Lectures on the Epsilon Calculus

Richard Zach

June 10, 2009—v. 3

Contents

Contents				
1	Syn 1.1 1.2	tax Languages	1 1 3	
•	1.3	Axioms and Proofs	5	
2	Sem 2.1	antics Semantics for $EC_{e\forall}^{ext}$	$\frac{7}{7}$	
	2.2	Soundness for $\mathrm{EC}_{\varepsilon\forall}^{\mathrm{ext}}$	9	
	2.3	Completeness for $\mathrm{EC}_{\varepsilon\forall}^{\mathrm{ext}}$	10	
	2.4	Semantics for $EC_{\varepsilon\forall}$	11	
3	The	First Epsilon-Theorem	12	
	3.1	The Case Without Identity	12	
	3.2	The Case With Identity	14	

Exercise 1. Find the mistakes in these notes.

1 Syntax

1.1 Languages

Definition 1.1. The language of the elementary calculus $L_{\rm EC}$ contains the following symbols:

- 1. Variables Var: x_0, x_1, \ldots
- 2. Function symbols Fct^n of arity n, for each $n \ge 0$: f_0^n, f_1^n, \ldots
- 3. Predicate symbols Pred^n of arity n, for each $n \ge 0$: P_0^n, P_1^n, \ldots

- 4. Identity: =
- 5. Propositional constants: \bot , \top .
- 6. Propositional operators: \neg , \land , \lor , \rightarrow , \leftrightarrow .
- 7. Punctuation: parentheses: (,); comma: ,

For any language L, we denote by L^- the language L without the identity symbol, by L_{ε} the language L plus the symbol ε , and by L_{\forall} the language Lplus the quantifiers \forall and \exists . We will usually leave out the subscript EC, and write L_{\forall} for the language of the predicate calculus, L_{ε} for the language of the ε -calculus, and $L_{\varepsilon\forall}$ for the language of the extended epsilon calculus.

Definition 1.2. The *terms* Trm and *formulas* Frm of $L_{\varepsilon \forall}$ are defined as follows.

- 1. Every variable x is a term, and x is free in it.
- 2. If t_1, \ldots, t_n are terms, then $f_i^n(t_1, \ldots, t_n)$ is a term, and x occurs free in it wherever it occurs free in t_1, \ldots, t_n .
- 3. If t_1, \ldots, t_n are terms, then $P_i^n(t_1, \ldots, t_n)$ is an (atomic) formula, and x occurs free in it wherever it occurs free in t_1, \ldots, t_n .
- 4. \perp and \top are formulas.
- 5. If A is a formula, then $\neg A$ is a formula, with the same free occurrences of variables as A.
- 6. If A and B are formulas, then $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ are formulas, with the same free occurrences of variables as A and B.
- 7. If A is a formula in which x has a free occurrence but no bound occurrence, then $\forall x A$ and $\exists x A$ are formulas, and all occurrences of x in them are bound.
- 8. If A is a formula in which x has a free occurrence but no bound occurrence, then $\varepsilon_x A$ is a term, and all occurrences of x in it are bound.

The terms $\operatorname{Trm}(L)$ and formulas $\operatorname{Frm}(L)$ of a langauge L are those terms and formulas of $L_{\varepsilon\forall}$ in the vocabulary of L.

If E is an expression (term or formula), then FV(E) is the set of variables which have free occurrences in E. E is called *closed* if $FV(E) = \emptyset$. A closed formula is also called a *sentence*.

When E, E' are expressions (terms or formulas), we write $E \equiv E'$ iff Eand E' are syntactically identical up to a renaming of bound variables. We say that a term t is *free for* x *in* E iff x does not occur free in the scope of an ε -operator ε_y or quantifier $\forall y, \exists y$ for any $y \in FV(t)$. If E is an expression and t is a term, we write E[x/t] for the result of substituting every free occurrence of x in E by t, provided t is free for x in E, and renaming bound variables in t if necessary.

If t is not free for x in E, E[x/t] is any formula E['/x]t where $E' \equiv E$ and t is free for x in E'. If $E' \equiv E[x_1/t_1] \dots [x_n/t_n]$, E' it is called an *instance of* E.

We write E(x) to indicate that $x \in FV(E)$, and E(t) for E[x/t]. It will be apparent from the context which variable x is substituted for.

Definition 1.3. A term t is a subterm of an expression (term or formula) E, if for some E'(x), $E \equiv E'(x)[x/t]$. It is a proper subterm of a term u if it is a subterm of u but $t \neq u$.

A term t is an *immediate subterm* of an expression E if t is a subterm of E, but not a subterm of a proper subterm of E.

Definition 1.4. If t is a subterm of E, i.e., for some E' we have $E \equiv E'[x/t]$, then $E\{t/u\}$ is E'[x/u].

We intend $E\{t/u\}$ to be the result of replacing every occurrence of t in Eby u. But, the "brute-force" replacement of every occurrence of t in u may not be what we have in mind here. (a) We want to replace not just every occurrence of t by u, but every occurrence of a term $t' \equiv t$. (b) t may have an occurrence in E where a variable in t is bound by a quantifier or ε outside t, and such occurrences shouldn't be replaced (they are not subterm occurrences). (c) When replacing t by u, bound variables in u might have to be renamed to avoid conflicts with the bound variables in E' and bound variables in E' might have to be renamed to avoid free variables in u being bound.

Definition 1.5 (ε -Translation). If E is an expression, define E^{ε} by:

- 1. $E^{\varepsilon} = E$ if E is a variable, a constant symbol, or \perp .
- 2. If $E = f_i^n(t_1, ..., t_n), E^{\varepsilon} = f_i^n(t_1^{\varepsilon}, ..., t_n^{\varepsilon}).$
- 3. If $E = P_i^n(t_1, \ldots, t_n), E^{\varepsilon} = P_i^n(t_1^{\varepsilon}, \ldots, t_n^{\varepsilon}).$
- 4. If $E = \neg A$, then $E^{\varepsilon} = \neg A^{\varepsilon}$.
- 5. If $E = (A \land B)$, $(A \lor B)$, $(A \to B)$, or $(A \leftrightarrow B)$, then $E^{\varepsilon} = (A^{\varepsilon} \land B^{\varepsilon})$, $(A^{\varepsilon} \lor B^{\varepsilon})$, $(A^{\varepsilon} \to B^{\varepsilon})$, or $(A^{\varepsilon} \leftrightarrow B^{\varepsilon})$, respectively.
- 6. If $E = \exists x A(x)$ or $\forall x A(x)$, then $E^{\varepsilon} = A^{\varepsilon}(\varepsilon_x A(x)^{\varepsilon})$ or $A^{\varepsilon}(\varepsilon_x \neg A(x)^{\varepsilon})$.
- 7. If $E = \varepsilon_x A(x)$, then $E^{\varepsilon} = \varepsilon_x A(x)^{\varepsilon}$.

