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1 Syntax

1.1 Languages

Definition 1.1. The language of of the elementary calculus LEC contains the
following symbols:

1. Variables Var: x0, x1, . . .

2. Function symbols Fctn of arity n, for each n ≥ 0: fn0 , fn1 , . . .

3. Predicate symbols Predn of arity n, for each n ≥ 0: Pn0 , Pn1 , . . .
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2 1. SYNTAX

4. Identity: =

5. Propositional constants: ⊥, >.

6. Propositional operators: ¬, ∧, ∨, →, ↔.

7. Punctuation: parentheses: (, ); comma: ,

For any language L, we denote by L− the language L without the identity
symbol, by Lε the language L plus the symbol ε, and by L∀ the language L
plus the quantifiers ∀ and ∃. We will usually leave out the subscript EC, and
write L∀ for the language of the predicate calculus, Lε for the language of the
ε-calculus, and Lε∀ for the language of the extended epsilon calculus.

Definition 1.2. The terms Trm and formulas Frm of Lε∀ are defined as fol-
lows.

1. Every variable x is a term, and x is free in it.

2. If t1, . . . , tn are terms, then fni (t1, . . . , tn) is a term, and x occurs free in
it wherever it occurs free in t1, . . . , tn.

3. If t1, . . . , tn are terms, then Pni (t1, . . . , tn) is an (atomic) formula, and x
occurs free in it wherever it occurs free in t1, . . . , tn.

4. ⊥ and > are formulas.

5. If A is a formula, then ¬A is a formula, with the same free occurrences
of variables as A.

6. If A and B are formulas, then (A ∧B), (A ∨B), (A→ B), (A↔ B) are
formulas, with the same free occurrences of variables as A and B.

7. IfA is a formula in which x has a free occurrence but no bound occurrence,
then ∀xA and ∃xA are formulas, and all occurrences of x in them are
bound.

8. IfA is a formula in which x has a free occurrence but no bound occurrence,
then εxA is a term, and all occurrences of x in it are bound.

The terms Trm(L) and formulas Frm(L) of a langauge L are those terms and
formulas of Lε∀ in the vocabulary of L.

If E is an expression (term or formula), then FV(E) is the set of variables
which have free occurrences in E. E is called closed if FV(E) = ∅. A closed
formula is also called a sentence.

When E, E′ are expressions (terms or formulas), we write E ≡ E′ iff E
and E′ are syntactically identical up to a renaming of bound variables. We
say that a term t is free for x in E iff x does not occur free in the scope of an
ε-operator εy or quantifier ∀y, ∃y for any y ∈ FV(t).
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If E is an expression and t is a term, we write E[x/t] for the result of
substituting every free occurrence of x in E by t, provided t is free for x in E,
and renaming bound variables in t if necessary.

If t is not free for x in E, E[x/t] is any formula E[′/x]t where E′ ≡ E and t
is free for x in E′. If E′ ≡ E[x1/t1] . . . [xn/tn], E′ it is called an instance of E.

We write E(x) to indicate that x ∈ FV(E), and E(t) for E[x/t]. It will be
apparent from the context which variable x is substituted for.

Definition 1.3. A term t is a subterm of an expression (term or formula) E,
if for some E′(x), E ≡ E′(x)[x/t]. It is a proper subterm of a term u if it is a
subterm of u but t 6≡ u.

A term t is an immediate subterm of an expression E if t is a subterm of
E, but not a subterm of a proper subterm of E.

Definition 1.4. If t is a subterm of E, i.e., for some E′ we have E ≡ E′[x/t],
then E{t/u} is E′[x/u].

We intend E{t/u} to be the result of replacing every occurrence of t in E
by u. But, the “brute-force” replacement of every occurrence of t in u may
not be what we have in mind here. (a) We want to replace not just every
occurrence of t by u, but every occurrence of a term t′ ≡ t. (b) t may have an
occurrence in E where a variable in t is bound by a quantifier or ε outside t,
and such occurrences shouldn’t be replaced (they are not subterm occurrences).
(c) When replacing t by u, bound variables in u might have to be renamed to
avoid conflicts with the bound variables in E′ and bound variables in E′ might
have to be renamed to avoid free variables in u being bound.

Definition 1.5 (ε-Translation). If E is an expression, define Eε by:

1. Eε = E if E is a variable, a constant symbol, or ⊥.

2. If E = fni (t1, . . . , tn), Eε = fni (tε1, . . . , t
ε
n).

3. If E = Pni (t1, . . . , tn), Eε = Pni (tε1, . . . , t
ε
n).

4. If E = ¬A, then Eε = ¬Aε.

5. If E = (A ∧ B), (A ∨ B), (A → B), or (A ↔ B), then Eε = (Aε ∧ Bε),
(Aε ∨Bε), (Aε → Bε), or (Aε ↔ Bε), respectively.

6. If E = ∃xA(x) or ∀xA(x), then Eε = Aε(εxA(x)ε) or Aε(εx ¬A(x)ε).

7. If E = εxA(x), then Eε = εxA(x)ε.

1.2 ε-Types, Degree, and Rank

Definition 1.6. An ε-term p ≡ εxB(x;x1, . . . , xn) is a type of an ε-term εxA(x)
iff

1. p ≡ εxA(x)[x1/t1] . . . [xn/tn] for some terms t1, . . . , tn.
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2. FV(p) = {x1, . . . , xn}.

