Lectures on the Epsilon Calculus

Richard Zach

June 10, 2009—v. 3

Contents

Contents 1
1 Syntax 1
1.1 Languages 1
1.2ε-Types, Degree, and Rank 3
1.3 Axioms and Proofs 5
2 Semantics 7
2.1 Semantics for $\mathrm{EC}_{\varepsilon \forall}^{\mathrm{ext}}$ 7
2.2 Soundness for $\mathrm{EC}_{\varepsilon \forall}^{\mathrm{ext}}$ 9
2.3 Completeness for $\mathrm{EC}_{\varepsilon \forall}^{\text {ext }}$ 10
2.4 Semantics for $\mathrm{EC}_{\varepsilon} \forall$ 11
3 The First Epsilon-Theorem 12
3.1 The Case Without Identity 12
3.2 The Case With Identity 14

Exercise 1. Find the mistakes in these notes.

1 Syntax

1.1 Languages

Definition 1.1. The language of of the elementary calculus L_{EC} contains the following symbols:

1. Variables Var: x_{0}, x_{1}, \ldots
2. Function symbols Fct^{n} of arity n, for each $n \geq 0: f_{0}^{n}, f_{1}^{n}, \ldots$
3. Predicate symbols Pred^{n} of arity n, for each $n \geq 0: P_{0}^{n}, P_{1}^{n}, \ldots$
4. Identity: $=$
5. Propositional constants: \perp, \top.
6. Propositional operators: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$.
7. Punctuation: parentheses: (,); comma: ,

For any language L, we denote by L^{-}the language L without the identity symbol, by L_{ε} the language L plus the symbol ε, and by L_{\forall} the language L plus the quantifiers \forall and \exists. We will usually leave out the subscript EC, and write L_{\forall} for the language of the predicate calculus, L_{ε} for the language of the ε-calculus, and $L_{\varepsilon \forall}$ for the language of the extended epsilon calculus.

Definition 1.2. The terms Trm and formulas Frm of $L_{\varepsilon \forall}$ are defined as follows.

1. Every variable x is a term, and x is free in it.
2. If t_{1}, \ldots, t_{n} are terms, then $f_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)$ is a term, and x occurs free in it wherever it occurs free in t_{1}, \ldots, t_{n}.
3. If t_{1}, \ldots, t_{n} are terms, then $P_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)$ is an (atomic) formula, and x occurs free in it wherever it occurs free in t_{1}, \ldots, t_{n}.
4. \perp and \top are formulas.
5. If A is a formula, then $\neg A$ is a formula, with the same free occurrences of variables as A.
6. If A and B are formulas, then $(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are formulas, with the same free occurrences of variables as A and B.
7. If A is a formula in which x has a free occurrence but no bound occurrence, then $\forall x A$ and $\exists x A$ are formulas, and all occurrences of x in them are bound.
8. If A is a formula in which x has a free occurrence but no bound occurrence, then $\varepsilon_{x} A$ is a term, and all occurrences of x in it are bound.

The terms $\operatorname{Trm}(L)$ and formulas $\operatorname{Frm}(L)$ of a langauge L are those terms and formulas of $L_{\varepsilon \forall}$ in the vocabulary of L.

If E is an expression (term or formula), then $\mathrm{FV}(E)$ is the set of variables which have free occurrences in E. E is called closed if $\mathrm{FV}(E)=\emptyset$. A closed formula is also called a sentence.

When E, E^{\prime} are expressions (terms or formulas), we write $E \equiv E^{\prime}$ iff E and E^{\prime} are syntactically identical up to a renaming of bound variables. We say that a term t is free for x in E iff x does not occur free in the scope of an ε-operator ε_{y} or quantifier $\forall y, \exists y$ for any $y \in \mathrm{FV}(t)$.

If E is an expression and t is a term, we write $E[x / t]$ for the result of substituting every free occurrence of x in E by t, provided t is free for x in E, and renaming bound variables in t if necessary.

If t is not free for x in $E, E[x / t]$ is any formula $E\left[^{\prime} / x\right] t$ where $E^{\prime} \equiv E$ and t is free for x in E^{\prime}. If $E^{\prime} \equiv E\left[x_{1} / t_{1}\right] \ldots\left[x_{n} / t_{n}\right], E^{\prime}$ it is called an instance of E.

We write $E(x)$ to indicate that $x \in \mathrm{FV}(E)$, and $E(t)$ for $E[x / t]$. It will be apparent from the context which variable x is substituted for.

Definition 1.3. A term t is a subterm of an expression (term or formula) E, if for some $E^{\prime}(x), E \equiv E^{\prime}(x)[x / t]$. It is a proper subterm of a term u if it is a subterm of u but $t \not \equiv u$.

A term t is an immediate subterm of an expression E if t is a subterm of E, but not a subterm of a proper subterm of E.

Definition 1.4. If t is a subterm of E, i.e., for some E^{\prime} we have $E \equiv E^{\prime}[x / t]$, then $E\{t / u\}$ is $E^{\prime}[x / u]$.

We intend $E\{t / u\}$ to be the result of replacing every occurrence of t in E by u. But, the "brute-force" replacement of every occurrence of t in u may not be what we have in mind here. (a) We want to replace not just every occurrence of t by u, but every occurrence of a term $t^{\prime} \equiv t$. (b) t may have an occurrence in E where a variable in t is bound by a quantifier or ε outside t, and such occurrences shouldn't be replaced (they are not subterm occurrences).
(c) When replacing t by u, bound variables in u might have to be renamed to avoid conflicts with the bound variables in E^{\prime} and bound variables in E^{\prime} might have to be renamed to avoid free variables in u being bound.

Definition 1.5 (ε-Translation). If E is an expression, define E^{ε} by:

1. $E^{\varepsilon}=E$ if E is a variable, a constant symbol, or \perp.
2. If $E=f_{i}^{n}\left(t_{1}, \ldots, t_{n}\right), E^{\varepsilon}=f_{i}^{n}\left(t_{1}^{\varepsilon}, \ldots, t_{n}^{\varepsilon}\right)$.
3. If $E=P_{i}^{n}\left(t_{1}, \ldots, t_{n}\right), E^{\varepsilon}=P_{i}^{n}\left(t_{1}^{\varepsilon}, \ldots, t_{n}^{\varepsilon}\right)$.
4. If $E=\neg A$, then $E^{\varepsilon}=\neg A^{\varepsilon}$.
5. If $E=(A \wedge B),(A \vee B),(A \rightarrow B)$, or $(A \leftrightarrow B)$, then $E^{\varepsilon}=\left(A^{\varepsilon} \wedge B^{\varepsilon}\right)$, $\left(A^{\varepsilon} \vee B^{\varepsilon}\right),\left(A^{\varepsilon} \rightarrow B^{\varepsilon}\right)$, or $\left(A^{\varepsilon} \leftrightarrow B^{\varepsilon}\right)$, respectively.
6. If $E=\exists x A(x)$ or $\forall x A(x)$, then $E^{\varepsilon}=A^{\varepsilon}\left(\varepsilon_{x} A(x)^{\varepsilon}\right)$ or $A^{\varepsilon}\left(\varepsilon_{x} \neg A(x)^{\varepsilon}\right)$.
7. If $E=\varepsilon_{x} A(x)$, then $E^{\varepsilon}=\varepsilon_{x} A(x)^{\varepsilon}$.

1.2ε-Types, Degree, and Rank

Definition 1.6. An ε-term $p \equiv \varepsilon_{x} B\left(x ; x_{1}, \ldots, x_{n}\right)$ is a type of an ε-term $\varepsilon_{x} A(x)$ iff

1. $p \equiv \varepsilon_{x} A(x)\left[x_{1} / t_{1}\right] \ldots\left[x_{n} / t_{n}\right]$ for some terms t_{1}, \ldots, t_{n}.
2. $\operatorname{FV}(p)=\left\{x_{1}, \ldots, x_{n}\right\}$.
3. x_{1}, \ldots, x_{n} are all immediate subterms of p.
4. Each x_{i} has exactly one occurrence in p.
5. The occurrence of x_{i} is left of the occurrence of x_{j} in p if $i<j$.