1.2 ε -Types, Degree, and Rank

Definition 1.6. An ε -term $p \equiv \varepsilon_x B(x; x_1, \dots, x_n)$ is a type of an ε -term $\varepsilon_x A(x)$ iff

1.
$$p \equiv \varepsilon_x A(x)[x_1/t_1] \dots [x_n/t_n]$$
 for some terms t_1, \dots, t_n .

- 2. $FV(p) = \{x_1, \dots, x_n\}.$
- 3. x_1, \ldots, x_n are all immediate subterms of p.
- 4. Each x_i has exactly one occurrence in p.
- 5. The occurrence of x_i is left of the occurrence of x_j in p if i < j.

We denote the set of types of a langauge as Typ.

Proposition 1.7. The type of an epsilon term $\varepsilon_x A(x)$ is unique up to renaming of bound, and disjoint renaming of free variables, i.e., if $p = \varepsilon_x B(x; x_1, \ldots, x_n)$, $p' = \varepsilon_y B'(y; y_1, \ldots, y_m)$ are types of $\varepsilon_x A(x)$, then n = m and $p' \equiv p[x_1/y_1] \ldots [x_n/y_n]$

Proof. Exercise.

Definition 1.8. An ε -term e is *nested in* an ε -term e' if e is a proper subterm of e.

Definition 1.9. The degree deg(e) of an ε -term e is defined as follows:

- 1. $\deg(e) = 1$ iff e contains no nested ε -terms.
- 2. $\deg(e) = \max\{\deg(e_1), \ldots, \deg(e_n)\} + 1$ if e_1, \ldots, e_n are all the ε -terms nested in e.

For convenience, let $\deg(t) = 0$ if t is not an ε -term.

Definition 1.10. An ε -term e is subordinate to an ε -term $e' = \varepsilon_x A(x)$ if some $e'' \equiv e$ occurs in e' and $x \in FV(e'')$.

Note that if e is subordinate to e' it is not a subterm of e', because x is free in e and so the occurrence of e (really, of the variant e'') in e' is in the scope of ε_x . One might think that replacing e in $\varepsilon_x A(x)$ by a new variable y would result in an ε -term $\varepsilon_x A'(y)$ so that $e' \equiv \varepsilon_x A'(y)[y/e]$. But (a) $\varepsilon_x A'(y)$ is not in general a term, since it is not guaranteed that x is free in A'(y) and (b) e is not free for y in $\varepsilon_x A'(y)$.

Definition 1.11. The rank rk(e) of an ε -term e is defined as follows:

- 1. rk(e) = 1 iff e contains no subordinate ε -terms.
- 2. $\operatorname{rk}(e) = \max\{\operatorname{rk}(e_1), \ldots, \operatorname{rk}(e_n)\} + 1$ if e_1, \ldots, e_n are all the ε -terms subordinate to e.

Proposition 1.12. If p is the type of e, then rk(p) = rk(e).

Proof. Exercise.

1.3 Axioms and Proofs

Definition 1.13. The axioms of the *elementary calculus* EC are

A	for any tautology A	(Taut)
t = t	for any term t	$(=_1)$
$= u \to (A[x/t] \leftrightarrow A[x/u])$		$(=_2)$

and its only rule of inference is

t

$$\frac{A \quad A \to B}{A} \text{ MP}$$

The axioms and rules of the (intensional) ε -calculus $\mathrm{EC}_{\varepsilon}$ are those of EC plus the critical formulas

$$A(t) \to A(\varepsilon_x A(x)).$$
 (crit)

The axioms and rules of the extensional ε -calculus $\mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$ are those of $\mathrm{EC}_{\varepsilon}$ plus

$$(\forall x (A(x) \leftrightarrow B(x)))^{\varepsilon} \to \varepsilon_x A(x) = \varepsilon_x B(x) \quad \text{(ext)}$$

that is,
$$A(\varepsilon_x \neg (A(x) \leftrightarrow B(x))) \leftrightarrow B(\varepsilon_x \neg (A(x) \leftrightarrow B(x))) \to \varepsilon_x A(x) = \varepsilon_x B(x)$$

The axioms and rules of EC_{\forall} , $EC_{\varepsilon\forall}$, $EC_{\varepsilon\forall}$ are those of EC, EC_{ε} , EC_{ε}^{ext} , respectively, together with the axioms

$$A(t) \to \exists x \, A(x) \tag{Ax} \exists)$$

$$\forall x \, A(x) \to A(t) \tag{Ax} \forall$$

and the rules

ł

$$\frac{A(x) \to B}{\exists x \, A(x) \to B} R \exists \qquad \frac{B \to A(x)}{B \to \forall x \, A(x)} R \forall$$

Applications of these rules must satisfy the *eigenvariable condition*, viz., the variable x must not appear in the conclusion or anywhere below it in the proof.

Definition 1.14. If Γ is a set of formulas, a proof of A from Γ in $\mathrm{EC}_{\varepsilon\forall}^{\mathrm{ext}}$ is a sequence π of formulas $A_1, \ldots, A_n = A$ where for each $i \leq n$, one of the following holds:

- 1. $A_i \in \Gamma$.
- 2. A_i is an instance of an axiom.
- 3. A_i follows from some A_k , A_l (k, l < i) by (MP), i.e., $A_i \equiv C$, $A_k \equiv B$, and $A_l \equiv B \rightarrow C$.
- 4. A_i follows from some A_j (j < i) by (R \exists), i.e., i.e., $A_i \equiv \exists x B(x) \to C$, $A_j \equiv B(x) \to C$, and x is an eigenvariable, i.e., it satisfies $x \notin FV(A_k)$ for any $k \ge i$ (this includes k = i, so $x \notin FV(C)$).

5. A_i follows from some A_j (j < i) by $(\mathbb{R}\forall)$, i.e., i.e., $A_i \equiv C \to \forall x B(x)$, $A_j \equiv C \rightarrow B(x)$, and the eigenvariable condition is satisfied.

If π only uses the axioms and rules of EC, EC_{ε}, EC_{ε}, etc., then it is a proof of A from Γ in EC, EC_{ε}, EC^{ext}_{ε}, etc., and we write $\Gamma \vdash^{\pi} A$, $\Gamma \vdash^{\pi}_{\varepsilon} A$, $\Gamma \vdash^{\pi}_{\varepsilon ext} A$, etc.

We say that A is provable from Γ in EC, etc. ($\Gamma \vdash A$, etc.), if there is a proof of A from Γ in EC, etc.

Note that our definition of proof, because of its use of \equiv , includes a tacit rule for renaming bound variables. Note also that substitution into members of Γ is *not* permitted. However, we can simulate a provability relation in which substitution into members of Γ is allowed by considering Γ^{inst} , the set of all substitution instances of members of Γ . If Γ is a set of sentences, then $\Gamma^{\text{inst}} = \Gamma$.

Proposition 1.15. If $\pi = A_1, \ldots, A_n \equiv A$ is a proof of A from Γ and $x \notin FV(\Gamma)$ is not an eigenvariable in π , then $\pi[x/t] = A_1[x/t], \ldots, A_n[x/t]$ is a proof of A[x/t] from Γ^{inst} .