3. x1, . . . , xn are all immediate subterms of p.

4. Each xi has exactly one occurrence in p.

5. The occurrence of xi is left of the occurrence of xj in p if i < j.

We denote the set of types of a langauge as Typ.

Proposition 1.7. The type of an epsilon term εxA(x) is unique up to renam-
ing of bound, and disjoint renaming of free variables, i.e., if p = εxB(x;x1, . . . , xn),
p′ = εy B

′(y; y1, . . . , ym) are types of εxA(x), then n = m and p′ ≡ p[x1/y1] . . . [xn/yn]

Proof. Exercise.

Definition 1.8. An ε-term e is nested in an ε-term e′ if e is a proper subterm
of e.

Definition 1.9. The degree deg(e) of an ε-term e is defined as follows:

1. deg(e) = 1 iff e contains no nested ε-terms.

2. deg(e) = max{deg(e1), . . . ,deg(en)}+ 1 if e1, . . . , en are all the ε-terms
nested in e.

For convenience, let deg(t) = 0 if t is not an ε-term.

Definition 1.10. An ε-term e is subordinate to an ε-term e′ = εxA(x) if some
e′′ ≡ e occurs in e′ and x ∈ FV(e′′).

Note that if e is subordinate to e′ it is not a subterm of e′, because x is free
in e and so the occurrence of e (really, of the variant e′′) in e′ is in the scope
of εx. One might think that replacing e in εxA(x) by a new variable y would
result in an ε-term εxA

′(y) so that e′ ≡ εxA
′(y)[y/e]. But (a) εxA′(y) is not

in general a term, since it is not guaranteed that x is free in A′(y) and (b) e is
not free for y in εxA

′(y).

Definition 1.11. The rank rk(e) of an ε-term e is defined as follows:

1. rk(e) = 1 iff e contains no subordinate ε-terms.

2. rk(e) = max{rk(e1), . . . , rk(en)} + 1 if e1, . . . , en are all the ε-terms
subordinate to e.

Proposition 1.12. If p is the type of e, then rk(p) = rk(e).

Proof. Exercise.
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1.3 Axioms and Proofs

Definition 1.13. The axioms of the elementary calculus EC are

A for any tautology A (Taut)
t = t for any term t (=1)

t = u→ (A[x/t]↔ A[x/u]) (=2)

and its only rule of inference is

A A→ B
A

MP

The axioms and rules of the (intensional) ε-calculus ECε are those of EC plus
the critical formulas

A(t)→ A(εxA(x)). (crit)

The axioms and rules of the extensional ε-calculus ECext
ε are those of ECε plus

(∀x(A(x)↔ B(x)))ε → εxA(x) = εxB(x) (ext)
that is,

A(εx ¬(A(x)↔ B(x)))↔ B(εx ¬(A(x)↔ B(x)))→ εxA(x) = εxB(x)

The axioms and rules of EC∀, ECε∀, ECext
ε∀ are those of EC, ECε, ECext

ε ,
respectively, together with the axioms

A(t)→ ∃xA(x) (Ax∃)
∀xA(x)→ A(t) (Ax∀)

and the rules
A(x)→ B

∃xA(x)→ B
R∃

B → A(x)
B → ∀xA(x) R∀

Applications of these rules must satisfy the eigenvariable condition, viz., the
variable x must not appear in the conclusion or anywhere below it in the proof.

Definition 1.14. If Γ is a set of formulas, a proof of A from Γ in ECext
ε∀ is

a sequence π of formulas A1, . . . , An = A where for each i ≤ n, one of the
following holds:

1. Ai ∈ Γ.

2. Ai is an instance of an axiom.

3. Ai follows from some Ak, Al (k, l < i) by (MP), i.e., Ai ≡ C, Ak ≡ B,
and Al ≡ B → C.

4. Ai follows from some Aj (j < i) by (R∃), i.e., i.e., Ai ≡ ∃xB(x) → C,
Aj ≡ B(x) → C, and x is an eigenvariable, i.e., it satisfies x /∈ FV(Ak)
for any k ≥ i (this includes k = i, so x /∈ FV(C)).
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5. Ai follows from some Aj (j < i) by (R∀), i.e., i.e., Ai ≡ C → ∀xB(x),
Aj ≡ C → B(x), and the eigenvariable condition is satisfied.

If π only uses the axioms and rules of EC, ECε, ECext
ε , etc., then it is a proof

of A from Γ in EC, ECε, ECext
ε , etc., and we write Γ `π A, Γ `πε A, Γ `πεext A,

etc.
We say that A is provable from Γ in EC, etc. (Γ ` A, etc.), if there is a

proof of A from Γ in EC, etc.

Note that our definition of proof, because of its use of ≡, includes a tacit
rule for renaming bound variables. Note also that substitution into members
of Γ is not permitted. However, we can simulate a provability relation in which
substitution into members of Γ is allowed by considering Γinst, the set of all
substitution instances of members of Γ. If Γ is a set of sentences, then Γinst = Γ.