We denote the set of types of a langauge as Typ.
Proposition 1.7. The type of an epsilon term $\varepsilon_{x} A(x)$ is unique up to renaming of bound, and disjoint renaming of free variables, i.e., if $p=\varepsilon_{x} B\left(x ; x_{1}, \ldots, x_{n}\right)$, $p^{\prime}=\varepsilon_{y} B^{\prime}\left(y ; y_{1}, \ldots, y_{m}\right)$ are types of $\varepsilon_{x} A(x)$, then $n=m$ and $p^{\prime} \equiv p\left[x_{1} / y_{1}\right] \ldots\left[x_{n} / y_{n}\right]$

Proof. Exercise.
Definition 1.8. An ε-term e is nested in an ε-term e^{\prime} if e is a proper subterm of e.

Definition 1.9. The degree $\operatorname{deg}(e)$ of an ε-term e is defined as follows:

1. $\operatorname{deg}(e)=1$ iff e contains no nested ε-terms.
2. $\operatorname{deg}(e)=\max \left\{\operatorname{deg}\left(e_{1}\right), \ldots, \operatorname{deg}\left(e_{n}\right)\right\}+1$ if e_{1}, \ldots, e_{n} are all the ε-terms nested in e.

For convenience, let $\operatorname{deg}(t)=0$ if t is not an ε-term.
Definition 1.10. An ε-term e is subordinate to an ε-term $e^{\prime}=\varepsilon_{x} A(x)$ if some $e^{\prime \prime} \equiv e$ occurs in e^{\prime} and $x \in \mathrm{FV}\left(e^{\prime \prime}\right)$.

Note that if e is subordinate to e^{\prime} it is not a subterm of e^{\prime}, because x is free in e and so the occurrence of e (really, of the variant $e^{\prime \prime}$) in e^{\prime} is in the scope of ε_{x}. One might think that replacing e in $\varepsilon_{x} A(x)$ by a new variable y would result in an ε-term $\varepsilon_{x} A^{\prime}(y)$ so that $e^{\prime} \equiv \varepsilon_{x} A^{\prime}(y)[y / e]$. But (a) $\varepsilon_{x} A^{\prime}(y)$ is not in general a term, since it is not guaranteed that x is free in $A^{\prime}(y)$ and (b) e is not free for y in $\varepsilon_{x} A^{\prime}(y)$.

Definition 1.11. The $\operatorname{rank} \operatorname{rk}(e)$ of an ε-term e is defined as follows:

1. $\operatorname{rk}(e)=1$ iff e contains no subordinate ε-terms.
2. $\operatorname{rk}(e)=\max \left\{\operatorname{rk}\left(e_{1}\right), \ldots, \operatorname{rk}\left(e_{n}\right)\right\}+1$ if e_{1}, \ldots, e_{n} are all the ε-terms subordinate to e.

Proposition 1.12. If p is the type of e, then $\operatorname{rk}(p)=\operatorname{rk}(e)$.
Proof. Exercise.

1.3 Axioms and Proofs

Definition 1.13. The axioms of the elementary calculus EC are

$$
\begin{gather*}
A \\
t=t \tag{}\\
t=u \rightarrow(A[x / t] \leftrightarrow A[x / u])
\end{gather*}
$$

$$
\text { for any tautology } A
$$

(Taut)

$$
\text { for any term } t
$$

for any term t

$$
\left(={ }_{2}\right)
$$

and its only rule of inference is

$$
\frac{A \quad A \rightarrow B}{A} \mathrm{MP}
$$

The axioms and rules of the (intensional) ε-calculus $\mathrm{EC}_{\varepsilon}$ are those of EC plus the critical formulas

$$
\begin{equation*}
A(t) \rightarrow A\left(\varepsilon_{x} A(x)\right) \tag{crit}
\end{equation*}
$$

The axioms and rules of the extensional ε-calculus $\mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$ are those of $\mathrm{EC}_{\varepsilon}$ plus

$$
(\forall x(A(x) \leftrightarrow B(x)))^{\varepsilon} \rightarrow \varepsilon_{x} A(x)=\varepsilon_{x} B(x) \quad(\mathrm{ext})
$$

that is,

$$
A\left(\varepsilon_{x} \neg(A(x) \leftrightarrow B(x))\right) \leftrightarrow B\left(\varepsilon_{x} \neg(A(x) \leftrightarrow B(x))\right) \rightarrow \varepsilon_{x} A(x)=\varepsilon_{x} B(x)
$$

The axioms and rules of $\mathrm{EC}_{\forall}, \mathrm{EC}_{\varepsilon \forall}, \mathrm{EC}_{\varepsilon \forall}^{\mathrm{ext}}$ are those of $\mathrm{EC}, \mathrm{EC}_{\varepsilon}, \mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$, respectively, together with the axioms

$$
\begin{align*}
A(t) & \rightarrow \exists x A(x) \\
\forall x A(x) & \rightarrow A(t)
\end{align*}
$$

and the rules

$$
\frac{A(x) \rightarrow B}{\exists x A(x) \rightarrow B} R \exists \quad \frac{B \rightarrow A(x)}{B \rightarrow \forall x A(x)} R \forall
$$

Applications of these rules must satisfy the eigenvariable condition, viz., the variable x must not appear in the conclusion or anywhere below it in the proof.

Definition 1.14. If Γ is a set of formulas, a proof of A from Γ in $\mathrm{EC}_{\varepsilon \forall}^{\mathrm{ext}}$ is a sequence π of formulas $A_{1}, \ldots, A_{n}=A$ where for each $i \leq n$, one of the following holds:

1. $A_{i} \in \Gamma$.
2. A_{i} is an instance of an axiom.
3. A_{i} follows from some $A_{k}, A_{l}(k, l<i)$ by (MP), i.e., $A_{i} \equiv C, A_{k} \equiv B$, and $A_{l} \equiv B \rightarrow C$.
4. A_{i} follows from some $A_{j}(j<i)$ by ($\mathrm{R} \exists$), i.e., i.e., $A_{i} \equiv \exists x B(x) \rightarrow C$, $A_{j} \equiv B(x) \rightarrow C$, and x is an eigenvariable, i.e., it satisfies $x \notin \mathrm{FV}\left(A_{k}\right)$ for any $k \geq i$ (this includes $k=i$, so $x \notin \mathrm{FV}(C)$).
5. A_{i} follows from some $A_{j}(j<i)$ by $(\mathrm{R} \forall)$, i.e., i.e., $A_{i} \equiv C \rightarrow \forall x B(x)$, $A_{j} \equiv C \rightarrow B(x)$, and the eigenvariable condition is satisfied.
If π only uses the axioms and rules of $\mathrm{EC}, \mathrm{EC}_{\varepsilon}, \mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$, etc., then it is a proof of A from Γ in $\mathrm{EC}, \mathrm{EC}_{\varepsilon}, \mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$, etc., and we write $\Gamma \vdash^{\pi} A, \Gamma \vdash_{\varepsilon}^{\pi} A, \Gamma \vdash_{\varepsilon \mathrm{ext}}^{\pi} A$, etc.

We say that A is provable from Γ in EC, etc. $(\Gamma \vdash A$, etc. $)$, if there is a proof of A from Γ in EC, etc.

Note that our definition of proof, because of its use of \equiv, includes a tacit rule for renaming bound variables. Note also that substitution into members of Γ is not permitted. However, we can simulate a provability relation in which substitution into members of Γ is allowed by considering $\Gamma^{\text {inst }}$, the set of all substitution instances of members of Γ. If Γ is a set of sentences, then $\Gamma^{\text {inst }}=\Gamma$.

Proposition 1.15. If $\pi=A_{1}, \ldots, A_{n} \equiv A$ is a proof of A from Γ and $x \notin \mathrm{FV}(\Gamma)$ is not an eigenvariable in π, then $\pi[x / t]=A_{1}[x / t], \ldots, A_{n}[x / t]$ is a proof of $A[x / t]$ from $\Gamma^{i n s t}$.