In particular, if Γ is a set of sentences and π is a proof in EC, EC_{ε}, or $\mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$, then $\pi[x/t]$ is a proof of A[x/t] from Γ in EC, $\mathrm{EC}_{\varepsilon}$, or $\mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$

Proof. Exercise.

Lemma 1.16. If π is a proof of B from $\Gamma \cup \{A\}$, then there is a proof $\pi[A]$ of $A \to B$ from Γ , provided A contains no eigenvariables of π free.

Proof. Construct $\pi[A]_0 = \emptyset$. Let $\pi_{i+1}[A] = \pi_i[A]$ plus additional formulas, depending on A_i :

- 1. If $A_i \in \Gamma$, add $A \to A$, if $A_i \equiv A$, or else add A_i , the tautology $A_i \to A_i$ $(A \to A_i)$, and $A \to A_i$. The last formula follows from the previous two by (MP).
- 2. If A_i is a tautology, add $A \to A_i$, which is also a tautology.
- 3. If A_i follows from A_k and A_l by (MP), i.e., $A_i \equiv C$, $A_k \equiv B$ and $A_l \equiv$ $B \to C$, then $\pi[A]_i$ contains $A \to B$ and $A \to (B \to C)$. Add the tautology $(A \to B) \to ((B \to C) \to (A \to C) \text{ and } A \to C$. The latter follows from the former by two applications of (MP).
- 4. If A_i follows from A_j by (R \exists), i.e., $A_i \equiv \exists x \ B(x) \to C$ and $A_j \equiv B(x) \to C$ C, then $\pi[A]_i$ contains $A \to (B(x) \to C)$. $\pi[A]_{i+1}$ is

$$\pi[A]_i$$

$$(A \to (B(x) \to C)) \to (B(x) \to (A \to C))$$
(taut)
$$B(x) \to (A \to C)$$
(MP)

$$B(x) \to (A \to C)$$
 (MP)

$$\exists x \, B(x) \to (A \to C) \tag{R} \exists)$$

$$(\exists x B(x) \to (A \to C)) \to (A \to (\exists x B(x) \to C))$$
 (taut)

$$A \to (\exists x \, B(x) \to C) \tag{MP}$$

Since $x \notin FV(A)$, the eigenvariable condition is satisfied.

5. Exercise: A_i follows by $(\mathbb{R}\forall)$.

Now take $\pi[A] = \pi[A]_i$.

Theorem 1.17 (Deduction Theorem). If $\Sigma \cup \{A\}$ is a set of sentences, $\Sigma \vdash A \rightarrow B$ iff $\Sigma \cup \{A\} \vdash B$.

Corollary 1.18. If $\Sigma \cup \{A\}$ is a set of sentences, $\Sigma \vdash A$ iff $\Sigma \cup \{\neg A\} \vdash \bot$.

Lemma 1.19 (ε -Embedding Lemma). If $\Gamma \vdash_{\varepsilon \forall}^{\pi} A$, then there is a proof π^{ε} so that $\Gamma^{\varepsilon inst} \vdash_{\varepsilon}^{\pi^{\varepsilon}} A^{\varepsilon}$

Proof. Exercise.

2 Semantics

2.1 Semantics for $EC_{\varepsilon\forall}^{ext}$

Definition 2.1. A structure $\mathfrak{M} = \langle |\mathfrak{M}|, (\cdot)^{\mathfrak{M}} \rangle$ consists of a nonempty domain $|\mathfrak{M}| \neq \emptyset$ and a maping $(\cdot)^{\mathfrak{M}}$ on function and predicate symbols where:

$$(f_i^0)^{\mathfrak{M}} \in |\mathfrak{M}|$$
$$(f_i^n)^M \in \mathfrak{M}^{\mathfrak{M}^n}$$
$$(P_i^n)^{\mathfrak{M}} \subseteq \mathfrak{M}^n$$

Definition 2.2. An extensional choice function Φ on \mathfrak{M} is a function $\Phi: \wp(|\mathfrak{M}|) \to |\mathfrak{M}|$ where $\Phi(X) \in X$ whenever $X \neq \emptyset$.

Note that Φ is total on $\wp(|\mathfrak{M}|)$, and so $\Phi(\emptyset) \in |\mathfrak{M}|$.

Definition 2.3. An assignment s on \mathfrak{M} is a function $s: \operatorname{Var} \to |\mathfrak{M}|$. If $x \in \operatorname{Var}$ and $m \in |\mathfrak{M}|, s[x/m]$ is the assignment defined by

$$s[x/m](y) = \begin{cases} m & \text{if } y = x\\ s(y) & \text{otherwise} \end{cases}$$

Definition 2.4. The value $\operatorname{val}_{\mathfrak{M},\Phi,s}(t)$ of a term and the satisfaction relation $\mathfrak{M}, \Phi, s \models A$ are defined as follows:

- 1. $\operatorname{val}_{\mathfrak{M},\Phi,s}(x) = s(x)$
- 2. $\mathfrak{M}, \Phi, s \models \top$ and $\mathfrak{M}, \Phi, s \not\models \bot$
- 3. $\operatorname{val}_{\mathfrak{M},\Phi,s}(f_i^n(t_1,\ldots,t_n)) = (f_i^n)^{\mathfrak{M}}(\operatorname{val}_{\mathfrak{M},\Phi,s}(t_1),\ldots,\operatorname{val}_{\mathfrak{M},\Phi,s}(t_n))$
- 4. $\mathfrak{M}, \Phi, s \models P_i^n(t_1, \ldots, t_n)$ iff $\langle \operatorname{val}_{\mathfrak{M}, \Phi, s}(t_1), \ldots, \operatorname{val}_{\mathfrak{M}, \Phi, s}(t_n) \rangle \in (P_i^n)^{\mathfrak{M}}$

5. $\operatorname{val}_{\mathfrak{M},\Phi,s}(\varepsilon_x A(x)) = \Phi(\operatorname{val}_{\mathfrak{M},\Phi,s}(A(x)))$ where

$$\operatorname{val}_{\mathfrak{M},\Phi,s}(A(x)) = \{ m \in |\mathfrak{M}| : \mathfrak{M}, \Phi, s[x/m] \models A(x) \}$$

- 6. $\mathfrak{M}, \Phi, s \models \exists x A(x)$ iff for some $m \in |\mathfrak{M}|, \mathfrak{M}, \Phi, s[x/m] \models A(x)$
- 7. $\mathfrak{M}, \Phi, s \models \forall x A(x)$ iff for all $m \in |\mathfrak{M}|, \mathfrak{M}, \Phi, s[x/m] \models A(x)$

Proposition 2.5. If s(x) = s'(x) for all $x \notin FV(t) \cup FV(A)$, then $\operatorname{val}_{\mathfrak{M},\Phi,s}(t) = \operatorname{val}_{\mathfrak{M},\Phi,s'}(t)$ and $\mathfrak{M}, \Phi, s \models A$ iff $\mathfrak{M}, \Phi, s' \models A$.