Proposition 1.15. If π = A1, . . . , An ≡ A is a proof of A from Γ and
x /∈ FV(Γ) is not an eigenvariable in π, then π[x/t] = A1[x/t], . . . , An[x/t] is
a proof of A[x/t] from Γinst.

In particular, if Γ is a set of sentences and π is a proof in EC, ECε, or
ECext

ε , then π[x/t] is a proof of A[x/t] from Γ in EC, ECε, or ECext
ε

Proof. Exercise.

Lemma 1.16. If π is a proof of B from Γ∪ {A}, then there is a proof π[A] of
A→ B from Γ, provided A contains no eigenvariables of π free.

Proof. Construct π[A]0 = ∅. Let πi+1[A] = πi[A] plus additional formulas,
depending on Ai:

1. If Ai ∈ Γ, add A → A, if Ai ≡ A, or else add Ai, the tautology Ai →
(A→ Ai), and A→ Ai. The last formula follows from the previous two
by (MP).

2. If Ai is a tautology, add A→ Ai, which is also a tautology.

3. If Ai follows from Ak and Al by (MP), i.e., Ai ≡ C, Ak ≡ B and Al ≡
B → C, then π[A]i contains A → B and A → (B → C). Add the
tautology (A → B) → ((B → C) → (A → C) and A → C. The latter
follows from the former by two applications of (MP).

4. If Ai follows from Aj by (R∃), i.e., Ai ≡ ∃xB(x)→ C and Aj ≡ B(x)→
C, then π[A]i contains A→ (B(x)→ C). π[A]i+1 is

π[A]i
(A→ (B(x)→ C))→ (B(x)→ (A→ C)) (taut)
B(x)→ (A→ C) (MP)
∃xB(x)→ (A→ C) (R∃)
(∃xB(x)→ (A→ C))→ (A→ (∃xB(x)→ C)) (taut)
A→ (∃xB(x)→ C) (MP)
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Since x /∈ FV(A), the eigenvariable condition is satisfied.

5. Exercise: Ai follows by (R∀).

Now take π[A] = π[A]i.

Theorem 1.17 (Deduction Theorem). If Σ ∪ {A} is a set of sentences, Σ `
A→ B iff Σ ∪ {A} ` B.

Corollary 1.18. If Σ ∪ {A} is a set of sentences, Σ ` A iff Σ ∪ {¬A} ` ⊥.

Lemma 1.19 (ε-Embedding Lemma). If Γ `πε∀ A, then there is a proof πε so
that Γεinst `πε

ε Aε

Proof. Exercise.

2 Semantics

2.1 Semantics for ECext
ε∀

Definition 2.1. A structure M = 〈|M| , (·)M〉 consists of a nonempty do-
main |M| 6= ∅ and a maping (·)M on function and predicate symbols where:

(f0
i )M ∈ |M|

(fni )M ∈MMn

(Pni )M ⊆Mn

Definition 2.2. An extensional choice function Φ on M is a function Φ: ℘(|M|)→
|M| where Φ(X) ∈ X whenever X 6= ∅.

Note that Φ is total on ℘(|M|), and so Φ(∅) ∈ |M|.

Definition 2.3. An assignment s on M is a function s : Var→ |M|.
If x ∈ Var and m ∈ |M|, s[x/m] is the assignment defined by

s[x/m](y) =

{
m if y = x

s(y) otherwise

Definition 2.4. The value valM,Φ,s(t) of a term and the satisfaction relation
M,Φ, s |= A are defined as follows:

1. valM,Φ,s(x) = s(x)

2. M,Φ, s |= > and M,Φ, s 6|= ⊥

3. valM,Φ,s(fni (t1, . . . , tn)) = (fni )M(valM,Φ,s(t1), . . . , valM,Φ,s(tn))

4. M,Φ, s |= Pni (t1, . . . , tn) iff 〈valM,Φ,s(t1), . . . , valM,Φ,s(tn)〉 ∈ (Pni )M
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5. valM,Φ,s(εxA(x)) = Φ(valM,Φ,s(A(x))) where

valM,Φ,s(A(x)) = {m ∈ |M| : M,Φ, s[x/m] |= A(x)}

6. M,Φ, s |= ∃xA(x) iff for some m ∈ |M|, M,Φ, s[x/m] |= A(x)

7. M,Φ, s |= ∀xA(x) iff for all m ∈ |M|, M,Φ, s[x/m] |= A(x)

Proposition 2.5. If s(x) = s′(x) for all x /∈ FV(t)∪FV(A), then valM,Φ,s(t) =
valM,Φ,s′(t) and M,Φ, s |= A iff M,Φ, s′ |= A.

Proof. Exercise.

Proposition 2.6 (Substitution Lemma). If m = valM,Φ,s(u), then valM,Φ,s(t(u)) =
valM,Φ,s[x/m](t(x)) and M,Φ, s |= A(u) iff M,Φ, s[x/m] |= A(x)

Proof. Exercise.

Definition 2.7. 1. A is locally true in M with respect to Φ and s iff M,Φ, s |=
A.

2. A is true in M with respect to Φ, M,Φ |= A, iff for all s on M: M,Φ, s |=
A.

3. A is generically true in M with respect to s, M, s |=g A, iff for all choice
functions Φ on M: M,Φ, s |= A.

4. A is generically valid in M, M |= A, if for all choice functions Φ and
assignments s on M: M,Φ, s |= A.

Definition 2.8. Let Γ ∪ {A} be a set of formulas.