In particular, if Γ is a set of sentences and π is a proof in $\mathrm{EC}, \mathrm{EC}_{\varepsilon}$, or $\mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$, then $\pi[x / t]$ is a proof of $A[x / t]$ from Γ in $\mathrm{EC}, \mathrm{EC}_{\varepsilon}$, or $\mathrm{EC}_{\varepsilon}^{\mathrm{ext}}$

Proof. Exercise.
Lemma 1.16. If π is a proof of B from $\Gamma \cup\{A\}$, then there is a proof $\pi[A]$ of $A \rightarrow B$ from Γ, provided A contains no eigenvariables of π free.

Proof. Construct $\pi[A]_{0}=\emptyset$. Let $\pi_{i+1}[A]=\pi_{i}[A]$ plus additional formulas, depending on A_{i} :

1. If $A_{i} \in \Gamma$, add $A \rightarrow A$, if $A_{i} \equiv A$, or else add A_{i}, the tautology $A_{i} \rightarrow$ $\left(A \rightarrow A_{i}\right)$, and $A \rightarrow A_{i}$. The last formula follows from the previous two by (MP).
2. If A_{i} is a tautology, add $A \rightarrow A_{i}$, which is also a tautology.
3. If A_{i} follows from A_{k} and A_{l} by (MP), i.e., $A_{i} \equiv C, A_{k} \equiv B$ and $A_{l} \equiv$ $B \rightarrow C$, then $\pi[A]_{i}$ contains $A \rightarrow B$ and $A \rightarrow(B \rightarrow C)$. Add the tautology $(A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C)$ and $A \rightarrow C$. The latter follows from the former by two applications of (MP).
4. If A_{i} follows from A_{j} by (R \exists), i.e., $A_{i} \equiv \exists x B(x) \rightarrow C$ and $A_{j} \equiv B(x) \rightarrow$ C, then $\pi[A]_{i}$ contains $A \rightarrow(B(x) \rightarrow C) . \pi[A]_{i+1}$ is

$$
\begin{align*}
& \pi[A]_{i} \\
& (A \rightarrow(B(x) \rightarrow C)) \rightarrow(B(x) \rightarrow(A \rightarrow C)) \tag{taut}\\
& B(x) \rightarrow(A \rightarrow C) \tag{MP}\\
& \exists x B(x) \rightarrow(A \rightarrow C) \tag{Rヨ}\\
& (\exists x B(x) \rightarrow(A \rightarrow C)) \rightarrow(A \rightarrow(\exists x B(x) \rightarrow C)) \tag{taut}\\
& A \rightarrow(\exists x B(x) \rightarrow C) \tag{MP}
\end{align*}
$$

Since $x \notin \mathrm{FV}(A)$, the eigenvariable condition is satisfied.
5. Exercise: A_{i} follows by ($\mathrm{R} \forall$).

Now take $\pi[A]=\pi[A]_{i}$.
Theorem 1.17 (Deduction Theorem). If $\Sigma \cup\{A\}$ is a set of sentences, $\Sigma \vdash$ $A \rightarrow B$ iff $\Sigma \cup\{A\} \vdash B$.

Corollary 1.18. If $\Sigma \cup\{A\}$ is a set of sentences, $\Sigma \vdash A$ iff $\Sigma \cup\{\neg A\} \vdash \perp$.
Lemma 1.19 (ε-Embedding Lemma). If $\Gamma \vdash_{\varepsilon \forall}^{\pi}$ A, then there is a proof π^{ε} so that $\Gamma^{\varepsilon \text { inst }} \vdash_{\varepsilon}^{\pi^{\varepsilon}} A^{\varepsilon}$

Proof. Exercise.

2 Semantics

2.1 Semantics for $E C_{\varepsilon \forall}^{\text {ext }}$

Definition 2.1. A structure $\mathfrak{M}=\langle | \mathfrak{M}\left|,(\cdot)^{\mathfrak{M}}\right\rangle$ consists of a nonempty do$\operatorname{main}|\mathfrak{M}| \neq \emptyset$ and a maping $(\cdot)^{\mathfrak{M}}$ on function and predicate symbols where:

$$
\begin{aligned}
\left(f_{i}^{0}\right)^{\mathfrak{M}} & \in|\mathfrak{M}| \\
\left(f_{i}^{n}\right)^{M} & \in \mathfrak{M}^{\mathfrak{M}} \\
\left(P_{i}^{n}\right)^{\mathfrak{M}} & \subseteq \mathfrak{M}^{n}
\end{aligned}
$$

Definition 2.2. An extensional choice function Φ on \mathfrak{M} is a function $\Phi: \wp(|\mathfrak{M}|) \rightarrow$ $|\mathfrak{M}|$ where $\Phi(X) \in X$ whenever $X \neq \emptyset$.

Note that Φ is total on $\wp(|\mathfrak{M}|)$, and so $\Phi(\emptyset) \in|\mathfrak{M}|$.
Definition 2.3. An assignment s on \mathfrak{M} is a function s : Var $\rightarrow|\mathfrak{M}|$.
If $x \in \operatorname{Var}$ and $m \in|\mathfrak{M}|, s[x / m]$ is the assignment defined by

$$
s[x / m](y)= \begin{cases}m & \text { if } y=x \\ s(y) & \text { otherwise }\end{cases}
$$

Definition 2.4. The value $\operatorname{val}_{\mathfrak{M}, \Phi, s}(t)$ of a term and the satisfaction relation $\mathfrak{M}, \Phi, s \vDash A$ are defined as follows:

1. $\operatorname{val}_{\mathfrak{M}, \Phi, s}(x)=s(x)$
2. $\mathfrak{M}, \Phi, s \models \top$ and $\mathfrak{M}, \Phi, s \not \vDash \perp$
3. $\operatorname{val}_{\mathfrak{M}, \Phi, s}\left(f_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)\right)=\left(f_{i}^{n}\right)^{\mathfrak{M}}\left(\operatorname{val}_{\mathfrak{M}, \Phi, s}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathfrak{M}, \Phi, s}\left(t_{n}\right)\right)$
4. $\mathfrak{M}, \Phi, s \models P_{i}^{n}\left(t_{1}, \ldots, t_{n}\right) \operatorname{iff}\left\langle\operatorname{val}_{\mathfrak{M}, \Phi, s}\left(t_{1}\right), \ldots, \operatorname{val}_{\mathfrak{M}, \Phi, s}\left(t_{n}\right)\right\rangle \in\left(P_{i}^{n}\right)^{\mathfrak{M}}$
5. $\operatorname{val}_{\mathfrak{M}, \Phi, s}\left(\varepsilon_{x} A(x)\right)=\Phi\left(\operatorname{val}_{\mathfrak{M}, \Phi, s}(A(x))\right)$ where

$$
\operatorname{val}_{\mathfrak{M}, \Phi, s}(A(x))=\{m \in|\mathfrak{M}|: \mathfrak{M}, \Phi, s[x / m] \models A(x)\}
$$

6. $\mathfrak{M}, \Phi, s \models \exists x A(x)$ iff for some $m \in|\mathfrak{M}|, \mathfrak{M}, \Phi, s[x / m] \models A(x)$
7. $\mathfrak{M}, \Phi, s \models \forall x A(x)$ iff for all $m \in|\mathfrak{M}|, \mathfrak{M}, \Phi, s[x / m] \models A(x)$

Proposition 2.5. If $s(x)=s^{\prime}(x)$ for all $x \notin \mathrm{FV}(t) \cup \mathrm{FV}(A)$, then $\operatorname{val}_{\mathfrak{M}, \Phi, s}(t)=$ $\operatorname{val}_{\mathfrak{M}, \Phi, s^{\prime}}(t)$ and $\mathfrak{M}, \Phi, s \models A$ iff $\mathfrak{M}, \Phi, s^{\prime} \models A$.

