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Axiom / Axiomatic / Axiomaitzation

Merriam-Webster: www.merriam-webster.com

AXIOM:
a statement accepted as true as the basis for argument or inference
Postulate

AXIOMATIC:
based on or involving an axiom or system of axioms

AXIOMATIZATION:
the act or process of reducing to a system of axioms

Saeed Salehi http://SaeedSalehi.ir/
uΣαεε∂

Σα`ε}ı �ir

Axiomatic Mathematics: Issues of Decidability in Logic Tenth International Tbilisi Summer School in Logic and Language



Axiomatic Mathematics: Issues of Decidability in Logic Tenth International Tbilisi Summer School in Logic and Language

Axiom / Axiomatic / Axiomaitze

Oxford: www.oxforddictionaries.com

AXIOM:
a statement or proposition which is regarded as being established,
accepted, or self-evidently true the axiom that sport builds character
Math: a statement or proposition on which an abstractly defined structure is based

Origin: late 15th century: from French axiome or Latin axioma, from Greek
axio-ma ’what is thought fitting’, from axios ’worthy’

AXIOMATIC: self-evident or unquestionable
it is axiomatic that good athletes have a strong mental attitude

Math: relating to or containing axioms

AXIOMATIZE: express (a theory) as a set of axioms
the attempts that are made to axiomatize linguistics
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Some High-School Axiomatizations

L. HENKIN, The Logic of Equality, The American Mathematical Monthly 84 (1977) 597–612.

Every equality of 〈N,+, 0〉 can be derived from the axioms:

Associativity: x+ (y + z) = (x+ y) + z
Commutativity: x+ y = y + x
Identity Element: x+ 0 = x

The same holds for 〈Z,+, 0〉, 〈N>0, ·, 1〉, 〈N, ·, 1〉, 〈Z, ·, 1〉, ...

For example the following (true) identity/equality can be derived
(EXERCISES): x+ y = y + (0 + x)
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Some High-School Axiomatizations

L. HENKIN, The Logic of Equality, The American Mathematical Monthly 84 (1977) 597–612.

Equalities of 〈N,+, ·, 0, 1〉 and 〈Z,+, ·, 0, 1〉 are axiomatized by

Associativity: x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z
Commutativity: x+ y = y + x x · y = y · x
Identity Element: x+ 0 = x x · 1 = x
Distributivity & Zero: x · (y + z) = (x · y) + (x · z) x · 0 = 0

Can derive all the identities such as (EXERCISES):
(x+ y)2 = x2 + 2xy + y2 (x+ y)n =

∑n
i=0

(
n
i

)
xnyn−i

(x+ y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz
(x+ a) · (x+ b) = x2 + (a+ b)x+ ab
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Some High-School Axiomatizations

L. HENKIN, The Logic of Equality, The American Mathematical Monthly 84 (1977) 597–612.

In Logic we even axiomatize the very way of reasoning:

[(REF) u = u]
(SYM) if u = v then v = u

(TRA) if u = v and v = w then u = w

(REP) if u = v and u′ = v′ then u+ u′ = v + v′ (u · u′ = v · v′ etc.)
(SUB) if u = v then u[x←↩ t] = v[x←↩ t]

w[x←↩ t] results from w by substituting every occurrence of x with t

This actually axiomatizes the logic of equality.
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Algebraic Axiomatizing “The Laws of Thought”

Language: ⊥,> ¬ ∧,∨ ≡

Idempotence: p ∧ p ≡ p p ∨ p ≡ p
Commutativity: p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p
Associativity: p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Distributivity: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Distributivity: p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Tautology: p ∧ > ≡ p p ∨ > ≡ >
Contradiction: p ∧ ⊥ ≡ ⊥ p ∨ ⊥ ≡ p
Negation: p ∧ (¬p) ≡ ⊥ p ∨ (¬p) ≡ >
Negation: ¬(¬p) ≡ p
DeMorgan: ¬(p ∧ q) ≡ (¬p) ∨ (¬q) ¬(p ∨ q) ≡ (¬p) ∧ (¬q)
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Algebraic Axiomatizing “The Laws of Thought”

All the other laws can be proved by the above axioms; such as:
Absorption:

p ∧ (p ∨ q) ≡C (p ∨ ⊥) ∧ (p ∨ q) ≡D p ∨ (⊥ ∧ q) ≡C p ∨ ⊥ ≡C p
Absorption:

p ∨ (p ∧ q) ≡T (p ∧ >) ∨ (p ∧ q) ≡D p ∧ (> ∨ q) ≡T p ∧ > ≡T p

(EXERCISES):
¬
(
(p ∨ ¬q) ∧ (¬p ∨ q)

)
≡ (p ∨ q) ∧ (¬p ∨ ¬q)(

p ∧ ¬
[
(q ∧ ¬r) ∨ (¬q ∧ r)

])∨(
¬p ∧

[
(q ∧ ¬r) ∨ (¬q ∧ r)

])
≡

≡
([

(p ∧ ¬q) ∨ (¬p ∧ q)
]
∧ ¬r

)∨(
¬
[
(p ∧ ¬q) ∨ (¬p ∧ q)

]
∧ r
)
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Propositional Logic (LAWS)

α→ α
(α ∧ β)→ α α→ (α ∨ β)
(α ∧ β)→ β β → (α ∨ β)

(α→ β)→ (¬α ∨ β) (¬α ∨ β)→ (α→ β)
(∗) α→ (β → α) (¬β)→ (β → α)