1. A is a local consequence of Γ, Γ |=l A, iff for all M, Φ, and s:
if M,Φ, s |= Γ then M,Φ, s |= A.

2. A is a truth consequence of Γ, Γ |= A, iff for all M, Φ:
if M,Φ |= Γ then M,Φ |= A.

3. A is a generic consequence of Γ, Γ |=g A, iff for all M and s:
if M, s |=g Γ then M |= A.

4. A is a generic validity consequence of Γ, Γ |=v A, iff for all M:
if M |=v Γ then M |= A.

Exercise 2. What is the relationship between these consequence relations?
For instance, if Γ |=l A then Γ |= A and Γ |=g A, and if eiter Γ |= A or Γ |=g A,
then Γ |=v A. Are these containments strict? Are they identities (in general,
and in cases where the language of Γ, A is restricted, or if Γ, A are sentences)?
For instance:

Proposition 2.9. If Σ ∪ {A} is a set of sentences, Σ |=l A iff Σ |= A
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Proposition 2.10. If Σ ∪ {A,B} is a set of sentences, Σ ∪ {A} |= B iff
Σ |= A→ B.

Proof. Exercise.

Corollary 2.11. If Σ ∪ {A} is a set of sentences, Σ |= A iff for no M, Φ,
M |= Σ ∪ {¬A}

Proof. Exercise.

Exercise 3. For which of the other consequence relations, if any, do these
results hold?

2.2 Soundness for ECext
ε∀

Theorem 2.12. If Γ `ε∀ A, then Γ |=l A.

Proof. Suppose Γ,Φ, s |= Γ. We show by induction on the length n of a proof π
that M,Φ, s |=′ A for all s′ which agree with s on FV(Γ). We may assume that
no eigenvariable x of π is in FV(Γ) (if it is, let y /∈ FV(π) and not occurring
in π; consider π[x/y] instead of pi).

If n = 0 there’s nothing to prove. Otherwise, we distinguish cases according
to the last line An in π:

1. An ∈ Γ. The claim holds by assumption.

2. An is a tautology. Obvious.

3. An is an identity axiom. Obvious.

4. An is a critical formula, i.e., An ≡ A(t) → A(εxA(x)). Then either
M,Φ, s |= A(t) or not (in which case there’s nothing to prove). If yes,
M,Φ, s[x/m] |= A(x) for m = valM,Φ,s(t), and so Y = valM,Φ,s(A(x)) 6=
∅. Consequently, Φ(Y ) ∈ Y , and hence M,Φ, s |= A(εxA(x)).

5. An is an extensionality axiom. Exercise.

6. An follows from B and B → C by (MP). By induction hypothesis,
M,Φ, s |= B and M,Φ, s |= B → C.

7. A follows from B(x) → C by (R∃), and x satisfies the eigenvariable
condition. Exercise.

8. A follows from C → B(x) by (R∀), and x satisfies the eigenvariable
condition. Exercise.

Exercise 4. Complete the missing cases.
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2.3 Completeness for ECext
ε∀

Lemma 2.13. If Γ is a set of sentences in Lε and Γ 6`ε ⊥, then there are M,
Φ so that M,Φ |= Γ.

Theorem 2.14 (Completeness). If Γ ∪ {A} are sentences in Lε and Γ |= A,
then Γ `ε A.

Proof. Suppose Γ 6|= A. Then for some M, Φ we have M,Φ |= Γ but M,Φ 6|= A.
Hence M,Φ |= Γ ∪ {¬A}. By the Lemma, Γ ∪ {¬A} `ε ⊥. By Corollary 1.18,
Γ `ε A.

The proof of the Lemma comes in several stages. We have to show that
if Γ is consistent, we can construct M, Φ, and s so that M,Φ, s |= Γ. Since
FV(Γ) = ∅, we then have M,Φ |= Γ.

Lemma 2.15. If Γ 6`ε ⊥, there is Γ∗ ⊇ Γ with (1) Γ∗ 6`ε ⊥ and (2) for all
formulas A, either A ∈ Γ∗ or ¬A ∈ Γ∗.

Proof. Let A1, A2, . . . be an enumeration of Frmε. Define Γ0 = Γ and

Γn+1 =

{
Γn ∪ {An} if Γn ∪ {An} 6`ε ⊥
Γn ∪ {¬An} if Γn ∪ {¬An} 6`ε ⊥ otherwise

Let Γ∗ =
⋃
n≥0 Γn. Obviously, Γ ⊆ Γ∗. For (1), observe that if Γ∗ `πε ⊥, then

π contains only finitely many formulas from Γ∗, so for some n, Γn `πε ⊥. But
Γn is consistent by definition.

To verify (2), we have to show that for each n, either Γn ∪ {An} 6`ε ⊥ or
Γn∪{¬A} 6`ε ⊥. For n = 0, this is the assumtion of the lemma. So suppose the
claim holds for n− 1. Suppose Γn ∪ {A} `πε ⊥ and Γn ∪ {¬A} `π

′

ε ⊥. Then by
the Deduction Theorem, we have Γn `π[A]

A → ⊥ and Γn `π
′[A′]
¬ A → ⊥. Since

(A → ⊥) → ((¬A → ⊥) → ⊥) is a tautology, we have Γn `ε ⊥, contradicting
the induction hypothesis.