Proof. Exercise.

Proposition 2.6 (Substitution Lemma). If $m = \operatorname{val}_{\mathfrak{M},\Phi,s}(u)$, then $\operatorname{val}_{\mathfrak{M},\Phi,s}(t(u)) = \operatorname{val}_{\mathfrak{M},\Phi,s[x/m]}(t(x))$ and $\mathfrak{M}, \Phi, s \models A(u)$ iff $\mathfrak{M}, \Phi, s[x/m] \models A(x)$

Proof. Exercise.

- **Definition 2.7.** 1. *A* is *locally true* in \mathfrak{M} with respect to Φ and *s* iff $\mathfrak{M}, \Phi, s \models A$.
 - 2. A is true in \mathfrak{M} with respect to Φ , $\mathfrak{M}, \Phi \models A$, iff for all s on $\mathfrak{M}: \mathfrak{M}, \Phi, s \models A$.
 - A is generically true in M with respect to s, M, s ⊨^g A, iff for all choice functions Φ on M: M, Φ, s ⊨ A.
 - 4. A is generically valid in $\mathfrak{M}, \mathfrak{M} \models A$, if for all choice functions Φ and assignments s on $\mathfrak{M}: \mathfrak{M}, \Phi, s \models A$.

Definition 2.8. Let $\Gamma \cup \{A\}$ be a set of formulas.

- 1. A is a local consequence of Γ , $\Gamma \models^{l} A$, iff for all \mathfrak{M} , Φ , and s: if $\mathfrak{M}, \Phi, s \models \Gamma$ then $\mathfrak{M}, \Phi, s \models A$.
- 2. A is a truth consequence of Γ , $\Gamma \models A$, iff for all \mathfrak{M}, Φ : if $\mathfrak{M}, \Phi \models \Gamma$ then $\mathfrak{M}, \Phi \models A$.
- 3. A is a generic consequence of Γ , $\Gamma \models^{g} A$, iff for all \mathfrak{M} and s: if $\mathfrak{M}, s \models^{g} \Gamma$ then $\mathfrak{M} \models A$.
- 4. A is a generic validity consequence of Γ , $\Gamma \models^{v} A$, iff for all \mathfrak{M} : if $\mathfrak{M} \models^{v} \Gamma$ then $\mathfrak{M} \models A$.

Exercise 2. What is the relationship between these consequence relations? For instance, if $\Gamma \models^l A$ then $\Gamma \models A$ and $\Gamma \models^g A$, and if eiter $\Gamma \models A$ or $\Gamma \models^g A$, then $\Gamma \models^v A$. Are these containments strict? Are they identities (in general, and in cases where the language of Γ , A is restricted, or if Γ , A are sentences)? For instance:

Proposition 2.9. If $\Sigma \cup \{A\}$ is a set of sentences, $\Sigma \models^l A$ iff $\Sigma \models A$

Proposition 2.10. If $\Sigma \cup \{A, B\}$ is a set of sentences, $\Sigma \cup \{A\} \models B$ iff $\Sigma \models A \rightarrow B$.

Proof. Exercise.

Corollary 2.11. If $\Sigma \cup \{A\}$ is a set of sentences, $\Sigma \models A$ iff for no \mathfrak{M} , Φ , $\mathfrak{M} \models \Sigma \cup \{\neg A\}$

Proof. Exercise.

Exercise 3. For which of the other consequence relations, if any, do these results hold?

2.2 Soundness for $EC_{\varepsilon\forall}^{ext}$

Theorem 2.12. If $\Gamma \vdash_{\varepsilon \forall} A$, then $\Gamma \models^{l} A$.

Proof. Suppose Γ , Φ , $s \models \Gamma$. We show by induction on the length n of a proof π that $\mathfrak{M}, \Phi, s \models' A$ for all s' which agree with s on $FV(\Gamma)$. We may assume that no eigenvariable x of π is in $FV(\Gamma)$ (if it is, let $y \notin FV(\pi)$ and not occurring in π ; consider $\pi[x/y]$ instead of pi).

If n = 0 there's nothing to prove. Otherwise, we distinguish cases according to the last line A_n in π :

- 1. $A_n \in \Gamma$. The claim holds by assumption.
- 2. A_n is a tautology. Obvious.
- 3. A_n is an identity axiom. Obvious.
- 4. A_n is a critical formula, i.e., $A_n \equiv A(t) \to A(\varepsilon_x A(x))$. Then either $\mathfrak{M}, \Phi, s \models A(t)$ or not (in which case there's nothing to prove). If yes, $\mathfrak{M}, \Phi, s[x/m] \models A(x)$ for $m = \operatorname{val}_{\mathfrak{M}, \Phi, s}(t)$, and so $Y = \operatorname{val}_{\mathfrak{M}, \Phi, s}(A(x)) \neq \emptyset$. Consequently, $\Phi(Y) \in Y$, and hence $\mathfrak{M}, \Phi, s \models A(\varepsilon_x A(x))$.
- 5. A_n is an extensionality axiom. Exercise.
- 6. A_n follows from B and $B \to C$ by (MP). By induction hypothesis, $\mathfrak{M}, \Phi, s \models B$ and $\mathfrak{M}, \Phi, s \models B \to C$.
- 7. A follows from $B(x) \to C$ by (R \exists), and x satisfies the eigenvariable condition. Exercise.
- 8. A follows from $C \to B(x)$ by (R \forall), and x satisfies the eigenvariable condition. Exercise.

Exercise 4. Complete the missing cases.

2.3 Completeness for $EC_{\varepsilon\forall}^{ext}$

Lemma 2.13. If Γ is a set of sentences in L_{ε} and $\Gamma \not\vdash_{\varepsilon} \bot$, then there are \mathfrak{M} , Φ so that $\mathfrak{M}, \Phi \models \Gamma$.

Theorem 2.14 (Completeness). If $\Gamma \cup \{A\}$ are sentences in L_{ε} and $\Gamma \models A$, then $\Gamma \vdash_{\varepsilon} A$.

Proof. Suppose $\Gamma \not\models A$. Then for some \mathfrak{M}, Φ we have $\mathfrak{M}, \Phi \models \Gamma$ but $\mathfrak{M}, \Phi \not\models A$. Hence $\mathfrak{M}, \Phi \models \Gamma \cup \{\neg A\}$. By the Lemma, $\Gamma \cup \{\neg A\} \vdash_{\varepsilon} \bot$. By Corollary 1.18, $\Gamma \vdash_{\varepsilon} A$.

The proof of the Lemma comes in several stages. We have to show that if Γ is consistent, we can construct \mathfrak{M} , Φ , and s so that \mathfrak{M} , $\Phi, s \models \Gamma$. Since $FV(\Gamma) = \emptyset$, we then have $\mathfrak{M}, \Phi \models \Gamma$.