Proof. Exercise.
Proposition 2.6 (Substitution Lemma). If $m=\operatorname{val}_{\mathfrak{M}, \Phi, s}(u)$, then $\operatorname{val}_{\mathfrak{M}, \Phi, s}(t(u))=$ $\operatorname{val}_{\mathfrak{M}, \Phi, s[x / m]}(t(x))$ and $\mathfrak{M}, \Phi, s \models A(u)$ iff $\mathfrak{M}, \Phi, s[x / m] \models A(x)$

Proof. Exercise.
Definition 2.7. 1. A is locally true in \mathfrak{M} with respect to Φ and s iff $\mathfrak{M}, \Phi, s \models$ A.
2. A is true in \mathfrak{M} with respect to $\Phi, \mathfrak{M}, \Phi \models A$, iff for all s on $\mathfrak{M}: \mathfrak{M}, \Phi, s \models$ A.
3. A is generically true in \mathfrak{M} with respect to $s, \mathfrak{M}, s \models^{g} A$, iff for all choice functions Φ on $\mathfrak{M}: \mathfrak{M}, \Phi, s \models A$.
4. A is generically valid in $\mathfrak{M}, \mathfrak{M} \vDash A$, if for all choice functions Φ and assignments s on $\mathfrak{M}: \mathfrak{M}, \Phi, s \models A$.

Definition 2.8. Let $\Gamma \cup\{A\}$ be a set of formulas.

1. A is a local consequence of $\Gamma, \Gamma \models^{l} A$, iff for all \mathfrak{M}, Φ, and s : if $\mathfrak{M}, \Phi, s \models \Gamma$ then $\mathfrak{M}, \Phi, s \models A$.
2. A is a truth consequence of $\Gamma, \Gamma \models A$, iff for all \mathfrak{M}, Φ : if $\mathfrak{M}, \Phi \models \Gamma$ then $\mathfrak{M}, \Phi \models A$.
3. A is a generic consequence of $\Gamma, \Gamma \models^{g} A$, iff for all \mathfrak{M} and s : if $\mathfrak{M}, s \models^{g} \Gamma$ then $\mathfrak{M} \vDash A$.
4. A is a generic validity consequence of $\Gamma, \Gamma \not \models^{v} A$, iff for all \mathfrak{M} : if $\mathfrak{M} \models^{v} \Gamma$ then $\mathfrak{M} \models A$.

Exercise 2. What is the relationship between these consequence relations? For instance, if $\Gamma \models^{l} A$ then $\Gamma \models A$ and $\Gamma \models^{g} A$, and if eiter $\Gamma \models A$ or $\Gamma \models^{g} A$, then $\Gamma \models^{v} A$. Are these containments strict? Are they identities (in general, and in cases where the language of Γ, A is restricted, or if Γ, A are sentences)? For instance:

Proposition 2.9. If $\Sigma \cup\{A\}$ is a set of sentences, $\Sigma \models^{l} A$ iff $\Sigma \models A$

Proposition 2.10. If $\Sigma \cup\{A, B\}$ is a set of sentences, $\Sigma \cup\{A\} \vDash B$ iff $\Sigma \models A \rightarrow B$.

Proof. Exercise.
Corollary 2.11. If $\Sigma \cup\{A\}$ is a set of sentences, $\Sigma \vDash A$ iff for no \mathfrak{M}, Φ, $\mathfrak{M} \mid=\Sigma \cup\{\neg A\}$

Proof. Exercise.
Exercise 3. For which of the other consequence relations, if any, do these results hold?

2.2 Soundness for $\mathrm{EC}_{\varepsilon \forall}^{\text {ext }}$

Theorem 2.12. If $\Gamma \vdash_{\varepsilon \forall} A$, then $\Gamma \not \models^{l} A$.
Proof. Suppose $\Gamma, \Phi, s \models \Gamma$. We show by induction on the length n of a proof π that $\mathfrak{M}, \Phi, s \models^{\prime} A$ for all s^{\prime} which agree with s on $\mathrm{FV}(\Gamma)$. We may assume that no eigenvariable x of π is in $\mathrm{FV}(\Gamma)$ (if it is, let $y \notin \mathrm{FV}(\pi)$ and not occurring in π; consider $\pi[x / y]$ instead of $p i$).

If $n=0$ there's nothing to prove. Otherwise, we distinguish cases according to the last line A_{n} in π :

1. $A_{n} \in \Gamma$. The claim holds by assumption.
2. A_{n} is a tautology. Obvious.
3. A_{n} is an identity axiom. Obvious.
4. A_{n} is a critical formula, i.e., $A_{n} \equiv A(t) \rightarrow A\left(\varepsilon_{x} A(x)\right)$. Then either $\mathfrak{M}, \Phi, s \models A(t)$ or not (in which case there's nothing to prove). If yes, $\mathfrak{M}, \Phi, s[x / m] \vDash A(x)$ for $m=\operatorname{val}_{\mathfrak{M}, \Phi, s}(t)$, and so $Y=\operatorname{val}_{\mathfrak{M}, \Phi, s}(A(x)) \neq$ \emptyset. Consequently, $\Phi(Y) \in Y$, and hence $\mathfrak{M}, \Phi, s \models A\left(\varepsilon_{x} A(x)\right)$.
5. A_{n} is an extensionality axiom. Exercise.
6. A_{n} follows from B and $B \rightarrow C$ by (MP). By induction hypothesis, $\mathfrak{M}, \Phi, s \models B$ and $\mathfrak{M}, \Phi, s \models B \rightarrow C$.
7. A follows from $B(x) \rightarrow C$ by ($\mathrm{R} \exists$), and x satisfies the eigenvariable condition. Exercise.
8. A follows from $C \rightarrow B(x)$ by ($\mathrm{R} \forall$), and x satisfies the eigenvariable condition. Exercise.

Exercise 4. Complete the missing cases.

2.3 Completeness for $\mathrm{EC}_{\varepsilon \forall}^{\mathrm{ext}}$

Lemma 2.13. If Γ is a set of sentences in L_{ε} and $\Gamma \nvdash_{\varepsilon} \perp$, then there are \mathfrak{M}, Φ so that $\mathfrak{M}, \Phi \models \Gamma$.

Theorem 2.14 (Completeness). If $\Gamma \cup\{A\}$ are sentences in L_{ε} and $\Gamma \models A$, then $\Gamma \vdash_{\varepsilon} A$.

Proof. Suppose $\Gamma \not \vDash A$. Then for some \mathfrak{M}, Φ we have $\mathfrak{M}, \Phi \models \Gamma$ but $\mathfrak{M}, \Phi \not \vDash A$. Hence $\mathfrak{M}, \Phi \models \Gamma \cup\{\neg A\}$. By the Lemma, $\Gamma \cup\{\neg A\} \vdash_{\varepsilon} \perp$. By Corollary 1.18, $\Gamma \vdash_{\varepsilon} A$.

The proof of the Lemma comes in several stages. We have to show that if Γ is consistent, we can construct \mathfrak{M}, Φ, and s so that $\mathfrak{M}, \Phi, s \models \Gamma$. Since $\mathrm{FV}(\Gamma)=\emptyset$, we then have $\mathfrak{M}, \Phi \models \Gamma$.

Lemma 2.15. If $\Gamma H_{\varepsilon} \perp$, there is $\Gamma^{*} \supseteq \Gamma$ with (1) $\Gamma^{*} H_{\varepsilon} \perp$ and (2) for all formulas A, either $A \in \Gamma^{*}$ or $\neg A \in \Gamma^{*}$.

Proof. Let A_{1}, A_{2}, \ldots be an enumeration of $\operatorname{Frm}_{\varepsilon}$. Define $\Gamma_{0}=\Gamma$ and

$$
\Gamma_{n+1}= \begin{cases}\Gamma_{n} \cup\left\{A_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{A_{n}\right\} \nvdash \varepsilon \perp \\ \Gamma_{n} \cup\left\{\neg A_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{\neg A_{n}\right\} \nvdash \varepsilon \perp \text { otherwise }\end{cases}
$$

Let $\Gamma^{*}=\bigcup_{n>0} \Gamma_{n}$. Obviously, $\Gamma \subseteq \Gamma^{*}$. For (1), observe that if $\Gamma^{*} \vdash_{\varepsilon}^{\pi} \perp$, then π contains only finitely many formulas from Γ^{*}, so for some $n, \Gamma_{n} \vdash_{\varepsilon}^{\pi} \perp$. But Γ_{n} is consistent by definition.