Lemma 2.16. If Γ∗ ` εB, then B ∈ Γ∗.

Proof. If not, then ¬B ∈ Γ∗ by maximality, so Γ∗ would be inconsistent.

Definition 2.17. Let ≈ be the relation on Trmε defined by

t ≈ u iff t = u ∈ Γ∗

It is easily seen that ≈ is an equivalence relation. Let t̃ = {u : u ≈ t} and
T̃rm = {t̃ : t ∈ Trm}.

Definition 2.18. A set T ∈ T̃rm is represented by A(x) if T = {t̃ : A(t) ∈ Γ∗}.
Let Φ0 be a fixed choice function on T̃rm, and define

Φ(T ) =

{
˜εxA(x) if T is represented by A(x)

Φ0(T ) otherwise.
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Proposition 2.19. Φ is a well-defined choice function on T̃rm.

Proof. Exercise. Use (ext) for well-definedness and (crit) for choice function.

Now let M = 〈T̃rm, (·)M〉 with cM = c̃, (Pni )M = {〈t̃1, . . . , t̃1〉 : Pni (t1, . . . , tn)},
and let s(x) = s̃.

Proposition 2.20. M,Φ, s |= Γ∗.

Proof. We show that valM,Φ,s(t) = t̃ and M,Φ, s |= A iff A ∈ Γ∗ by simultane-
uous induction on the complexity of t and A.

If t = c is a constant, the claim holds by definition of (·)M. If A = ⊥ or
= >, the claim holds by Lemma 2.16.

If A ≡ Pn(t1, . . . , tn), then by induction hypothesis, valM,Φ,s(t)i = t̃i. By
definition of (·)M, 〈t̃1, . . . , t̃n〉 ∈ (Pni )(t1, . . . , tn) iff Pni (t1, . . . , tn) ∈ Γ∗.

If A ≡ ¬B, (B ∧ C), (B ∨ C), (B → C), (B ↔ C), the claim follows
immediately from the induction hypothesis and the definition of |= and the
closure properties of Γ∗. For instance, M,Φ, s |= (B ∧ C) iff M,Φ, s |= B
and M,Φ, s |= C. By induction hypothesis, this is the case iff B ∈ Γ∗ and
C ∈ Γ∗. But since B,C `ε B ∧ C and B ∧ C `ε B and `ε C, this is the case
iff (B ∧ C) ∈ Γ∗. Remaining cases: Exercise.

If t ≡ εxA(x), then valM,Φ,s(t) = Φ(valM,Φ,s(A(x))). Since valM,Φ,s(A(x))

is represented by A(x) by induction hypothesis, we have valM,Φ,s(t) = ˜εxA(x)
by definition of Φ.

Exercise 5. Complete the proof.

Exercise 6. Generalize the proof to Lε∀ and ECε∀.

Exercise 7. Show ECε without (=1) and (=2), (ext), and the additional axiom

(∀x(A(x)↔ B(x)))ε → (C(εxA(x))↔ C(εxB(x))) (ext−)

is complete for |= in the language L−ε∀.

2.4 Semantics for ECε∀

In order to give a complete semantics for ECε∀, i.e., for the calculus without
the extensionality axion (ext), it is necessary to chnage the notion of choice
function so that two ε-terms εxA(x) and εxB(x) may be assigned different
representatives even when M,Φ, s |= ∀x(A(x)↔ B(x)), since then the negation
of (ext) is consistent in the resulting calculus. The idea is to add the ε-term
itself as an additional argument to the choice function. However, in order for
this semantics to be sound for the calculus—specifically, in order for (=2) to
be valid—we have to use not ε-terms but ε-types.
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Definition 2.21. An intensional choice operator is a mapping Ψ: Typ ×
|M|<ω → |M|℘(|M|) such that for every type p = εxA(x; y1, . . . , yn) is a type,
and m1, . . . , mn ∈ |M|, Ψ(p,m1, . . . ,mn) is a choice function.

Definition 2.22. If M is a structure, Ψ an intensional choice operator, and s
an assignment, valM,Ψ,s(t) and M,Ψ, s |= A is defined as before, except (5) in
Definition 2.4 is replaced by:

(5′) valM,Ψ,s(εxA(x)) = Ψ(p,m1, . . . ,mn)(valM,Φ,s(A(x))) where

a) p = εxA
′(x;x1, . . . , xn) is the type of εxA(x),

b) t1, . . . , tn are the subterms corresponding to x1, . . . , xn, i.e., εxA(x) ≡
εxA

′(x; t1, . . . , tn),

c) mi = valM,Ψ,s(t)1, and

d) valM,Φ,s(A(x)) = {m ∈ |M| : M,Ψ, s[x/m] |= A(x)}

Exercise 8. Prove the substitution lemma for this semantics.

Exercise 9. Prove soundness.

Exercise 10. Prove completeness of ECε∀ for this semantics.

Exercise 11. Define a semantics for the language without = where the choice
operatore takes ε-terms as arguments. Is the semantics sound and complete
for EC−ε∀?