Lemma 2.15. If $\Gamma \not\vdash_{\varepsilon} \bot$, there is $\Gamma^* \supseteq \Gamma$ with (1) $\Gamma^* \not\vdash_{\varepsilon} \bot$ and (2) for all formulas A, either $A \in \Gamma^*$ or $\neg A \in \Gamma^*$.

Proof. Let A_1, A_2, \ldots be an enumeration of $\operatorname{Frm}_{\varepsilon}$. Define $\Gamma_0 = \Gamma$ and

$$\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{A_n\} & \text{if } \Gamma_n \cup \{A_n\} \not\vdash_{\varepsilon} \bot \\ \Gamma_n \cup \{\neg A_n\} & \text{if } \Gamma_n \cup \{\neg A_n\} \not\vdash_{\varepsilon} \bot \text{ otherwise} \end{cases}$$

Let $\Gamma^* = \bigcup_{n \ge 0} \Gamma_n$. Obviously, $\Gamma \subseteq \Gamma^*$. For (1), observe that if $\Gamma^* \vdash_{\varepsilon}^{\pi} \bot$, then π contains only finitely many formulas from Γ^* , so for some n, $\Gamma_n \vdash_{\varepsilon}^{\pi} \bot$. But Γ_n is consistent by definition.

To verify (2), we have to show that for each n, either $\Gamma_n \cup \{A_n\} \not\vdash_{\varepsilon} \bot$ or $\Gamma_n \cup \{\neg A\} \not\vdash_{\varepsilon} \bot$. For n = 0, this is the assumption of the lemma. So suppose the claim holds for n - 1. Suppose $\Gamma_n \cup \{A\} \vdash_{\varepsilon}^{\pi} \bot$ and $\Gamma_n \cup \{\neg A\} \vdash_{\varepsilon}^{\pi'} \bot$. Then by the Deduction Theorem, we have $\Gamma_n \vdash_A^{\pi[A]} \to \bot$ and $\Gamma_n \vdash_{\neg}^{\pi'[A']} A \to \bot$. Since $(A \to \bot) \to ((\neg A \to \bot) \to \bot)$ is a tautology, we have $\Gamma_n \vdash_{\varepsilon} \bot$, contradicting the induction hypothesis.

Lemma 2.16. If $\Gamma^* \vdash \varepsilon B$, then $B \in \Gamma^*$.

Proof. If not, then $\neg B \in \Gamma^*$ by maximality, so Γ^* would be inconsistent. \Box

Definition 2.17. Let \approx be the relation on Trm_{ε} defined by

$$t \approx u$$
 iff $t = u \in \Gamma^*$

It is easily seen that \approx is an equivalence relation. Let $\tilde{t} = \{u : u \approx t\}$ and $\widetilde{\text{Trm}} = \{\tilde{t} : t \in \text{Trm}\}.$

Definition 2.18. A set $T \in \text{Trm}$ is represented by A(x) if $T = {\tilde{t} : A(t) \in \Gamma^*}$. Let Φ_0 be a fixed choice function on $\widetilde{\text{Trm}}$, and define

$$\Phi(T) = \begin{cases} \widetilde{\varepsilon_x A(x)} & \text{if } T \text{ is represented by } A(x) \\ \Phi_0(T) & \text{otherwise.} \end{cases}$$

Proposition 2.19. Φ is a well-defined choice function on Trm.

Proof. Exercise. Use (ext) for well-definedness and (crit) for choice function. \Box

Now let $\mathfrak{M} = \langle \widetilde{\mathrm{Trm}}, (\cdot)^{\mathfrak{M}} \rangle$ with $c^{\mathfrak{M}} = \widetilde{c}, (P_i^n)^{\mathfrak{M}} = \{ \langle \widetilde{t}_1, \dots, \widetilde{t}_1 \rangle : P_i^n(t_1, \dots, t_n) \}$, and let $s(x) = \widetilde{s}$.

Proposition 2.20. $\mathfrak{M}, \Phi, s \models \Gamma^*$.

Proof. We show that $\operatorname{val}_{\mathfrak{M},\Phi,s}(t) = \tilde{t}$ and $\mathfrak{M}, \Phi, s \models A$ iff $A \in \Gamma^*$ by simultaneuous induction on the complexity of t and A.

If t = c is a constant, the claim holds by definition of $(\cdot)^{\mathfrak{M}}$. If $A = \bot$ or $= \top$, the claim holds by Lemma 2.16.

If $A \equiv P^n(t_1, \ldots, t_n)$, then by induction hypothesis, $\operatorname{val}_{\mathfrak{M}, \Phi, s}(t)_i = \tilde{t}_i$. By definition of $(\cdot)^{\mathfrak{M}}, \langle \tilde{t}_1, \ldots, \tilde{t}_n \rangle \in (P_i^n)(t_1, \ldots, t_n)$ iff $P_i^n(t_1, \ldots, t_n) \in \Gamma^*$.

If $A \equiv \neg B$, $(B \land C)$, $(B \lor C)$, $(B \to C)$, $(B \leftrightarrow C)$, the claim follows immediately from the induction hypothesis and the definition of \models and the closure properties of Γ^* . For instance, $\mathfrak{M}, \Phi, s \models (B \land C)$ iff $\mathfrak{M}, \Phi, s \models B$ and $\mathfrak{M}, \Phi, s \models C$. By induction hypothesis, this is the case iff $B \in \Gamma^*$ and $C \in \Gamma^*$. But since $B, C \vdash_{\varepsilon} B \land C$ and $B \land C \vdash_{\varepsilon} B$ and $\vdash_{\varepsilon} C$, this is the case iff $(B \land C) \in \Gamma^*$. Remaining cases: Exercise.

If $t \equiv \varepsilon_x A(x)$, then $\operatorname{val}_{\mathfrak{M},\Phi,s}(t) = \Phi(\operatorname{val}_{\mathfrak{M},\Phi,s}(A(x)))$. Since $\operatorname{val}_{\mathfrak{M},\Phi,s}(A(x))$ is represented by A(x) by induction hypothesis, we have $\operatorname{val}_{\mathfrak{M},\Phi,s}(t) = \widetilde{\varepsilon_x A(x)}$ by definition of Φ .

Exercise 5. Complete the proof.

Exercise 6. Generalize the proof to $L_{\varepsilon\forall}$ and $EC_{\varepsilon\forall}$.

Exercise 7. Show EC_{ε} without $(=_1)$ and $(=_2)$, (ext), and the additional axiom

$$(\forall x(A(x) \leftrightarrow B(x)))^{\varepsilon} \to (C(\varepsilon_x A(x)) \leftrightarrow C(\varepsilon_x B(x))) \qquad (\text{ext}^-)$$

is complete for \models in the language $L_{\varepsilon \forall}^-$.