To verify (2), we have to show that for each n, either $\Gamma_{n} \cup\left\{A_{n}\right\} \nvdash_{\varepsilon} \perp$ or $\Gamma_{n} \cup\{\neg A\} \nvdash_{\varepsilon} \perp$. For $n=0$, this is the assumtion of the lemma. So suppose the claim holds for $n-1$. Suppose $\Gamma_{n} \cup\{A\} \vdash_{\varepsilon}^{\pi} \perp$ and $\Gamma_{n} \cup\{\neg A\} \vdash \vdash_{\varepsilon}^{\pi^{\prime}} \perp$. Then by the Deduction Theorem, we have $\Gamma_{n} \vdash_{A}^{\pi[A]} \rightarrow \perp$ and $\Gamma_{n} \vdash_{\neg}^{\pi^{\prime}\left[A^{\prime}\right]} A \rightarrow \perp$. Since $(A \rightarrow \perp) \rightarrow((\neg A \rightarrow \perp) \rightarrow \perp)$ is a tautology, we have $\Gamma_{n} \vdash_{\varepsilon} \perp$, contradicting the induction hypothesis.

Lemma 2.16. If $\Gamma^{*} \vdash \varepsilon B$, then $B \in \Gamma^{*}$.
Proof. If not, then $\neg B \in \Gamma^{*}$ by maximality, so Γ^{*} would be inconsistent.
Definition 2.17. Let \approx be the relation on $\operatorname{Trm}_{\varepsilon}$ defined by

$$
t \approx u \operatorname{iff} t=u \in \Gamma^{*}
$$

It is easily seen that \approx is an equivalence relation. Let $\tilde{t}=\{u: u \approx t\}$ and $\widetilde{\operatorname{Trm}}=\{\widetilde{t}: t \in \operatorname{Trm}\}$.

Definition 2.18. A set $T \in \widetilde{\operatorname{Trm}}$ is represented by $A(x)$ if $T=\left\{\widetilde{t}: A(t) \in \Gamma^{*}\right\}$. Let Φ_{0} be a fixed choice function on $\widetilde{\text { Trm }}$, and define

$$
\Phi(T)= \begin{cases}\widetilde{\varepsilon_{x} A(x)} & \text { if } T \text { is represented by } A(x) \\ \Phi_{0}(T) & \text { otherwise }\end{cases}
$$

Proposition 2.19. Φ is a well-defined choice function on $\widetilde{\operatorname{Trm}}$.
Proof. Exercise. Use (ext) for well-definedness and (crit) for choice function.

Now let $\mathfrak{M}=\left\langle\widetilde{\operatorname{Trm}},(\cdot)^{\mathfrak{M}}\right\rangle$ with $c^{\mathfrak{M}}=\widetilde{c},\left(P_{i}^{n}\right)^{\mathfrak{M}}=\left\{\left\langle\widetilde{t}_{1}, \ldots, \widetilde{t}_{1}\right\rangle: P_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)\right\}$, and let $s(x)=\widetilde{s}$.

Proposition 2.20. $\mathfrak{M}, \Phi, s \models \Gamma^{*}$.
Proof. We show that $\operatorname{val}_{\mathfrak{M}, \Phi, s}(t)=\tilde{t}$ and $\mathfrak{M}, \Phi, s \models A$ iff $A \in \Gamma^{*}$ by simultaneuous induction on the complexity of t and A.

If $t=c$ is a constant, the claim holds by definition of $(\cdot)^{\mathfrak{M}}$. If $A=\perp$ or $=\top$, the claim holds by Lemma 2.16.

If $A \equiv P^{n}\left(t_{1}, \ldots, t_{n}\right)$, then by induction hypothesis, $\operatorname{val}_{\mathfrak{M}, \Phi, s}(t)_{i}=\widetilde{t_{i}}$. By definition of $(\cdot)^{\mathfrak{M}},\left\langle\widetilde{t_{1}}, \ldots, \tilde{t_{n}}\right\rangle \in\left(P_{i}^{n}\right)\left(t_{1}, \ldots, t_{n}\right)$ iff $P_{i}^{n}\left(t_{1}, \ldots, t_{n}\right) \in \Gamma^{*}$.

If $A \equiv \neg B,(B \wedge C),(B \vee C),(B \rightarrow C),(B \leftrightarrow C)$, the claim follows immediately from the induction hypothesis and the definition of \vDash and the closure properties of Γ^{*}. For instance, $\mathfrak{M}, \Phi, s \models(B \wedge C)$ iff $\mathfrak{M}, \Phi, s \models B$ and $\mathfrak{M}, \Phi, s \models C$. By induction hypothesis, this is the case iff $B \in \Gamma^{*}$ and $C \in \Gamma^{*}$. But since $B, C \vdash_{\varepsilon} B \wedge C$ and $B \wedge C \vdash_{\varepsilon} B$ and $\vdash_{\varepsilon} C$, this is the case iff $(B \wedge C) \in \Gamma^{*}$. Remaining cases: Exercise.

If $t \equiv \varepsilon_{x} A(x)$, then $\operatorname{val}_{\mathfrak{M}, \Phi, s}(t)=\Phi\left(\operatorname{val}_{\mathfrak{M}, \Phi, s}(A(x))\right)$. Since $\operatorname{val}_{\mathfrak{M}, \Phi, s}(A(x))$ is represented by $A(x)$ by induction hypothesis, we have val ${ }_{\mathfrak{M}, \Phi, s}(t)=\varepsilon_{x} A(x)$ by definition of Φ.

Exercise 5. Complete the proof.
Exercise 6. Generalize the proof to $L_{\varepsilon \forall}$ and $\mathrm{EC}_{\varepsilon \forall}$.
Exercise 7. Show $\mathrm{EC}_{\varepsilon}$ without $\left(=_{1}\right)$ and $\left(=_{2}\right)$, (ext), and the additional axiom

$$
(\forall x(A(x) \leftrightarrow B(x)))^{\varepsilon} \rightarrow\left(C\left(\varepsilon_{x} A(x)\right) \leftrightarrow C\left(\varepsilon_{x} B(x)\right)\right) \quad\left(\operatorname{ext}^{-}\right)
$$

is complete for \models in the language $L_{\varepsilon \forall}^{-}$.

2.4 Semantics for $\mathrm{EC}_{\varepsilon \forall}$

In order to give a complete semantics for $\mathrm{EC}_{\varepsilon \forall} \forall$, i.e., for the calculus without the extensionality axion (ext), it is necessary to chnage the notion of choice function so that two ε-terms $\varepsilon_{x} A(x)$ and $\varepsilon_{x} B(x)$ may be assigned different representatives even when $\mathfrak{M}, \Phi, s \models \forall x(A(x) \leftrightarrow B(x))$, since then the negation of (ext) is consistent in the resulting calculus. The idea is to add the ε-term itself as an additional argument to the choice function. However, in order for this semantics to be sound for the calculus - specifically, in order for $\left(=_{2}\right)$ to be valid-we have to use not ε-terms but ε-types.

Definition 2.21. An intensional choice operator is a mapping $\Psi:$ Typ \times $|\mathfrak{M}|^{<\omega} \rightarrow|\mathfrak{M}|^{\wp(|\mathfrak{M}|)}$ such that for every type $p=\varepsilon_{x} A\left(x ; y_{1}, \ldots, y_{n}\right)$ is a type, and $m_{1}, \ldots, m_{n} \in|\mathfrak{M}|, \Psi\left(p, m_{1}, \ldots, m_{n}\right)$ is a choice function.