(∗) [α→ (β → γ)]→ [(α→ β)→ (α→ γ)]
(∗) (¬β → ¬α)→ (α→ β) (α→ β)→ (¬β → ¬α)

Propositional Logic (RULES)

(∗) α, α→ β

β

α→ β, β → γ

α→ γ
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Axiomatizing Propositional Logic

AX1 α→ (β → α)

AX2 [α→ (β → γ)]→ [(α→ β)→ (α→ γ)]

AX3 (¬β → ¬α)→ (α→ β)

RUL
α, α→ β

β

Some Theorems (EXERCISES):
α→ α
(¬β)→ (β → α)
(α→ β)→ (¬β → ¬α)

[(α→ β)→ α]→ α
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Axiomatizing Predicate Logic

Gödel’s Completeness Theorem (1929)

From An Axiomatization of (Logically) Valid Formulas:

• α→ (β → α) • (¬β → ¬α)→ (α→ β)
• [α→ (β → γ)]→ [(α→ β)→ (α→ γ)]
• ∀xϕ(x)→ ϕ(t) • ϕ→ ∀xϕ [x is not free in ϕ]
• ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)

With the Modus Ponens Rule: • ϕ, ϕ→ ψ

ψ

All the Universally Valid Formulas CAN BE GENERATED.
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Axiomatizing Predicate Logic

Some Theorems (EXERCISES):

• ∀x(ϕ→ ψ)←→ [ϕ→ ∀xψ] [x is not free in ϕ]
• [¬∀xϕ(x)→ ∀xψ(x)] −→ ∀x[¬ϕ(x)→ ψ(x)]

• ¬∀x¬[∀yθ(x, y)] −→ ∀y¬∀x¬θ(x, y)

• ∃y∀x
(
ϕ(y)→ ϕ(x)

)
http://en.wikipedia.org/wiki/Drinker−paradox

• ∃y∀x
(
ϕ(x)→ ϕ(y)

)
• ¬∃y∀x

[
θ(x, y)←→ ¬θ(x, x)

]
(Russell’s) Barber Paradox

• ∀x¬[ϕ←→ ¬ϕ] Liar Paradox

• ∀x∃y∀z
(
θ(x, y) ∧ [θ(y, z)→ θ(x, z)]

)
−→

¬∀u
(
ϕ(u)↔ ∀v[θ(u, v)→ ¬ϕ(v)]

)
Yablo’s Paradox
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First–Order Logic (SEMANTICS)

Fix a domain: a set to whose members the variables refer.
We will use the sets of numbers:

Natural (N), Integer (Z), Rational (Q), Real (R), Complex (C).

Tarski’s Definition of Truth defines satisfiability of a formula in a
structure (by induction).

Examples:
� N 6|= ∀x∃y(x+ y = 0) but Z |= ∀x∃y(x+ y = 0).
� Z 6|= ∀x∃y(x 6=0→ [x·y=1]) but Q |= ∀x∃y(x 6=0→ [x·y=1]).
� Q 6|= ∀x∃y(06x→ [y ·y=x]) but R |= ∀x∃y(06x→ [y ·y=x]).
� R 6|= ∀x∃y(y ·y+x=0) but C |= ∀x∃y(y ·y+x=0).
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Axiomatizing Mathematical Structures

The Theory of Order (<)

Cantor: Every Countable Dense Linear Order Without Endpoints
Is Isomorphic to 〈Q, <〉.

Thus, the theory of “dense linear orders without endpoints”
fully axiomatizes the theory of 〈Q, <〉:

• ∀x, y(x < y → y 6< x) Anti-Symmetric
• ∀x, y, z(x < y < z → x < z) Transitive
• ∀x, y(x < y ∨ x = y ∨ y < x) Linear
• ∀x, y(x < y → ∃z[x < z < y]) Dense
• ∀x∃y(x < y) No Last Point
• ∀x∃y(y < x) No Least Point
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Axiomatizing Mathematical Structures

The Theory of Order (<)

Also 〈R, <〉 is a model of this theory.
So, the theories of 〈Q, <〉 and 〈R, <〉 can be axiomatized as
“dense linear order without endpoints”.

Though the First-Order Theories of 〈Q, <〉 and 〈R, <〉 are
equal, these structures are very different: 〈R, <〉 is complete
(every bounded subset has a supremum) while 〈Q, <〉 is not.
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Axiomatizing Mathematical Structures

The Theory of Order (<)

The Theory of Order in Z is Characterized as:
Linear Discrete Order Without EndPoints

in the language {S,<} where S(x) = x+ 1 is the successor
function, definable by < : S(x) = z ⇐⇒ ∀y(x < y ↔ z 6 y).

• ∀x, y(x < y → y 6< x) Anti-Symmetric
• ∀x, y, z(x < y < z → x < z) Transitive
• ∀x, y(x < y ∨ x = y ∨ y < x) Linear
• ∀x, y(x < y ↔ S(x) < y ∨ S(x) = y) Discrete Order
• ∀x∃y(x = S(y)) Predecessor

These Completely Axiomatize the Whole Theory of 〈Z, S,<〉.
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Axiomatizing Mathematical Structures

The Theory of Order (<)

Zero (0) and Successor (S) are definable in 〈N, <〉:
u = 0 ⇐⇒ ∀x(¬x < 0) and v = S(u) ⇐⇒ ∀x(x < v ↔ x 6 u)