2.4 Semantics for $EC_{\varepsilon \forall}$

In order to give a complete semantics for $\mathrm{EC}_{\varepsilon\forall}$, i.e., for the calculus without the extensionality axion (ext), it is necessary to change the notion of choice function so that two ε -terms $\varepsilon_x A(x)$ and $\varepsilon_x B(x)$ may be assigned different representatives even when $\mathfrak{M}, \Phi, s \models \forall x(A(x) \leftrightarrow B(x))$, since then the negation of (ext) is consistent in the resulting calculus. The idea is to add the ε -term itself as an additional argument to the choice function. However, in order for this semantics to be sound for the calculus—specifically, in order for (=₂) to be valid—we have to use not ε -terms but ε -types. **Definition 2.21.** An intensional choice operator is a mapping Ψ : Typ \times $|\mathfrak{M}|^{<\omega} \to |\mathfrak{M}|^{\wp(|\mathfrak{M}|)}$ such that for every type $p = \varepsilon_x A(x; y_1, \ldots, y_n)$ is a type, and $m_1, \ldots, m_n \in |\mathfrak{M}|, \Psi(p, m_1, \ldots, m_n)$ is a choice function.

Definition 2.22. If \mathfrak{M} is a structure, Ψ an intensional choice operator, and s an assignment, $\operatorname{val}_{\mathfrak{M},\Psi,s}(t)$ and $\mathfrak{M}, \Psi, s \models A$ is defined as before, except (5) in Definition 2.4 is replaced by:

- (5') $\operatorname{val}_{\mathfrak{M},\Psi,s}(\varepsilon_x A(x)) = \Psi(p, m_1, \dots, m_n)(\operatorname{val}_{\mathfrak{M},\Phi,s}(A(x)))$ where
 - a) $p = \varepsilon_x A'(x; x_1, \dots, x_n)$ is the type of $\varepsilon_x A(x)$,
 - b) t_1, \ldots, t_n are the subterms corresponding to x_1, \ldots, x_n , i.e., $\varepsilon_x A(x) \equiv \varepsilon_x A'(x; t_1, \ldots, t_n)$,
 - c) $m_i = \operatorname{val}_{\mathfrak{M},\Psi,s}(t)_1$, and
 - d) $\operatorname{val}_{\mathfrak{M},\Phi,s}(A(x)) = \{m \in |\mathfrak{M}| : \mathfrak{M}, \Psi, s[x/m] \models A(x)\}$

Exercise 8. Prove the substitution lemma for this semantics.

Exercise 9. Prove soundness.

Exercise 10. Prove completeness of $EC_{\varepsilon\forall}$ for this semantics.

Exercise 11. Define a semantics for the language without = where the choice operatore takes ε -terms as arguments. Is the semantics sound and complete for $\text{EC}^-_{\varepsilon \forall}$?

3 The First Epsilon Theorem

3.1 The Case Without Identity

Theorem 3.1. If *E* is a formula not containing any ε -terms and $\vdash_{\mathrm{EC}_{\varepsilon\forall}} E$, then $\vdash_{\mathrm{EC}} E$.

Definition 3.2. An ε -term e is critical in π if $A(t) \to A(e)$ is one of the critical formulas in π . The rank $\operatorname{rk}(\pi)$ of a proof π is the maximal rank of its critical ε -terms. The r-degree deg (π, r) of π is the maximum degree of its critical ε -terms of rank r. The r-order $o(\pi, r)$ of π is the number of different (up to renaming of bound variables) critical ε -terms of rank r.

Lemma 3.3. If $e = \varepsilon_x A(x)$, $\varepsilon_y B(y)$ are critical in π , $\operatorname{rk}(e) = \operatorname{rk}(\pi)$, and $B^* \equiv B(u) \to B(\varepsilon_y B(y))$ is a critical formula in π . Then, if e is a subterm of B^* , it is a subterm of B(y) or a subterm of u.

Proof. Suppose not. Then, since e is a subterm of B^* , we have $B(y) \equiv B'(\varepsilon_x A'(x, y), y)$ and either $e \equiv \varepsilon_x A'(x, u)$ or $e \equiv \varepsilon_x A'(x, \varepsilon_y B(y))$. In each case, we see that $\varepsilon_x A'(x, y)$ and e have the same rank, since the latter is an

instance of the former (and so have the same type). On the other hand, in either case, $\varepsilon_y B(y)$ would be

$$\varepsilon_y B'(\varepsilon_x A'(x,y),y)$$

and so would have a higher rank than $\varepsilon_x A'(x, y)$ as that ε -term is subordinate to it. This contradicts $\operatorname{rk}(e) = \operatorname{rk}(\pi)$.

Lemma 3.4. Let e, B^* be as in the lemma, and t be any term. Then

- 1. If e is not a subterm of B(y), $B^*\{e/t\} \equiv B(u') \rightarrow B(\varepsilon_y B(y))$.
- 2. If e is a subterm of B(y), i.e., $B(y) \equiv B'(e, y)$, $B^*\{e/t\} \equiv B'(t, u') \rightarrow B'(t, \varepsilon_y B'(t, y))$.

Proof. By inspection.

Lemma 3.5. If $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi} E$ and E does not contain ε , then there is a proof π' such that $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi'} E$ and $\mathrm{rk}(\pi') \leq \mathrm{rk}(pi) = r$ and $o(\pi', r) < o(\pi, r)$.

Proof. Let e be an ε -term critical in π and let $A(t_1) \to A(e)$, dots, $A(t_n) \to A(e)$ be all its critical formulas in π .

Consider $\pi\{e/t\}_i$, i.e., π with e replaced by t_i throughout. Each critical formula belonging to e now is of the form $A(t'_j) \to A(t_i)$, since e obviously cannot be a subterm of A(x) (if it were, e would be a subterm of $\varepsilon_x A(x)$, i.e., of itself!). Let $\hat{\pi}_i$ be the sequence of tautologies $A(t_i) \to (A(t'_j) \to A(t_i))$ for $i = 1, \ldots, n$, followed by $\pi\{e/t\}_i$. Each one of the formulas $A(t'_j) \to A(t_i)$ follows from one of these by (MP) from $A(t_i)$. Hence, $A(t_i) \vdash_{\mathrm{EC}_{\varepsilon}}^{\hat{\pi}_i} E$. Let $\pi_i = \hat{\pi}_i[A_i]$ as in Lemma 1.16. We have $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi_i} A_i \to E$.

The ε -term e is not critical in π_i : Its original critical formulas are replaced by $A(t_i) \to (A(t'_j) \to A(t_i))$, which are tautologies. By (1) of the preceding Lemma, no critical ε -term of rank r was changed at all. By (2) of the preceding Lemma, no critical ε -term of rank < r was replaced by a critical ε -term of rank $\geq r$. Hence, $o(\pi_i, r) = o(\pi) - 1$.

Let π'' be the sequence of tautologies $\neg \bigvee_{i=1}^{n} A(t_i) \to (A(t_i) \to A(e))$ followed by π . Then $\bigvee_{i=1}^{n} A(t_i) \vdash_{E}^{\pi''}$, e is not critical in π'' , and otherwise π and π'' have the same critical formulas. The same goes for $\pi''[\neg \bigvee A(t_i)]$, a proof of $\neg \bigvee A(t_i) \to E$.

