not Finitely Axiomatizable, Ann. Pure App. Logic 49 (1990) 1-30.
- S. N. Burris \& S. Lee, Small Models of the High School Identities, J. Alg. Comput. 2 (1992) 139-178.
- S. N. Burris \& S. Lee, Tarski's High School Identities, The American Mathematical Monthly 100 (1993) 231-236.

A High-School Axiomatization Problem - Again

- S. N. Burris \& K. A. Yeats, The Saga of the High School Identities, Algebra Universalis 52 (2005) 325-342.
- R. Dı Cosmo \& T. Dufour, The Equational Theory of $\langle\mathbb{N}, 0,1,+, \times, \uparrow\rangle$ Is Decidable, but Not Finitely Axiomatisable, LPAR 2004, LNAI 3452 (2005) 240-256.

So, the set of all the equalities of $\langle\mathbb{N}, 1,+, \cdot, \exp \rangle$ is decidable, whence axiomatizable (but we know of no nice axiomatization.) It is proved that no finite set can axiomatize it.

The equalities of $\langle\mathbb{N}, \cdot, \exp \rangle$ is already axiomatized by

- $x \cdot(y \cdot z)=(x \cdot y) \cdot z \quad \bullet(x \cdot y)^{z}=\left(x^{z}\right) \cdot\left(y^{z}\right)$
- $x \cdot y=y \cdot x$
- $x^{y \cdot z}=\left(x^{y}\right)^{z}$

Thank 2ou！

Thanks to

The Participants ．．．．．．．．．．．．．．．．．For Listening．．．米䊏米 and 溇䊏米

The Organizers ．．．．For Taking Care of Everything．．．

SAEEDSALEHI．ir