H. B. ENDERTON, A Mathematical Introduction to Logic, 2nd ed. Academic Press 2001.

The theory of 〈N, 0, S,<〉 can be completely axiomatized by
• ∀x, y(x < y → y 6< x) Anti-Symmetric
• ∀x, y, z(x < y < z → x < z) Transitive
• ∀x, y(x < y ∨ x = y ∨ y < x) Linear
• ∀x, y(x < y ↔ S(x) < y ∨ S(x) = y) Discrete Order
• ∀x(x 6= 0→ ∃y[x = S(y)]) Successor
• ∀x(x 6< 0) Least Point
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Axiomatizing Mathematical Structures
The Theory of Addition (+)

The structures 〈Q,+〉, 〈R,+〉 and 〈C,+〉 have, surprisingly, the
same theory: Non-Trivial Torsion-Free Divisible Abelian Groups:

• ∀x, y, z
(
x+ (y + z) = (x+ y) + z

)
Associativity

• ∀x, y
(
x+ y = y + x

)
Commutativity

• ∀x
(
x+ 0 = x

)
Additive Identity

• ∀x
(
x+ (−x) = 0

)
Additive Inverse

• ∀x∃y
(
y + · · ·+ y︸ ︷︷ ︸
n−times

= x
)
, n = 2, 3, · · · Divisibility

• ∀x
(
x+ · · ·+ x︸ ︷︷ ︸
n−times

= 0 −→ x = 0
)
, n = 2, 3, · · · Torsion-Freeness

• ∃x
(
x 6= 0

)
Non-Triviality
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Definability
The Theory of Addition (+)

Zero (0) and the minus function (−) are definable
in 〈Q,+〉, 〈R,+〉 and 〈C,+〉 (and also in 〈Z,+〉):
u = 0 ⇐⇒ u+ u = u
u = −v ⇐⇒ u+ v = 0

(
⇐⇒ (u+ v) + (u+ v) = u+ v

)
Let us note that the above definition of 0 works also in 〈N,+〉.

Moreover, order (<) is definable in 〈N,+〉
(but not in 〈Z,Q,R,C,+〉):

u < v ⇐⇒ ∃x(x+ x 6= x ∧ x+ u = v)
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Axiomatizing Mathematical Structures
The Theory of Addition (+)

The Theory of 〈Z,+〉 is Axiomatizable as
Non-Trivial Torsion-Free Abelian Group with Division Algorithm.
Axioms of 〈Z, 0, 1,−,+〉:

• ∀x, y, z
(
x+ (y + z) = (x+ y) + z

)
• ∀x

(
x+ 0 = x

)
• ∀x, y

(
x+ y = y + x

)
• ∀x

(
x+ (−x) = 0

)
• 0 6= 1 • ∀x

(
n � x = 0→ x = 0)

• ∀x∃y
(∨

i<n(x = n � y + i)
)

n � α = α+ · · ·+ α︸ ︷︷ ︸
n−times

G. S. BOOLOS, et. al., Computability and Logic, 5th ed. Cambridge University Press 2007.

C. SMORYŃSKI, Logical Number Theory I: an introduction, Springer 1991.
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Axiomatizing Mathematical Structures
The Theory of Addition (+)

The Theory of 〈N,+〉 is Axiomatizable as Non-Trivial
Discretely Ordered Abelian Monoid with Division Algorithm.

Axioms of 〈N, 0, 1,+, <〉:

• ∀x, y, z
(
x+ (y + z) = (x+ y) + z

)
• ∀x

(
x+ 0 = x

)
• ∀x, y, z

(
x < y → x+ z < y + z

)
• ∀x, y

(
x+ y = y + x

)
• ∀x, y, z

(
x < y < z → x < z

)
• ∀x, y

(
x 6< x

)
• ∀x, y

(
x < y ∨ x = y ∨ y < x

)
• ∀x (0 6 x)

• ∀x, y
(
x < y ←→ x+ 1 6 y

)
• ∀x

(
n � x = 0→ x = 0)

• ∀x∃y
(∨

i<n(x = n � y + i)
)

n � α = α+ · · ·+ α︸ ︷︷ ︸
n−times
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Axiomatizing Mathematical Structures

The Theory of Addition and Order (+, <)

The structure 〈Z, 0, 1,−,+, <〉 can be axiomatized as
Non-Trivial Discretely Ordered Abelian Group with Division Algorithm:

• ∀x, y, z
(
x+ (y + z) = (x+ y) + z

)
• ∀x, y

(
x+ y = y + x

)
• ∀x

(
x+ 0 = x

)
• ∀x

(
x+ (−x) = 0

)
• ∀x, y

(
x < y → y 6< x

)
• ∀x, y, z

(
x < y < z → x < z

)
• ∀x, y

(
x < y ∨ x = y ∨ y < x

)
• ∀x, y

(
x < y ←→ x+ 1 < y ∨ x+ 1 = y

)
• ∀x, y, z

(
x < y → x+ z < y + z

)
• ∀x∃y

(∨
i<n(x = n � y + i)

)
, n = 2, 3, · · ·
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Axiomatizing Mathematical Structures

The Theory of Addition and Order (+, <)

〈Q, 0,−,+, <〉 and 〈R, 0,−,+, <〉 have, again surprisingly, the
same theory of Non-Trivial Ordered Divisible Abelian Groups:
• ∀x, y, z