Definition 2.22. If \mathfrak{M} is a structure, Ψ an intensional choice operator, and s an assignment, $\operatorname{val}_{\mathfrak{M}, \Psi, s}(t)$ and $\mathfrak{M}, \Psi, s \models A$ is defined as before, except (5) in Definition 2.4 is replaced by:
$\left(5^{\prime}\right) \operatorname{val}_{\mathfrak{M}, \Psi, s}\left(\varepsilon_{x} A(x)\right)=\Psi\left(p, m_{1}, \ldots, m_{n}\right)\left(\operatorname{val}_{\mathfrak{M}, \Phi, s}(A(x))\right)$ where
a) $p=\varepsilon_{x} A^{\prime}\left(x ; x_{1}, \ldots, x_{n}\right)$ is the type of $\varepsilon_{x} A(x)$,
b) t_{1}, \ldots, t_{n} are the subterms corresponding to x_{1}, \ldots, x_{n}, i.e., $\varepsilon_{x} A(x) \equiv$ $\varepsilon_{x} A^{\prime}\left(x ; t_{1}, \ldots, t_{n}\right)$,
c) $m_{i}=\operatorname{val}_{\mathfrak{M}, \Psi, s}(t)_{1}$, and
d) $\operatorname{val}_{\mathfrak{M}, \Phi, s}(A(x))=\{m \in|\mathfrak{M}|: \mathfrak{M}, \Psi, s[x / m] \models A(x)\}$

Exercise 8. Prove the substitution lemma for this semantics.
Exercise 9. Prove soundness.
Exercise 10. Prove completeness of $\mathrm{EC}_{\varepsilon \forall}$ for this semantics.
Exercise 11. Define a semantics for the language without $=$ where the choice operatore takes ε-terms as arguments. Is the semantics sound and complete for $\mathrm{EC}_{\varepsilon \forall}^{-}$?

3 The First Epsilon Theorem

3.1 The Case Without Identity

Theorem 3.1. If E is a formula not containing any ε-terms and $\vdash_{\mathrm{EC}_{\varepsilon \forall}} E$, then $\vdash_{\text {EC }} E$.

Definition 3.2. An ε-term e is critical in π if $A(t) \rightarrow A(e)$ is one of the critical formulas in π. The rank $\operatorname{rk}(\pi)$ of a proof π is the maximal rank of its critical ε-terms. The r-degree $\operatorname{deg}(\pi, r)$ of π is the maximum degree of its critical ε-terms of rank r. The r-order $o(\pi, r)$ of π is the number of different (up to renaming of bound variables) critical ε-terms of rank r.

Lemma 3.3. If $e=\varepsilon_{x} A(x), \varepsilon_{y} B(y)$ are critical in $\pi, \operatorname{rk}(e)=\operatorname{rk}(\pi)$, and $B^{*} \equiv B(u) \rightarrow B\left(\varepsilon_{y} B(y)\right)$ is a critical formula in π. Then, if e is a subterm of B^{*}, it is a subterm of $B(y)$ or a subterm of u.

Proof. Suppose not. Then, since e is a subterm of B^{*}, we have $B(y) \equiv$ $B^{\prime}\left(\varepsilon_{x} A^{\prime}(x, y), y\right)$ and either $e \equiv \varepsilon_{x} A^{\prime}(x, u)$ or $e \equiv \varepsilon_{x} A^{\prime}\left(x, \varepsilon_{y} B(y)\right)$. In each case, we see that $\varepsilon_{x} A^{\prime}(x, y)$ and e have the same rank, since the latter is an
instance of the former (and so have the same type). On the other hand, in either case, $\varepsilon_{y} B(y)$ would be

$$
\varepsilon_{y} B^{\prime}\left(\varepsilon_{x} A^{\prime}(x, y), y\right)
$$

and so would have a higher rank than $\varepsilon_{x} A^{\prime}(x, y)$ as that ε-term is subordinate to it. This contradicts $\operatorname{rk}(e)=\operatorname{rk}(\pi)$.

Lemma 3.4. Let e, B^{*} be as in the lemma, and t be any term. Then

1. If e is not a subterm of $B(y), B^{*}\{e / t\} \equiv B\left(u^{\prime}\right) \rightarrow B\left(\varepsilon_{y} B(y)\right)$.
2. If e is a subterm of $B(y)$, i.e., $B(y) \equiv B^{\prime}(e, y), B^{*}\{e / t\} \equiv B^{\prime}\left(t, u^{\prime}\right) \rightarrow$ $B^{\prime}\left(t, \varepsilon_{y} B^{\prime}(t, y)\right)$.

Proof. By inspection.
Lemma 3.5. If $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi} E$ and E does not contain ε, then there is a proof π^{\prime} such that $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi^{\prime}} E$ and $\operatorname{rk}\left(\pi^{\prime}\right) \leq \operatorname{rk}(p i)=r$ and $o\left(\pi^{\prime}, r\right)<o(\pi, r)$.

Proof. Let e be an ε-term critical in π and let $A\left(t_{1}\right) \rightarrow A(e)$, dots, $A\left(t_{n}\right) \rightarrow$ $A(e)$ be all its critical formulas in π.

Consider $\pi\{e / t\}_{i}$, i.e., π with e replaced by t_{i} throughout. Each critical formula belonging to e now is of the form $A\left(t_{j}^{\prime}\right) \rightarrow A\left(t_{i}\right)$, since e obviously cannot be a subterm of $A(x)$ (if it were, e would be a subterm of $\varepsilon_{x} A(x)$, i.e., of itself!). Let $\hat{\pi}_{i}$ be the sequence of tautologies $A\left(t_{i}\right) \rightarrow\left(A\left(t_{j}^{\prime}\right) \rightarrow A\left(t_{i}\right)\right)$ for $i=1, \ldots, n$, followed by $\pi\{e / t\}_{i}$. Each one of the formulas $A\left(t_{j}^{\prime}\right) \rightarrow A\left(t_{i}\right)$ follows from one of these by (MP) from $A\left(t_{i}\right)$. Hence, $A\left(t_{i}\right) \vdash_{\mathrm{EC}_{\varepsilon}}^{\hat{\pi}_{i}}$ E. Let $\pi_{i}=\hat{\pi}_{i}\left[A_{i}\right]$ as in Lemma 1.16. We have $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi_{i}} A_{i} \rightarrow E$.

The ε-term e is not critical in π_{i} : Its original critical formulas are replaced by $A\left(t_{i}\right) \rightarrow\left(A\left(t_{j}^{\prime}\right) \rightarrow A\left(t_{i}\right)\right)$, which are tautologies. By (1) of the preceding Lemma, no critical ε-term of rank r was changed at all. By (2) of the preceding Lemma, no critical ε-term of rank $<r$ was replaced by a critical ε-term of rank $\geq r$. Hence, $o\left(\pi_{i}, r\right)=o(\pi)-1$.

Let $\pi^{\prime \prime}$ be the sequence of tautologies $\neg \bigvee_{i=1}^{n} A\left(t_{i}\right) \rightarrow\left(A\left(t_{i}\right) \rightarrow A(e)\right)$ followed by π. Then $\bigvee_{i=1}^{n} A\left(t_{i}\right) \vdash \vdash_{E}^{\pi^{\prime \prime}}, e$ is not critical in $\pi^{\prime \prime}$, and otherwise π and $\pi^{\prime \prime}$ have the same critical formulas. The same goes for $\pi^{\prime \prime}\left[\neg \bigvee A\left(t_{i}\right)\right]$, a proof of $\neg \bigvee A\left(t_{i}\right) \rightarrow E$.

We now obtain π^{\prime} as the $\pi_{i}, i=1, \ldots, n$, followed by $\pi\left[\neg \bigvee_{i=1}^{n}\right]$, followed by the tautology

$$
\left.\left.\left(\neg \bigvee A\left(t_{i}\right) \rightarrow E\right) \rightarrow\left(A\left(t_{1}\right) \rightarrow E\right) \rightarrow \cdots \rightarrow\left(A\left(t_{n}\right) \rightarrow E\right) \rightarrow E\right) \ldots\right)
$$

from which E follows by $n+1$ applications of (MP).
of the first ε-Theorem. By induction on $o(\pi, r)$, we have: if $\vdash_{\mathrm{EC}_{\varepsilon}}^{\pi} E$, then there is a proof π^{*} of E with $\operatorname{rk}\left(\pi^{-}\right)<r$. By induction on $\operatorname{rk}(() \pi)$ we have a proof $\pi^{* *}$ of E with $\operatorname{rk}\left(\pi^{* *}\right)=0$, i.e., without critical formulas at all.