3 The First Epsilon Theorem

3.1 The Case Without Identity

Theorem 3.1. If E is a formula not containing any ε-terms and `ECε∀
E,

then `EC E.

Definition 3.2. An ε-term e is critical in π if A(t) → A(e) is one of the
critical formulas in π. The rank rk(π) of a proof π is the maximal rank of
its critical ε-terms. The r-degree deg(π, r) of π is the maximum degree of its
critical ε-terms of rank r. The r-order o(π, r) of π is the number of different
(up to renaming of bound variables) critical ε-terms of rank r.

Lemma 3.3. If e = εxA(x), εy B(y) are critical in π, rk(e) = rk(π), and
B∗ ≡ B(u)→ B(εy B(y)) is a critical formula in π. Then, if e is a subterm of
B∗, it is a subterm of B(y) or a subterm of u.

Proof. Suppose not. Then, since e is a subterm of B∗, we have B(y) ≡
B′(εxA′(x, y), y) and either e ≡ εxA

′(x, u) or e ≡ εxA
′(x, εy B(y)). In each

case, we see that εxA′(x, y) and e have the same rank, since the latter is an
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instance of the former (and so have the same type). On the other hand, in
either case, εy B(y) would be

εy B
′(εxA′(x, y), y)

and so would have a higher rank than εxA′(x, y) as that ε-term is subordinate
to it. This contradicts rk(e) = rk(π).

Lemma 3.4. Let e, B∗ be as in the lemma, and t be any term. Then

1. If e is not a subterm of B(y), B∗{e/t} ≡ B(u′)→ B(εy B(y)).

2. If e is a subterm of B(y), i.e., B(y) ≡ B′(e, y), B∗{e/t} ≡ B′(t, u′) →
B′(t, εy B′(t, y)).

Proof. By inspection.

Lemma 3.5. If `πECε
E and E does not contain ε, then there is a proof π′

such that `π′ECε
E and rk(π′) ≤ rk(pi) = r and o(π′, r) < o(π, r).

Proof. Let e be an ε-term critical in π and let A(t1) → A(e), dots, A(tn) →
A(e) be all its critical formulas in π.

Consider π{e/t}i, i.e., π with e replaced by ti throughout. Each critical
formula belonging to e now is of the form A(t′j) → A(ti), since e obviously
cannot be a subterm of A(x) (if it were, e would be a subterm of εxA(x), i.e.,
of itself!). Let π̂i be the sequence of tautologies A(ti) → (A(t′j) → A(ti)) for
i = 1, . . . , n, followed by π{e/t}i. Each one of the formulas A(t′j) → A(ti)
follows from one of these by (MP) from A(ti). Hence, A(ti) `π̂i

ECε
E. Let

πi = π̂i[Ai] as in Lemma 1.16. We have `πi

ECε
Ai → E.

The ε-term e is not critical in πi: Its original critical formulas are replaced
by A(ti) → (A(t′j) → A(ti)), which are tautologies. By (1) of the preceding
Lemma, no critical ε-term of rank r was changed at all. By (2) of the preceding
Lemma, no critical ε-term of rank < r was replaced by a critical ε-term of
rank ≥ r. Hence, o(πi, r) = o(π)− 1.

Let π′′ be the sequence of tautologies ¬
∨n
i=1A(ti) → (A(ti) → A(e)) fol-

lowed by π. Then
∨n
i=1A(ti) `π

′′

E , e is not critical in π′′, and otherwise π and
π′′ have the same critical formulas. The same goes for π′′[¬

∨
A(ti)], a proof

of ¬
∨
A(ti)→ E.

We now obtain π′ as the πi, i = 1, . . . , n, followed by π[¬
∨n
i=1], followed

by the tautology

(¬
∨
A(ti)→ E)→ (A(t1)→ E)→ · · · → (A(tn)→ E)→ E) . . . )

from which E follows by n+ 1 applications of (MP).

of the first ε-Theorem. By induction on o(π, r), we have: if `πECε
E, then there

is a proof π∗ of E with rk(π−) < r. By induction on rk(()π) we have a proof
π∗∗ of E with rk(π∗∗) = 0, i.e., without critical formulas at all.
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Exercise 12. Check these proofs. Can you think of ways to improve the
proofs?

Exercise 13. If E contains ε-terms, the replacement of ε-terms in the con-
struction of πi may change E—but of course only the ε-terms appearing as
subterms in it. Use this fact to prove: If `ECε∀

E(e), then `EC

∨m
i=1E(tj) for

some terms tj . Can you guarantee that tj are ε-free.

3.2 The Case With Identitynew

In the presence of the identity (=) predicate in the language, things get a bit
more complicated. The reason is that instances of the (=2) axiom schema,

t = u→ (A(t)→ A(u))

may also contain ε-terms, and the replacement of an ε-term e by a term ti in
the construction of πi may result in a formula which no longer is an instance
of (=2). For instance, suppose that t is a subterm of e = e′(t) and A(t) is of
the form A′(e′(t)). Then the original axiom is

t = u→ (A′(e′(t))→ A′(e′(u))

which after replacing e = e′(t) by ti turns into

t = u→ (A′(ti)→ A′(e′(u)).