(
x+ (y + z) = (x+ y) + z

)
• ∀x, y

(
x+ y = y + x

)
• ∀x

(
x+ 0 = x

)
• ∀x

(
x+ (−x) = 0

)
• ∀x, y

(
x < y → y 6< x

)
• ∀x, y, z

(
x < y < z → x < z

)
• ∀x, y

(
x < y ∨ x = y ∨ y < x

)
• ∀x, y, z

(
x < y → x+ z < y + z

)
• ∀x∃y

(
n � y = x

)
, n = 2, 3, · · ·

• ∃x
(
x 6= 0

)
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So Far ...
{<}, {+} and {+, <}

N Z Q R C
{<} 〈N, <〉 〈Z, <〉 〈Q, <〉 〈R, <〉 –
{+} 〈N,+〉 〈Z,+〉 〈Q,+〉 〈R,+〉 〈C,+〉
{+, <} 〈N,+, <〉 〈Z,+, <〉 〈Q,+, <〉 〈R,+, <〉 –

∆1 = Axiomatizable (and so Decidable)

N Z Q R C
{<} ∆1 ∆1 ∆1 ∆1 –
{+} ∆1 ∆1 ∆1 ∆1 ∆1

{+, <} ∆1 ∆1 ∆1 ∆1 –
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Axiomatizing Mathematical Structures

Theory of Addition and Multiplication (+, ·) the case of 〈C,+, ·〉

Tarski: The (First-Order Logical) Theory of the Structure
〈C, 0, 1,−,−1 ,+, ·〉 is Decidable and CAN BE AXIOMATIZED AS

an Algebraically Closed Field.

• x+ (y + z) = (x+ y) + z • x · (y · z) = (x · y) · z
• x+ y = y + x • x · y = y · x
• x+ 0 = x • x · 1 = x
• x+ (−x) = 0 • x 6= 0→ x · x−1 = 1
• x · (y + z) = (x · y) + (x · z) • 0 6= 1

• ∃x
(
xn + a1x

n−1 + a2x
n−2 + · · ·+ an−1x+ an = 0

)
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Axiomatizing Mathematical Structures

Theory of Addition and Multiplication (+, ·) the case of 〈R,+, ·〉

Tarski: The (First-Order Logical) Theory of the Structure
〈R, 0, 1,−,−1 ,+, ·, <〉 is Decidable and CAN BE AXIOMATIZED

AS a Real Closed (Ordered) Field.

• x+ (y + z) = (x+ y) + z • x · (y · z) = (x · y) · z
• x+ y = y + x • x · y = y · x
• x+ 0 = x • x · 1 = x
• x+ (−x) = 0 • x 6= 0→ x · x−1 = 1
• x · (y + z) = (x · y) + (x · z) • 0 6= 1
• x < y < z → x < z • x < y ∨ x = y ∨ y < x
• x < y → x+ z < y + z • x 6< x
• x < y ∧ 0 < z → x · z < y · z • 0 < z → ∃y(z = y · y)

• ∃x
(
x2n+1 + a1x

2n + · · ·+ a2nx+ a2n+1 = 0
)
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Axiomatizing Mathematical Structures

N Z Q R C
{·} 〈N, ·〉 〈Z, ·〉 〈Q, ·〉 〈R, ·〉 〈C, ·〉
{·, <} 〈N, ·, <〉 〈Z, ·, <〉 〈Q, ·, <〉 〈R, ·, <〉 –
{+, ·} 〈N,+, ·〉 〈Z,+, ·〉 〈Q,+, ·〉 〈R,+, ·〉 〈C,+, ·〉
{+,·,<} 〈N,+,·,<〉 〈Z,+,·,<〉 〈Q,+,·,<〉 〈R,+,·,<〉 –

E 〈N, exp〉 – – 〈R,+,·, ex〉 〈C,+,·, ex〉

In 〈N, exp〉 we have
u · v = w ⇐⇒ ∀x

[
exp(x,w)=exp

(
exp(x, u), v

)]
xw = (xu)v

u+ v = w ⇐⇒ ∀x
[

exp(x,w)=exp(x, u)·exp(x, v)
]

xw=xu ·xv
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Axiomatizability of Mathematical Structures

We study the Axiomatizability Problem for the Following
Structures:

N Z Q R C
{<} 〈N, <〉 〈Z, <〉 〈Q, <〉 〈R, <〉 –
{+} 〈N,+〉 〈Z,+〉 〈Q,+〉 〈R,+〉 〈C,+〉
{·} 〈N, ·〉 〈Z, ·〉 〈Q, ·〉 〈R, ·〉 〈C, ·〉
{+, <} 〈N,+, <〉 〈Z,+, <〉 〈Q,+, <〉 〈R,+, <〉 –
{+, ·} 〈N,+, ·〉 〈Z,+, ·〉 〈Q,+, ·〉 〈R,+, ·〉 〈C,+, ·〉
{·, <} 〈N, ·, <〉 〈Z, ·, <〉 〈Q, ·, <〉 〈R, ·, <〉 –
{+,·,<} \ \ \ \ –

E 〈N, exp〉 – – 〈R,+,·, ex〉 〈C,+,·, ex〉
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Definability of < By + and ·
Order Is Definable By Addition And Multiplication.