Exercise 12. Check these proofs. Can you think of ways to improve the proofs?

Exercise 13. If E contains ε-terms, the replacement of ε-terms in the construction of π_{i} may change E-but of course only the ε-terms appearing as subterms in it. Use this fact to prove: If $\vdash_{\mathrm{EC}_{\epsilon \forall}} E(e)$, then $\vdash_{\mathrm{EC}} \bigvee_{i=1}^{m} E\left(t_{j}\right)$ for some terms t_{j}. Can you guarantee that t_{j} are ε-free.

3.2 The Case With Identity

In the presence of the identity $(=)$ predicate in the language, things get a bit more complicated. The reason is that instances of the $\left(=_{2}\right)$ axiom schema,

$$
t=u \rightarrow(A(t) \rightarrow A(u))
$$

may also contain ε-terms, and the replacement of an ε-term e by a term t_{i} in the construction of π_{i} may result in a formula which no longer is an instance of $\left(=_{2}\right)$. For instance, suppose that t is a subterm of $e=e^{\prime}(t)$ and $A(t)$ is of the form $A^{\prime}\left(e^{\prime}(t)\right)$. Then the original axiom is

$$
t=u \rightarrow\left(A^{\prime}\left(e^{\prime}(t)\right) \rightarrow A^{\prime}\left(e^{\prime}(u)\right)\right.
$$

which after replacing $e=e^{\prime}(t)$ by t_{i} turns into

$$
t=u \rightarrow\left(A^{\prime}\left(t_{i}\right) \rightarrow A^{\prime}\left(e^{\prime}(u)\right) .\right.
$$

So this must be avoided. In order to do this, we first observe that just as in the case of the predicate calculus, the instances of $\left(=_{2}\right)$ can be derived from restricted instances. In the case of the predicate calculus, the restricted axioms are

$$
\begin{aligned}
& t=u \rightarrow\left(P^{n}\left(s_{1}, \ldots, t, \ldots s_{n}\right) \rightarrow P^{n}\left(s_{1}, \ldots, u, \ldots, s_{n}\right)\right. \\
& t=u \rightarrow f^{n}\left(s_{1}, \ldots, t, \ldots, s_{n}\right)=f^{n}\left(s_{1}, \ldots, u, \ldots, s_{n}\right)
\end{aligned}
$$

to which we have to add the ε-identity axiom schema:

$$
t=u \rightarrow \varepsilon_{x} A\left(x ; s_{1}, \ldots, t, \ldots s_{n}\right)=\varepsilon_{x} A\left(x ; s_{1}, \ldots, u, \ldots s_{n}\right)
$$

where $\varepsilon_{x} A\left(x ; x_{1}, \ldots, x_{n}\right)$ is an ε-type.
Proposition 3.6. Every instance of $\left(=_{2}\right)$ can be derived from $\left(=_{2}^{\prime}\right),\left(=_{2}^{\prime \prime}\right)$, and $(=\varepsilon)$.

Proof. Exercise.

Now replacing every occurrence of e in an instance of $\left(=_{2}^{\prime}\right)$ or $\left(==_{2}^{\prime \prime}\right)$-where e obviously can only occur inside one of the terms $t, u, s_{1}, \ldots, s_{n}$-results in a (different) instance of $\left(=_{2}^{\prime}\right)$ or $\left(=_{2}^{\prime \prime}\right)$. The same is true of $\left(=_{\varepsilon}\right)$, provided
that the e is neither $\varepsilon_{x} A\left(x ; s_{1}, \ldots, t, \ldots s_{n}\right)$ nor $\varepsilon_{x} A\left(x ; s_{1}, \ldots, u, \ldots s_{n}\right)$. This would be guaranteed if the type of e is not $\varepsilon_{x} A\left(x ; x_{1}, \ldots, x_{n}\right)$, in particular, if the rank of e is higher than the rank of $\varepsilon_{x} A\left(x ; x_{1}, \ldots, x_{n}\right)$. Moreover, the result of replacing e by t_{i} in any such instance of $\left(=_{\varepsilon}\right)$ results in an instance of $\left(=\varepsilon_{\varepsilon}\right)$ which belongs to the same ε-type. Thus, in order for the proof of the first ε-theorem to work also when $=$ and axioms $\left(=_{1}\right),\left(=_{2}^{\prime}\right),\left(=_{2}^{\prime \prime}\right)$, and $(=\varepsilon)$ are present, it suffices to show that the instances of $\left(={ }_{\varepsilon}\right)$ with ε-terms of $\operatorname{rank} \operatorname{rk}(\pi)$ can be removed. Call an ε-term e special in π, if π contains an occurrence of $t=u \rightarrow e^{\prime}=e$ as an instance of $\left(={ }_{\varepsilon}\right)$.

Theorem 3.7. If $\vdash_{E C_{\varepsilon}}^{\pi} E$, then there is a proof $\pi^{=}$so that $\vdash_{E_{\varepsilon}}^{\pi_{\varepsilon}} E, \operatorname{rk}\left(\pi^{=}\right)=$ $\operatorname{rk}(p i)$, and the rank of the special ε-terms in $\pi^{=}$has rank $<\operatorname{rk}(\pi)$.

The basic idea is simple: Suppose $t=u \rightarrow e^{\prime}=e$ is an instance of $\left(=_{\varepsilon}\right)$, with $e^{\prime} \equiv \varepsilon_{x} A\left(x ; s_{1}, \ldots, t, \ldots s_{n}\right)$ and $e \equiv \varepsilon_{x} A\left(x ; s_{1}, \ldots, u, \ldots s_{n}\right)$. Replace e everywhere in the proof by e^{\prime}. Then the instance of $\left(={ }_{\varepsilon}\right)$ under consideration is removed, since it is now provable from $e^{\prime}=e^{\prime}$. This potentially interferes with critical formulas belonging to e, but this can also be fixed: we just have to show that by a judicious choice of e it can be done in such a way that the other $\left(=_{\varepsilon}\right)$ axioms are still of the required form.

Let $p=\varepsilon_{x} A\left(x ; x_{1}, \ldots, x_{n}\right)$ be an ε-type of $\operatorname{rank} \operatorname{rk}(\pi)$, and let e_{1}, \ldots, e_{l} be all the ε-terms of type p which have a corresponding instance of $\left(=_{\varepsilon}\right)$ in π. Let T_{i} be the set of all immediate subterms of e_{1}, \ldots, e_{l}, in the same position as x_{i}, i.e., the smallest set of terms so that if $e_{i} \equiv \varepsilon_{x} A\left(x ; t_{1}, \ldots, t_{n}\right)$, then $t_{i} \in T$. Now let let T^{*} be all instances of p with terms from T_{i} substituted for the x_{i}. Obviously, T and thus T^{*} are finite (up to renaming of bound variables). Pick a strict order \prec on T which respects degree, i.e., if $\operatorname{deg}(t)<\operatorname{deg}(u)$ then $t \prec u$. Extend \prec to T^{*} by

$$
\varepsilon_{x} A\left(x ; t_{1}, \ldots, t_{n}\right) \prec \varepsilon_{x} A\left(x ; t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)
$$

iff

1. $\max \left\{\operatorname{deg}\left(t_{i}\right): i=1, \ldots, n\right\}<\max \left\{\operatorname{deg}\left(t_{i}\right): i=1, \ldots, n\right\}$ or
2. $\max \left\{\operatorname{deg}\left(t_{i}\right): i=1, \ldots, n\right\}=\max \left\{\operatorname{deg}\left(t_{i}\right): i=1, \ldots, n\right\}$ and
a) $t_{i} \equiv t_{i}^{\prime}$ for $i=1, \ldots, k$.
b) $t_{k+1} \prec t_{k+1}^{\prime}$

Lemma 3.8. Suppose $\vdash_{E_{\varepsilon}}^{\pi} E$, e a special ε-term in π with $\operatorname{rk}(e)=\operatorname{rk}(\pi)$, $\operatorname{deg}(e)$ maximal among the special ε-terms of rank $\operatorname{rk}(\pi)$, and e maximal with respect to \prec defined above. Let $t=u \rightarrow e^{\prime}=e$ be an instance of $\left(=_{\varepsilon}\right)$ in π. Then there is a proof $\pi^{\prime}, \vdash_{\mathrm{EC}_{\varepsilon}}^{\pi^{\prime}} E$ such that

1. $\operatorname{rk}\left(\pi^{\prime}\right)=\operatorname{rk}(\pi)$
2. π^{\prime} does not contain $t=u \rightarrow e^{\prime}=e$ as an axiom
3. Every special ε-term $e^{\prime \prime}$ of π^{\prime} with the same type as e is so that $e^{\prime \prime} \prec e$.