So this must be avoided. In order to do this, we first observe that just as in
the case of the predicate calculus, the instances of (=2) can be derived from
restricted instances. In the case of the predicate calculus, the restricted axioms
are

t = u→ (Pn(s1, . . . , t, . . . sn)→ Pn(s1, . . . , u, . . . , sn) (=′2)
t = u→ fn(s1, . . . , t, . . . , sn) = fn(s1, . . . , u, . . . , sn) (=′′2)

to which we have to add the ε-identity axiom schema:

t = u→ εxA(x; s1, . . . , t, . . . sn) = εxA(x; s1, . . . , u, . . . sn) (=ε)

where εxA(x;x1, . . . , xn) is an ε-type.

Proposition 3.6. Every instance of (=2) can be derived from (=′2), (=′′2), and
(=ε).

Proof. Exercise.

Now replacing every occurrence of e in an instance of (=′2) or (=′′2)—where
e obviously can only occur inside one of the terms t, u, s1, . . . , sn—results
in a (different) instance of (=′2) or (=′′2). The same is true of (=ε), provided
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that the e is neither εxA(x; s1, . . . , t, . . . sn) nor εxA(x; s1, . . . , u, . . . sn). This
would be guaranteed if the type of e is not εxA(x;x1, . . . , xn), in particular,
if the rank of e is higher than the rank of εxA(x;x1, . . . , xn). Moreover, the
result of replacing e by ti in any such instance of (=ε) results in an instance
of (=ε) which belongs to the same ε-type. Thus, in order for the proof of the
first ε-theorem to work also when = and axioms (=1), (=′2), (=′′2), and (=ε) are
present, it suffices to show that the instances of (=ε) with ε-terms of rank rk(π)
can be removed. Call an ε-term e special in π, if π contains an occurrence of
t = u→ e′ = e as an instance of (=ε).

Theorem 3.7. If `πECε
E, then there is a proof π= so that `π=

ECε
E, rk(π=) =

rk(pi), and the rank of the special ε-terms in π= has rank < rk(π).

The basic idea is simple: Suppose t = u → e′ = e is an instance of (=ε),
with e′ ≡ εxA(x; s1, . . . , t, . . . sn) and e ≡ εxA(x; s1, . . . , u, . . . sn). Replace e
everywhere in the proof by e′. Then the instance of (=ε) under consideration
is removed, since it is now provable from e′ = e′. This potentially interferes
with critical formulas belonging to e, but this can also be fixed: we just have
to show that by a judicious choice of e it can be done in such a way that the
other (=ε) axioms are still of the required form.

Let p = εxA(x;x1, . . . , xn) be an ε-type of rank rk(π), and let e1, . . . , el be
all the ε-terms of type p which have a corresponding instance of (=ε) in π. Let
Ti be the set of all immediate subterms of e1, . . . , el, in the same position as
xi, i.e., the smallest set of terms so that if ei ≡ εxA(x; t1, . . . , tn), then ti ∈ T .
Now let let T ∗ be all instances of p with terms from Ti substituted for the xi.
Obviously, T and thus T ∗ are finite (up to renaming of bound variables). Pick
a strict order ≺ on T which respects degree, i.e., if deg(t) < deg(u) then t ≺ u.
Extend ≺ to T ∗ by

εxA(x; t1, . . . , tn) ≺ εxA(x; t′1, . . . , t
′
n)

iff

1. max{deg(ti) : i = 1, . . . , n} < max{deg(ti) : i = 1, . . . , n} or

2. max{deg(ti) : i = 1, . . . , n} = max{deg(ti) : i = 1, . . . , n} and

a) ti ≡ t′i for i = 1, . . . , k.

b) tk+1 ≺ t′k+1

Lemma 3.8. Suppose `πECε
E, e a special ε-term in π with rk(e) = rk(π),

deg(e) maximal among the special ε-terms of rank rk(π), and e maximal with
respect to ≺ defined above. Let t = u → e′ = e be an instance of (=ε) in π.
Then there is a proof π′, `π′ECε

E such that

1. rk(π′) = rk(π)

2. π′ does not contain t = u→ e′ = e as an axiom
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3. Every special ε-term e′′ of π′ with the same type as e is so that e′′ ≺ e.

Proof. Let π0 = π{e/e′}.
Suppose t′ = u′ → e′′′ = e′′ is an (=ε) axiom in π.
If rk(e′′) < rk(e), then the replacement of e by e′ can only change subterms

of e′′ and e′′′. In this case, the uniform replacement results in another instance
of (=ε) with ε-terms of the same ε-type, and hence of the same rank < rk(π),
as the original.

If rk(e′′) = rk(e) but has a different type than e, then this axiom is un-
changed in π0: Neither e′′ nor e′′′ can be ≡ e, bcause they have different
ε-types, and neither e′′ nor e′′′ (nor t′ or u′, which are subterms of e′′, e′′′) can
contain e as a subterm, since then e wouldn’t be degree-maximal among the
special ε-terms of π of rank rk(π).