Why not consider {+, ·, <}?
The Order Relation < is Definable by + and · as
I in N : a 6 b ⇐⇒ ∃x (x+ a = b).
I in R : a 6 b ⇐⇒ ∃x (x · x+ a = b).
for Z Use Lagrange’s Four Square Theorem; Every Natural
(Positive) Number Can Be Written As A Sum Of Four Squares.
I in Z: a 6 b ⇐⇒ ∃α, β, γ, δ (a+ α2 + β2 + γ2 + δ2 = b).
for Q Lagrange’s Theorem Holds Too: 06r=m/n=(mn)/n2=
(α2 + β2 + γ2 + δ2)/n2=(α/n)2 + (β/n)2 + (γ/n)2 + (δ/n)2.
I in Q: a 6 b ⇐⇒ ∃α, β, γ, δ (a+ α2 + β2 + γ2 + δ2 = b).

a < b ⇐⇒ a 6 b ∧ a 6= b a 6 b ⇐⇒ a < b ∨ a = b
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The Theory of Multiplication
Mainly Missing ...

Skolem Arithmetic 〈N, ·〉:
PATRICK CEGIELSKI, Théorie Élémentaire de la Multiplication des Entiers Naturels,
in C. Berline, K. McAloon, J.-P. Ressayre (eds.) Model Theory and Arithmetics, LNM 890,
Springer 1981, pp. 44–89.

〈Z, ·〉, 〈Q, ·〉, 〈R, ·〉 and 〈C, ·〉?
Missing in the literature. Maybe because:
– almost the same proofs can show the decidability of 〈Z, ·〉 (?)
– the decidability of 〈R, ·〉 and 〈C, ·〉 follows from the decidability
of 〈R,+, ·〉 and 〈C,+, ·〉 (Tarski’s Theorems)

but an axiomatization for their theories · · · still missing!
– and 〈Q, ·〉 ? · · · again missing!
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The Theory of Multiplication and Order

I The Theory of 〈R, ·, <〉 Is Decidable by Tarski’s Result (1931).
Still No Axiomatization In the Literature · · ·

I The Theory of 〈N, ·, <〉 Is Equivalent to that of 〈N,+, ·〉, and The
Theory of 〈Z, ·, <〉 Is Equivalent to that of 〈Z,+, ·〉: by Robinson’s
Result (1949) + is Definable in 〈N,Z, ·, <〉 by Tarski’s Identity:
x+ y = z ⇐⇒

[
S(x·y) = S(x)·S(y) ∧ z ·S(z) = z

]∨[
S(x·z)·S(y ·z) = S(z ·z ·S(x·y)) ∧ z ·S(z) 6= z

]
.

Recall S is definable by < in N (and in Z)

I and 〈Q, ·, <〉 ? · · · still missing!
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Axiomatizability of Mathematical Structures
State of the Art — so far ...

N Z Q R C
{<} ∆1 ∆1 ∆1 ∆1 –
{+} ∆1 ∆1 ∆1 ∆1 ∆1

{·} ∆1 ∆1 ? ∆?
1 ∆?

1

{+, <} ∆1 ∆1 ∆1 ∆1 –
{+, ·} � � � ∆1 ∆1

{·, <} � � ? ∆?
1 –

E � – – ¿? �
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Definability
and Interpretability

• By Gödel’s result 〈N,+, ·〉 can define exp.
• 〈N,+, ·〉 can interpret 〈Z,+, ·〉: Z=N∪{x | ∃y∈N(y+x=0)},
• and also 〈Q,+, ·〉: Q = {x | ∃y∈Z, z∈N(z 6= 0∧z ·x=y)}.
• 〈Z,+, ·〉 can define N (={

∑4
i=1 x

2
i | x1, x2, x3, x4∈Z}.)

• So can 〈Q,+, ·〉 (Robinson’s Theorem 1949).
• 〈C,+,·, ex〉 defines Z (={x | ∀y, z[y2+1=0∧ey·z=1→ ex·y·z=1]})

and also N and Q.

Problem (Open)

Can 〈C,+, ·, ex〉 define R ?

Saeed Salehi http://SaeedSalehi.ir/
uΣαεε∂

Σα`ε}ı �ir

Axiomatic Mathematics: Issues of Decidability in Logic Tenth International Tbilisi Summer School in Logic and Language



Axiomatic Mathematics: Issues of Decidability in Logic Tenth International Tbilisi Summer School in Logic and Language

Axiomatizing Mathematical Structures
The Theory of Multiplication (·)

An Axiomatization for The Multiplicative Theory of C:
Let ωk = cos(2π/k) + i sin(2π/k) be a k−th root of the unit;
so 1, ωk, (ωk)

2, · · · , (ωk)k−1 are all the k−th roots of the unit.

The Structure 〈C, 0, ω1, ω2, ω3, ω4, . . . ,
−1 , ·〉 Is Axiomatized By:

• ∀x, y, z
(
x · (y · z) = (x · y) · z

)
• ∀x

(
x · 1 = x

)
• ∀x

(
x 6= 0→ x · x−1 = 1

)
• ∀x, y

(
x · y = y · x

)
• ∀x

(
xn = 1←→

∨
i<n x = (ωn)i

)
• ∀x

(
x · 0 = 0 6= 1

)
•
∧
i 6=j<n(ωn)i 6= (ωn)j
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Axiomatizing Mathematical Structures
The Theory of Multiplication (·)

The Real Numbers R:

Indeed, 〈R>0, 1,−1 , ·〉 is a
non-trivial torsion-free divisible abelian group:

• ∀x, y, z
(
x · (y · z) = (x · y) · z

)
• ∀x

(
x · 1 = x

)
• ∀x

(
x · x−1 = 1

)
• ∀x, y

(
x · y = y · x

)
• ∀x

(
xn = 1→ x = 1

)
• ∀x∃y

(
x = yn

)
• ∃x

(
x 6= 1

)
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Axiomatizing Mathematical Structures
The Theory of Multiplication (·)