We now obtain π' as the π_i , i = 1, ..., n, followed by $\pi[\neg \bigvee_{i=1}^n]$, followed by the tautology

$$(\neg \bigvee A(t_i) \to E) \to (A(t_1) \to E) \to \dots \to (A(t_n) \to E) \to E)\dots)$$

from which E follows by n + 1 applications of (MP).

of the first ε -Theorem. By induction on $o(\pi, r)$, we have: if $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi} E$, then there is a proof π^* of E with $\mathrm{rk}(\pi^-) < r$. By induction on $\mathrm{rk}(()\pi)$ we have a proof π^{**} of E with $\mathrm{rk}(\pi^{**}) = 0$, i.e., without critical formulas at all. \Box

Exercise 12. Check these proofs. Can you think of ways to improve the proofs?

Exercise 13. If E contains ε -terms, the replacement of ε -terms in the construction of π_i may change E—but of course only the ε -terms appearing as subterms in it. Use this fact to prove: If $\vdash_{\mathrm{EC}_{\varepsilon \forall}} E(e)$, then $\vdash_{\mathrm{EC}} \bigvee_{i=1}^m E(t_j)$ for some terms t_j . Can you guarantee that t_j are ε -free.

NEW 3.2 The Case With Identity

In the presence of the identity (=) predicate in the language, things get a bit more complicated. The reason is that instances of the $(=_2)$ axiom schema,

$$t = u \to (A(t) \to A(u))$$

may also contain ε -terms, and the replacement of an ε -term e by a term t_i in the construction of π_i may result in a formula which no longer is an instance of $(=_2)$. For instance, suppose that t is a subterm of e = e'(t) and A(t) is of the form A'(e'(t)). Then the original axiom is

$$t = u \to (A'(e'(t)) \to A'(e'(u)))$$

which after replacing e = e'(t) by t_i turns into

$$t = u \to (A'(t_i) \to A'(e'(u))).$$

So this must be avoided. In order to do this, we first observe that just as in the case of the predicate calculus, the instances of $(=_2)$ can be derived from restricted instances. In the case of the predicate calculus, the restricted axioms are

$$t = u \to (P^n(s_1, \dots, t, \dots, s_n) \to P^n(s_1, \dots, u, \dots, s_n) \tag{(=2)}$$

$$t = u \to f^n(s_1, \dots, t, \dots, s_n) = f^n(s_1, \dots, u, \dots, s_n) \tag{(=2)}$$

to which we have to add the ε -identity axiom schema:

$$t = u \to \varepsilon_x A(x; s_1, \dots, t, \dots s_n) = \varepsilon_x A(x; s_1, \dots, u, \dots s_n) \qquad (=_{\varepsilon})$$

where $\varepsilon_x A(x; x_1, \ldots, x_n)$ is an ε -type.

Proposition 3.6. Every instance of $(=_2)$ can be derived from $(='_2)$, $(=''_2)$, and $(=_{\varepsilon})$.

Proof. Exercise.

Now replacing every occurrence of e in an instance of $(='_2)$ or $(=''_2)$ —where e obviously can only occur inside one of the terms t, u, s_1, \ldots, s_n —results in a (different) instance of $(='_2)$ or $(=''_2)$. The same is true of $(=_{\varepsilon})$, provided

that the e is neither $\varepsilon_x A(x; s_1, \ldots, t, \ldots, s_n)$ nor $\varepsilon_x A(x; s_1, \ldots, u, \ldots, s_n)$. This would be guaranteed if the type of e is not $\varepsilon_x A(x; x_1, \ldots, x_n)$, in particular, if the rank of e is higher than the rank of $\varepsilon_x A(x; x_1, \ldots, x_n)$. Moreover, the result of replacing e by t_i in any such instance of $(=_{\varepsilon})$ results in an instance of $(=_{\varepsilon})$ which belongs to the same ε -type. Thus, in order for the proof of the first ε -theorem to work also when = and axioms $(=_1), (='_2), (=''_2), \text{ and } (=_{\varepsilon})$ are present, it suffices to show that the instances of $(=_{\varepsilon})$ with ε -terms of rank $\operatorname{rk}(\pi)$ can be removed. Call an ε -term e special in π , if π contains an occurrence of $t = u \to e' = e$ as an instance of $(=_{\varepsilon})$.

Theorem 3.7. If $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi} E$, then there is a proof $\pi^{=}$ so that $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi^{=}} E$, $\mathrm{rk}(\pi^{=}) = \mathrm{rk}(pi)$, and the rank of the special ε -terms in $\pi^{=}$ has rank < $\mathrm{rk}(\pi)$.

The basic idea is simple: Suppose $t = u \rightarrow e' = e$ is an instance of $(=_{\varepsilon})$, with $e' \equiv \varepsilon_x A(x; s_1, \ldots, t, \ldots, s_n)$ and $e \equiv \varepsilon_x A(x; s_1, \ldots, u, \ldots, s_n)$. Replace eeverywhere in the proof by e'. Then the instance of $(=_{\varepsilon})$ under consideration is removed, since it is now provable from e' = e'. This potentially interferes with critical formulas belonging to e, but this can also be fixed: we just have to show that by a judicious choice of e it can be done in such a way that the other $(=_{\varepsilon})$ axioms are still of the required form.

Let $p = \varepsilon_x A(x; x_1, \ldots, x_n)$ be an ε -type of rank $\operatorname{rk}(\pi)$, and let e_1, \ldots, e_l be all the ε -terms of type p which have a corresponding instance of $(=_{\varepsilon})$ in π . Let T_i be the set of all immediate subterms of e_1, \ldots, e_l , in the same position as x_i , i.e., the smallest set of terms so that if $e_i \equiv \varepsilon_x A(x; t_1, \ldots, t_n)$, then $t_i \in T$. Now let let T^* be all instances of p with terms from T_i substituted for the x_i . Obviously, T and thus T^* are finite (up to renaming of bound variables). Pick a strict order \prec on T which respects degree, i.e., if deg $(t) < \deg(u)$ then $t \prec u$. Extend \prec to T^* by

$$\varepsilon_x A(x; t_1, \dots, t_n) \prec \varepsilon_x A(x; t'_1, \dots, t'_n)$$

iff

- 1. $\max\{\deg(t_i): i = 1, ..., n\} < \max\{\deg(t_i): i = 1, ..., n\}$ or
- 2. $\max\{\deg(t_i): i = 1, \dots, n\} = \max\{\deg(t_i): i = 1, \dots, n\}$ and
 - a) $t_i \equiv t'_i$ for $i = 1, \ldots, k$.
 - b) $t_{k+1} \prec t'_{k+1}$

Lemma 3.8. Suppose $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi} E$, e a special ε -term in π with $\mathrm{rk}(e) = \mathrm{rk}(\pi)$, deg(e) maximal among the special ε -terms of rank $\mathrm{rk}(\pi)$, and e maximal with respect to \prec defined above. Let $t = u \rightarrow e' = e$ be an instance of $(=_{\varepsilon})$ in π . Then there is a proof π' , $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi'} E$ such that

- 1. $rk(\pi') = rk(\pi)$
- 2. π' does not contain $t = u \rightarrow e' = e$ as an axiom

3. Every special ε -term e'' of π' with the same type as e is so that $e'' \prec e$.

Proof. Let $\pi_0 = \pi \{ e/e' \}$.