If the type of e′′, e′′′ is the same as that of e, e cannot be a proper subterm of
e′′ or e′′′, since otherwise e′′ or e′′′ would again be a special ε-term of rank rk(π)
but of higher degree than e. So either e ≡ e′′ or e ≡ e′′′, without loss of
generality suppose e ≡ e′′. Then the (=ε) axiom in question has the form

t′ = u′ → εxA(x; s1, . . . t
′, . . . sn)︸ ︷︷ ︸

e′′′

= εxA(x; s1, . . . u
′, . . . sn)︸ ︷︷ ︸

e′′≡e

and with e replaced by e′:

t′ = u′ → εxA(x; s1, . . . t
′, . . . sn)︸ ︷︷ ︸

e′′′

= εxA(x; s1, . . . t, . . . sn)︸ ︷︷ ︸
e′

which is no longer an instance of (=ε), but can be proved from new instances
of (=ε). We have to distinguish two cases according to whether the indicated
position of t and t′ in e′, e′′′ is the same or not. In the first case, u ≡ u′, and
the new formula

t′ = u→ εxA(x; s1, . . . t
′, . . . sn)︸ ︷︷ ︸

e′′′

= εxA(x; s1, . . . t, . . . sn)︸ ︷︷ ︸
e′

can be proved from t = u together with

t′ = t→ εxA(x; s1, . . . t
′, . . . sn)︸ ︷︷ ︸

e′′′

= εxA(x; s1, . . . t, . . . sn)︸ ︷︷ ︸
e′

(=ε)

t = u→ (t′ = u→ t′ = t) (=′2)

Since e′ and e′′′ already occured in π, by assumption e′, e′′′ ≺ e.
In the second case, the original formulas read, with terms indicated:

t = u→ εxA(x; s1, . . . t, . . . , u
′, . . . , sn)︸ ︷︷ ︸

e′

= εxA(x; s1, . . . u, . . . , u
′, . . . , sn)︸ ︷︷ ︸

e

t′ = u′ → εxA(x; s1, . . . u, . . . , t
′, . . . , sn)︸ ︷︷ ︸

e′′′

= εxA(x; s1, . . . u, . . . , u
′, . . . , sn)︸ ︷︷ ︸

e′′≡e
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and with e replaced by e′ the latter becomes:

t′ = u′ → εxA(x; s1, . . . u, . . . , t
′, . . . sn)︸ ︷︷ ︸

e′′′

= εxA(x; s1, . . . t, . . . , u
′, . . . , sn)︸ ︷︷ ︸

e′

This new formula is provable from t = u together with

u = t→ εxA(x; s1, . . . u, . . . , t
′, . . . sn)︸ ︷︷ ︸

e′′′

= εxA(x; s1, . . . t, . . . , t
′, . . . , sn)︸ ︷︷ ︸

e′′′′

t′ = u′ → εxA(x; s1, . . . t, . . . , t
′, . . . sn)︸ ︷︷ ︸

e′′′′

= εxA(x; s1, . . . t, . . . , u
′, . . . , sn)︸ ︷︷ ︸

e′

and some instances of (=′2). Hence, π′ contains a (possibly new) special ε-
term e′′′′. However, e′′′′ ≺ e (Exercise: prove this.)

In the special case where e = e′′ and e′ = e′′′, i.e., the instance of (=ε)
we started with, then replacing e by e′ results in t = u → e′ = e′, which is
provable from e′ = e′, an instance of (=1).

Let π1 be π0 with the necessary new instances of (=ε), added. The instances
of (=ε) in π1 satisfy the properties required in the statement of the lemma.

However, the results of replacing e by e′ may have impacted some of the
critical formulas in the original proof. For a critical formula to which e ≡
εxA(x, u) belongs is of the form

A(t′, u)→ A(εxA(x, u), u) (1)

which after replacing e by e′ becomes

A(t′′, u)→ A(εxA(x, t), u) (2)

which is no longer a critical formula. This formula, however, can be derived
from t = u together with

A(t′′, u)→ A(εxA(x, t), u) (ε)
t = u→ (A(εxA(x, t), t)→ A(εxA(x, t), u)) (=2)
u = t→ (A(t′′, u)→ A(t′′, t)) (=2)

Let π2 be π1 plus these derivations of (2) with the instances of (=2) themselves
proved from (=′2) and (=ε). The rank of the new critical formulas is the same,
so the rank of π2 is the same as that of π. The new instances of (=ε) required
for the derivation of the last two formulas only contain ε-terms of lower rank
that that of e. (Exercise: verify this.)

π2 is thus a proof of E from t = u which satisfies the conditions of the
lemma. From it, we obtain a proof π2[t = u] of t = u → E by the deduction
theorem. On the other hand, the instance t = u→ e′ = e under consideration
can also be proved trivially from t 6= u. The proof π[t 6= u] thus is also a proof,
this time of t 6= u→ E, which satisfies the conditions of the lemma. We obtain
π′ by combining the two proofs.



18 3. THE FIRST EPSILON THEOREM

Proof. Proof of the Theorem By repeated application of the Lemma, every
instance of (=ε) involving ε-terms of a given type p can be eliminated from the
proof. The Theorem follows by induction on the number of different types of
special ε-terms of rank rk(π) in π.

Exercise 14. Prove Proposition 3.6.

Exercise 15. Verify that ≺ is a strict total order.

Exercise 16. Complete the proof of the Lemma.