The Real Numbers R:
The Structure 〈R,−1, 0, 1,−1 , ·,P〉

[
P(x) ≡ “x > 0”

]
Can Be Axiomatized By:

• ∀x, y, z
(
x · (y · z) = (x · y) · z

)
• ∀x

(
x · 1 = x

)
• ∀x

(
x 6= 0→ x · x−1 = 1

)
• ∀x, y

(
x · y = y · x

)
• ∀x

(
P(x)←→ ∃y [y 6= 0 ∧ x = y2n]

)
• ∀x∃y

(
x = y2n+1

)
• ∀x

(
x2n = 1←→ x = 1 ∨ x = −1

)
• ∀x

(
x · 0 = 0 6= 1

)
• ∀x

(
x2n+1 = 1→ x = 1

)
•¬P(0)∧P(1)∧¬P(−1)

• ∀x
(
x 6= 0→ [¬P(x)↔P(−x)]

)
−x = (−1) · x

• ∀x, y
(
P(x · y)←→ [P(x) ∧P(y)] ∨ [P(−x) ∧P(−y)]

)
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Axiomatizing Mathematical Structures
The Theory of Multiplication (·)

The Rational Numbers Q:

The Theory of 〈Q>0, 1,−1 , ·〉 Can Be Axiomatized By:

• ∀x, y, z
(
x · (y · z) = (x · y) · z

)
• ∀x, y

(
x · y = y · x

)
• ∀x

(
x · 1 = x

)
• ∀x

(
x · x−1 = 1

)
• ∀x

(
xn = 1 −→ x = 1

)
• ∀y1, . . . , yk∃x∀z

∧∧k
i=1(x

n · yi 6= zmi) m1, . . . ,mk - n
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Axiomatizing Mathematical Structures
The Theory of Multiplication (·)

The Rational Numbers Q:

The structure 〈Q>0, 0, 1,−1 , ·〉 can be axiomatized by
axiomatizing 〈Q>0, 1,−1 , ·〉 plus ∀x(x · 0 = 0 6= 1).

The structure 〈Q, 0, 1,−1 , ·,P〉 can be axiomatized by
axiomatizing 〈Q>0, 1,−1 , ·〉 plus ∀x(x · 0 = 0 6= 1), and
• (−1) · (−1) = 1
•¬P(0)∧P(1)∧¬P(−1)
• ∀x

(
x 6= 0 −→ [¬P(x)↔P(−x)]

)
−x = (−1) · x

• ∀x, y
(
P(x · y)←→ [P(x) ∧P(y)] ∨ [P(−x) ∧P(−y)]

)
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Axiomatizing Mathematical Structures

The Theory of Multiplication and Order (·, <)

The Rational Numbers Q:

〈Q>0, 1,−1 , ·, <〉 Can Be Axiomatized By:
• ∀x, y, z

(
x · (y · z) = (x · y) · z

)
• ∀x, y

(
x · y = y · x

)
• ∀x

(
x · 1 = x ∧ x · x−1 = 1

)
• ∀x, y

(
x < y → y 6< x

)
• ∀x, y, z

(
x < y < z → x < z

)
• ∀x, y

(
x < y ∨ x = y ∨ y < x

)
• ∀x, y, z

(
x < y → x · z < y · z

)
• ∀y1, . . . , yk∃x∀z

∧∧k
i=1(x

n · yi 6= zmi) m1, . . . ,mk - n
• ∀x, y

(
x < y → ∃z[xn < z < yn]

)
n = 1, 2, 3, · · ·
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Axiomatizing Mathematical Structures

The Theory of Multiplication and Order (·, <)

The Rational Numbers Q: Axiomatizing 〈Q,−1, 0, 1,−1 , ·, <〉:
• ∀x, y, z

(
x · (y · z) = (x · y) · z

)
• ∀x

(
x · 1 = x

)
• ∀x

(
x 6= 0 −→ x · x−1 = 1

)
• ∀x, y

(
x · y = y · x

)
• ∀x

(
x2n = 1←→ x = 1 ∨ x = −1

)
• ∀x

(
x · 0 = 0 6= 1

)
• ∀x

(
x2n+1 = 1 −→ x = 1

)
• − 1 < 0 < 1

• ∀x
(
x 6= 0 −→ [x ≮ 0↔ 0 <−x]

)
−x = (−1) · x

• ∀x, y
(
0 < x · y)←→ [0 < x ∧ 0 < y] ∨ [0 < −x ∧ 0 < −y]

)
• ∀x, y

(
x < y → y 6< x

)
• ∀x, y, z

(
0 < z ∧ x < y → x · z < y · z

)
• ∀x, y

(
x < y ∨ x = y ∨ y < x

)
• ∀x, y, z

(
x < y < z → x < z

)
• ∀y1, . . . , yk∃x∀z

∧∧k
i=1(x

n · yi 6= zmi) m1, . . . ,mk - n
• ∀x, y

(
x < y → ∃z[x2n+1 < z < y2n+1]

)
n = 1, 2, 3, · · ·

• ∀x, y
(
0 < x < y → ∃z[x2n < z < y2n]

)
n = 1, 2, 3, · · ·
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Axiomatizing Mathematical Structures

The Theory of Multiplication and Order (·, <)

The Real Numbers R:

〈R>0, 1,−1 , ·, <〉 is a Non-Trivial Ordered Divisible Abelian Group.
• ∀x, y, z

(
x · (y · z) = (x · y) · z

)
• ∀x, y

(
x · y = y · x

)
• ∀x

(
x · 1 = x

)
• ∀x

(
x · x−1 = 1

)
• ∀x, y

(
x < y → y 6< x

)
• ∀x, y, z

(
x < y < z → x < z

)
• ∀x, y

(
x < y ∨ x = y ∨ y < x

)
• ∀x, y, z

(
x < y → x · z < y · z

)
• ∀x∃y

(
yn = x

)
, n = 2, 3, · · ·

• ∃x
(
x 6= 1

)
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Axiomatizing Mathematical Structures

The Theory of Multiplication and Order (·, <)

The Real Numbers R: Axiomatizing 〈R,−1, 0, 1,−1 , ·, <〉:
• ∀x, y, z

(
x · (y · z) = (x · y) · z

)
• ∀x

(
x · 1 = x

)
• ∀x

(
x 6= 0 −→ x · x−1 = 1

)
• ∀x, y

(
x · y = y · x

)
• ∀x

(
0 < x←→ ∃y [y 6= 0 ∧ x = y2n]

)
• ∀x∃y

(
x = y2n+1

)
• ∀x

(
x2n = 1←→ x = 1 ∨ x = −1

)
• ∀x

(
x · 0 = 0 6= 1

)
• ∀x

(
x2n+1 = 1→ x = 1

)
• − 1 < 0 < 1

• ∀x
(
x 6= 0→ [x ≮ 0↔ 0 < −x]

)
−x = (−1) · x

• ∀x, y
(
0 < x · y)←→ [0 < x ∧ 0 < y] ∨ [0 < −x ∧ 0 < −y]

)
• ∀x, y

(
x < y −→ y 6< x

)
• ∀x, y, z

(
x < y < z −→ x < z

)
• ∀x, y

(
x < y ∨ x = y ∨ y < x

)
• ∀x, y, z

(
0 < z ∧ x < y −→ x · z < y · z

)
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Axiomatizability of Mathematical Structures
State of the Art — so far ...

N Z Q R C
{<} ∆1 ∆1 ∆1 ∆1 –
{+} ∆1 ∆1 ∆1 ∆1 ∆1

{·} ∆1 ∆1 ∆1 ∆1 ∆1

{+, <} ∆1 ∆1 ∆1 ∆1 –
{+, ·} � � � ∆1 ∆1

{·, <} � � ∆1 ∆1 –
E � – – ¿? �
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Axiomatizability of Mathematical Structures
Addition and Multiplication — Separately and Together

Axiomatizability of 〈N,+〉 (called Presburger Arithmetic) and
〈Z,+〉 was proved by Presburger in 1929 (& Skolem 1930).

Axiomatizability of the Theories 〈N, ·〉 (called Skolem
Arithmetic) and 〈Z, ·〉 was announced by Skolem in 1930.

So, an axiomatization was expected for 〈N,+, ·〉...

(First–Order) Induction Principle (for a predicate formula ϕ)
Indϕ : ϕ(0) ∧ ∀x[ϕ(x)→ ϕ(Sx)] −→ ∀xϕ(x)
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Axiomatizability of Mathematical Structures
Addition and Multiplication — Separately and Together

An Axiomatization for Presburger Arithmetic 〈N, 0, 1,+〉:
•x+ 1 6= 0 •x+ 1 = y + 1→ x = y
•x+ 0 = x •x+ (y + 1) = (x+ y) + 1

•ϕ(0) ∧ ∀x[ϕ(x)→ ϕ(x+ 1)] −→ ∀xϕ(x) ϕ∈Formulas(0, 1,+).

So, a candid axiomatization for 〈N, 0, 1,+, ·〉 is
A Set of Basic Axioms on 0, 1,+, ·, < Plus
Induction Scheme for all ϕ∈Formulas(0, 1,+, ·, <).
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Axiomatizability of Mathematical Structures

Addition and Multiplication 〈N, 0, 1,+, ·〉

Peano’s Axiomatic System (Peano’s Arithmetic—PA)

• x+ 1 6= 0

• x+ 1 = y + 1 −→ x = y

• x+ 0 = x

• x+ (y + 1) = (x+ y) + 1

• x · 0 = 0

• x · (y + 1) = (x · y) + x

• x 6= 0 −→ ∃y[x = y + 1]

• ϕ(0)∧∀x[ϕ(x)→ϕ(x+1)]−→∀xϕ(x) ϕ∈Formulas(0, 1,+, ·, <)

• x 6 y ⇐⇒ ∃z(z + x = y)
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Axiomatizability of Mathematical Structures

Addition and Multiplication 〈N, 0, 1,+, ·〉

Second Candidate:
Can True Arithmetic Th(〈N, 0, 1,+, ·〉)
be regarded as an axiomatization for the theory of 〈N, 0, 1,+, ·〉?

Any Set of Sentences Can Be Regarded As A Set of Axioms
Only When

It Is A Recursively (Computably) Enumerable Set Of Sentences!

Computably Enumerable set A: an (input-free) algorithm P lists
all members of A; i.e., A = output(P).
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Axiomatizability of Mathematical Structures

Addition and Multiplication 〈N, 0, 1,+, ·〉

Gödel’s First Incompleteness Theorem:
Th(N,+, ·) is Not Computably Enumerable.

In Particular, PA $ Th(N,+, ·)!

An Immediate Corollary:
Th(Z,+, ·) is Not Computably Enumerable.