Suppose $t' = u' \to e''' = e''$ is an $(=_{\varepsilon})$ axiom in π .

If $\operatorname{rk}(e'') < \operatorname{rk}(e)$, then the replacement of e by e' can only change subterms of e'' and e'''. In this case, the uniform replacement results in another instance of $(=_{\varepsilon})$ with ε -terms of the same ε -type, and hence of the same rank $< \operatorname{rk}(\pi)$, as the original.

If $\operatorname{rk}(e'') = \operatorname{rk}(e)$ but has a different type than e, then this axiom is unchanged in π_0 : Neither e'' nor e''' can be $\equiv e$, because they have different ε -types, and neither e'' nor e''' (nor t' or u', which are subterms of e'', e''') can contain e as a subterm, since then e wouldn't be degree-maximal among the special ε -terms of π of rank $\operatorname{rk}(\pi)$.

If the type of e'', e''' is the same as that of e, e cannot be a proper subterm of e'' or e''', since otherwise e'' or e''' would again be a special ε -term of rank $\operatorname{rk}(\pi)$ but of higher degree than e. So either $e \equiv e''$ or $e \equiv e'''$, without loss of generality suppose $e \equiv e''$. Then the $(=_{\varepsilon})$ axiom in question has the form

$$t' = u' \to \underbrace{\varepsilon_x A(x; s_1, \dots t', \dots s_n)}_{e'''} = \underbrace{\varepsilon_x A(x; s_1, \dots u', \dots s_n)}_{e'' \equiv e}$$

and with e replaced by e':

$$t' = u' \to \underbrace{\varepsilon_x A(x; s_1, \dots, t', \dots, s_n)}_{e''} = \underbrace{\varepsilon_x A(x; s_1, \dots, t, \dots, s_n)}_{e'}$$

which is no longer an instance of $(=_{\varepsilon})$, but can be proved from new instances of $(=_{\varepsilon})$. We have to distinguish two cases according to whether the indicated position of t and t' in e', e''' is the same or not. In the first case, $u \equiv u'$, and the new formula

$$t' = u \to \underbrace{\varepsilon_x A(x; s_1, \dots t', \dots s_n)}_{e'''} = \underbrace{\varepsilon_x A(x; s_1, \dots t, \dots s_n)}_{e'}$$

can be proved from t = u together with

$$t' = t \to \underbrace{\varepsilon_x A(x; s_1, \dots t', \dots s_n)}_{e'''} = \underbrace{\varepsilon_x A(x; s_1, \dots t, \dots s_n)}_{e'} \qquad (=_{\varepsilon})$$
$$t = u \to (t' = u \to t' = t) \qquad (='_2)$$

Since e' and e''' already occured in π , by assumption e', $e''' \prec e$.

In the second case, the original formulas read, with terms indicated:

$$t = u \to \underbrace{\varepsilon_x A(x; s_1, \dots, t, \dots, u', \dots, s_n)}_{e'} = \underbrace{\varepsilon_x A(x; s_1, \dots, u, \dots, u', \dots, s_n)}_{e} \underbrace{\varepsilon_x A(x; s_1, \dots, u, \dots, u', \dots, s_n)}_{e'' \equiv e}$$

and with e replaced by e' the latter becomes:

$$t' = u' \to \underbrace{\varepsilon_x A(x; s_1, \dots, u, \dots, t', \dots, s_n)}_{e'''} = \underbrace{\varepsilon_x A(x; s_1, \dots, t, \dots, u', \dots, s_n)}_{e'}$$

This new formula is provable from t = u together with

$$u = t \rightarrow \underbrace{\varepsilon_x A(x; s_1, \dots, u, \dots, t', \dots, s_n)}_{e'''} = \underbrace{\varepsilon_x A(x; s_1, \dots, t, \dots, t', \dots, s_n)}_{e''''} \underbrace{\varepsilon_x A(x; s_1, \dots, t, \dots, t', \dots, s_n)}_{e''''} = \underbrace{\varepsilon_x A(x; s_1, \dots, t, \dots, u', \dots, s_n)}_{e'}$$

and some instances of $(='_2)$. Hence, π' contains a (possibly new) special ε -term e''''. However, $e'''' \prec e$ (Exercise: prove this.)

In the special case where e = e'' and e' = e''', i.e., the instance of $(=_{\varepsilon})$ we started with, then replacing e by e' results in $t = u \rightarrow e' = e'$, which is provable from e' = e', an instance of $(=_1)$.

Let π_1 be π_0 with the necessary new instances of $(=_{\varepsilon})$, added. The instances of $(=_{\varepsilon})$ in π_1 satisfy the properties required in the statement of the lemma.

However, the results of replacing e by e' may have impacted some of the critical formulas in the original proof. For a critical formula to which $e \equiv \varepsilon_x A(x, u)$ belongs is of the form

$$A(t', u) \to A(\varepsilon_x A(x, u), u) \tag{1}$$

which after replacing e by e' becomes

$$A(t'', u) \to A(\varepsilon_x A(x, t), u)$$
 (2)

which is no longer a critical formula. This formula, however, can be derived from t = u together with

$$A(t'', u) \to A(\varepsilon_x A(x, t), u) \tag{\varepsilon}$$

$$t = u \to (A(\varepsilon_x A(x, t), t) \to A(\varepsilon_x A(x, t), u)) \tag{(=2)}$$

$$u = t \to (A(t'', u) \to A(t'', t)) \tag{(=2)}$$

Let π_2 be π_1 plus these derivations of (2) with the instances of $(=_2)$ themselves proved from $(='_2)$ and $(=_{\varepsilon})$. The rank of the new critical formulas is the same, so the rank of π_2 is the same as that of π . The new instances of $(=_{\varepsilon})$ required for the derivation of the last two formulas only contain ε -terms of lower rank that that of e. (Exercise: verify this.)

 π_2 is thus a proof of E from t = u which satisfies the conditions of the lemma. From it, we obtain a proof $\pi_2[t = u]$ of $t = u \to E$ by the deduction theorem. On the other hand, the instance $t = u \to e' = e$ under consideration can also be proved trivially from $t \neq u$. The proof $\pi[t \neq u]$ thus is also a proof, this time of $t \neq u \to E$, which satisfies the conditions of the lemma. We obtain π' by combining the two proofs.

Proof. Proof of the Theorem By repeated application of the Lemma, every instance of $(=_{\varepsilon})$ involving ε -terms of a given type p can be eliminated from the proof. The Theorem follows by induction on the number of different types of special ε -terms of rank $\operatorname{rk}(\pi)$ in π .

Exercise 14. Prove Proposition 3.6.

Exercise 15. Verify that \prec is a strict total order.

Exercise 16. Complete the proof of the Lemma.