Neither is Th(Q,+, ·).
and for that matter

Th(C,+, ·, ex) is not computably enumerable, either.
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Axiomatizability of Mathematical Structures
A Rather Complete Picture

N Z Q R C
{<} ∆1 ∆1 ∆1 ∆1 –
{+} ∆1 ∆1 ∆1 ∆1 ∆1

{·} ∆1 ∆1 ∆1 ∆1 ∆1

{+, <} ∆1 ∆1 ∆1 ∆1 –
{+, ·} ∆1/\ ∆1/\ ∆1/\ ∆1 ∆1

{·, <} ∆1/\ ∆1/\ ∆1 ∆1 –
E ∆1/\ – – ¿? ∆1/\
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Exponentiation

Tarski’s Exponential Function Problem
http://en.wikipedia.org/wiki/Tarski’s−exponential−function−problem

D. MARKER, Model Theory and Exponentiation, Notices AMS 43 (1996) 753–759.
A. MACINTYRE, A. J. WILKIE, On the Decidability of the Real Exponential Field, in P. Odifreddi (ed.)
Kreiseliana: about and around Georg Kreisel, A. K. Peters (1996) pp. 441–467.

is equivalent to Weak Schanuel’s Conjecture:
there is an effective procedure that, given n > 1 and exponential polynomials in n variables

with integer coefficients f1, · · · , fn, g produces an integer η > 1 that depends on

n, f1, · · · , fn, g and such that if α ∈ Rn is a non-singular solution of the system∧
16i6n fi(x1, . . . , xn, e

x1 , . . . , exn ) then either g(α) = 0 or |g(α)| > η−1.

Problem (Open)

Can The Theory Of 〈R,+, ·, ex〉 Be Axiomatized?
(In A Computably Enumerable Way)?
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Computably Enumerable vs. Computably Decidable

Computably Enumerable set A: an (input-free) algorithm P lists
all members of A; i.e., A = output(P).
Computably Decidable set A: an algorithm P decides on any
input x whether x ∈ A (outputs YES) or x 6∈ A (outputs NO).

Post–Kleene’s Theorem: A Set is Computably Decidable if and
only if Both it and its Complement are Computably Enumerable.

If the theory of a structure Th(A) is computably enumerable
then so is its complement: Th(A){ = {¬ϕ | ϕ ∈ Th(A)},
whence it is decidable. Thus

Th(A) is decidable ⇐⇒ A is axiomatizable (in a c.e. way)
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A High-School Axiomatization Problem — Again

Tarski’s High School Algebra Problem:
http://en.wikipedia.org/wiki/Tarski’s−high−school−algebra−problem

Can Every Equality of 〈N, 1,+, ·, exp〉 Be Derived From:

• x+ (y + z) = (x+ y) + z • x · (y · z) = (x · y) · z
• x+ y = y + x • x · y = y · x
• x · 1 = x • x · (y + z) = (x · y) + (x · z)
• x1 = x • 1x = 1
• xy+z = xy · xz • (x · y)z = (xz) · (yz)
• xy·z = (xy)z ?

J. DONER & A. TARSKI, An Extended Arithmetic of Ordinal Numbers,

Fundamenta Mathematicæ 65 (1969) 95–127.
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A High-School Axiomatization Problem — Again

sparked a lot of interest across the science community ...
• D. RICHARDSON, Solution of the Identity Problem for Integral Exponential Functions,

Zeitschr. Math. Log. Grund. Math. 15 (1969) 333–340.

• A. MACINTYRE, The Laws of Exponentiation,
Model Theory and Arithmetic, LNM 890 (1981) 185–197.

• A. WILKIE, On Expatiation—A Solution to Tarski’s High School Algebra Problem (1981),
Connections b. Model Theory & Algebraic & Analytic Geometry (2000) 107–129.

• C. W. HENSON & L. A. RUBEL, Some Applications of Nevanlinna Theory to
Mathematical Logic: Identities of Exponential Functions, Trans. AMS 282 (1984) 1–32.

• R. GUREVIC̆, Equational Theory of Positive Numbers with Exponentiation,
Proc. AMS 94 (1985) 135–141.

• R. GUREVIC̆, Equational Theory of Positive Numbers with Exponentiation
Is Not Finitely Axiomatizable, Ann. Pure App. Logic 49 (1990) 1–30.

• S. N. BURRIS & S. LEE, Small Models of the High School Identities,
J. Alg. Comput. 2 (1992) 139–178.

• S. N. BURRIS & S. LEE, Tarski’s High School Identities,
The American Mathematical Monthly 100 (1993) 231–236.
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A High-School Axiomatization Problem — Again

• S. N. BURRIS & K. A. YEATS, The Saga of the High School Identities,
Algebra Universalis 52 (2005) 325–342.

• R. DI COSMO & T. DUFOUR, The Equational Theory of 〈N, 0, 1,+,×, ↑〉 Is Decidable,
but Not Finitely Axiomatisable, LPAR 2004, LNAI 3452 (2005) 240–256.

So, the set of all the equalities of 〈N, 1,+, ·, exp〉 is decidable,
whence axiomatizable (but we know of no nice axiomatization.)

It is proved that no finite set can axiomatize it.

The equalities of 〈N, ·, exp〉 is already axiomatized by
• x · (y · z) = (x · y) · z • (x · y)z = (xz) · (yz)
• x · y = y · x • xy·z = (xy)z
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Thank You!

T R Thanks to R T

The Participants . . . . . . . . . . . . . . . . . . . For Listening...

KKK and KKK

The Organizers . . . . For Taking Care of Everything...
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