Proof. Let $\pi_{0}=\pi\left\{e / e^{\prime}\right\}$.
Suppose $t^{\prime}=u^{\prime} \rightarrow e^{\prime \prime \prime}=e^{\prime \prime}$ is an $\left(=_{\varepsilon}\right)$ axiom in π.
If $\operatorname{rk}\left(e^{\prime \prime}\right)<\operatorname{rk}(e)$, then the replacement of e by e^{\prime} can only change subterms of $e^{\prime \prime}$ and $e^{\prime \prime \prime}$. In this case, the uniform replacement results in another instance of $\left(={ }_{\varepsilon}\right)$ with ε-terms of the same ε-type, and hence of the same $\operatorname{rank}<\operatorname{rk}(\pi)$, as the original.

If $\operatorname{rk}\left(e^{\prime \prime}\right)=\operatorname{rk}(e)$ but has a different type than e, then this axiom is unchanged in π_{0} : Neither $e^{\prime \prime}$ nor $e^{\prime \prime \prime}$ can be $\equiv e$, bcause they have different ε-types, and neither $e^{\prime \prime}$ nor $e^{\prime \prime \prime}$ (nor t^{\prime} or u^{\prime}, which are subterms of $e^{\prime \prime}, e^{\prime \prime \prime}$) can contain e as a subterm, since then e wouldn't be degree-maximal among the special ε-terms of π of $\operatorname{rank} \operatorname{rk}(\pi)$.

If the type of $e^{\prime \prime}, e^{\prime \prime \prime}$ is the same as that of e, e cannot be a proper subterm of $e^{\prime \prime}$ or $e^{\prime \prime \prime}$, since otherwise $e^{\prime \prime}$ or $e^{\prime \prime \prime}$ would again be a special ε-term of $\operatorname{rank} \operatorname{rk}(\pi)$ but of higher degree than e. So either $e \equiv e^{\prime \prime}$ or $e \equiv e^{\prime \prime \prime}$, without loss of generality suppose $e \equiv e^{\prime \prime}$. Then the $\left(=_{\varepsilon}\right)$ axiom in question has the form

$$
t^{\prime}=u^{\prime} \rightarrow \underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t^{\prime}, \ldots s_{n}\right)}_{e^{\prime \prime \prime}}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots u^{\prime}, \ldots s_{n}\right)}_{e^{\prime \prime} \equiv e}
$$

and with e replaced by e^{\prime} :

$$
t^{\prime}=u^{\prime} \rightarrow \underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t^{\prime}, \ldots s_{n}\right)}_{e^{\prime \prime \prime}}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t, \ldots s_{n}\right)}_{e^{\prime}}
$$

which is no longer an instance of $\left(=_{\varepsilon}\right)$, but can be proved from new instances of $\left(={ }_{\varepsilon}\right)$. We have to distinguish two cases according to whether the indicated position of t and t^{\prime} in $e^{\prime}, e^{\prime \prime \prime}$ is the same or not. In the first case, $u \equiv u^{\prime}$, and the new formula

$$
t^{\prime}=u \rightarrow \underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t^{\prime}, \ldots s_{n}\right)}_{e^{\prime \prime \prime}}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t, \ldots s_{n}\right)}_{e^{\prime}}
$$

can be proved from $t=u$ together with

$$
\begin{aligned}
& t^{\prime}=t \rightarrow \underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t^{\prime}, \ldots s_{n}\right)}_{e^{\prime \prime \prime}}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t, \ldots s_{n}\right)}_{e^{\prime}} \\
& t=u \rightarrow\left(t^{\prime}=u \rightarrow t^{\prime}=t\right)
\end{aligned}
$$

Since e^{\prime} and $e^{\prime \prime \prime}$ already occured in π, by assumption $e^{\prime}, e^{\prime \prime \prime} \prec e$.
In the second case, the original formulas read, with terms indicated:

$$
\begin{aligned}
t & =u \rightarrow \underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t, \ldots, u^{\prime}, \ldots, s_{n}\right)}_{e^{\prime}}
\end{aligned}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots u, \ldots, u^{\prime}, \ldots, s_{n}\right)}_{e}, \underbrace{t^{\prime}}_{e^{\prime \prime \prime}}=u^{\prime} \rightarrow t^{\varepsilon_{x} A\left(x ; s_{1}, \ldots u, \ldots, s_{n}, \ldots, s_{n}\right)}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots u, \ldots, u^{\prime}, \ldots, s_{n}\right)}_{e^{\prime \prime} \equiv e},
$$

and with e replaced by e^{\prime} the latter becomes:

$$
t^{\prime}=u^{\prime} \rightarrow \underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots u, \ldots, t^{\prime}, \ldots s_{n}\right)}_{e^{\prime \prime \prime}}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t, \ldots, u^{\prime}, \ldots, s_{n}\right)}_{e^{\prime}}
$$

This new formula is provable from $t=u$ together with

$$
\begin{aligned}
u & =t \rightarrow \underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots u, \ldots, t^{\prime}, \ldots s_{n}\right)}_{e^{\prime \prime \prime}}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t, \ldots, t^{\prime}, \ldots, s_{n}\right)}_{e^{\prime \prime \prime \prime}} \\
t^{\prime} & =u^{\prime} \rightarrow \underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t, \ldots, t^{\prime}, \ldots s_{n}\right)}_{e^{\prime \prime \prime \prime}}=\underbrace{\varepsilon_{x} A\left(x ; s_{1}, \ldots t, \ldots, u^{\prime}, \ldots, s_{n}\right)}_{e^{\prime}}
\end{aligned}
$$

and some instances of $\left(=_{2}^{\prime}\right)$. Hence, π^{\prime} contains a (possibly new) special ε term $e^{\prime \prime \prime \prime}$. However, $e^{\prime \prime \prime \prime} \prec e$ (Exercise: prove this.)

In the special case where $e=e^{\prime \prime}$ and $e^{\prime}=e^{\prime \prime \prime}$, i.e., the instance of $\left(={ }_{\varepsilon}\right)$ we started with, then replacing e by e^{\prime} results in $t=u \rightarrow e^{\prime}=e^{\prime}$, which is provable from $e^{\prime}=e^{\prime}$, an instance of $\left(=_{1}\right)$.

Let π_{1} be π_{0} with the necessary new instances of $\left(={ }_{\varepsilon}\right)$, added. The instances of $\left(={ }_{\varepsilon}\right)$ in π_{1} satisfy the properties required in the statement of the lemma.

However, the results of replacing e by e^{\prime} may have impacted some of the critical formulas in the original proof. For a critical formula to which $e \equiv$ $\varepsilon_{x} A(x, u)$ belongs is of the form

$$
\begin{equation*}
A\left(t^{\prime}, u\right) \rightarrow A\left(\varepsilon_{x} A(x, u), u\right) \tag{1}
\end{equation*}
$$

which after replacing e by e^{\prime} becomes

$$
\begin{equation*}
A\left(t^{\prime \prime}, u\right) \rightarrow A\left(\varepsilon_{x} A(x, t), u\right) \tag{2}
\end{equation*}
$$

which is no longer a critical formula. This formula, however, can be derived from $t=u$ together with

$$
\begin{align*}
A\left(t^{\prime \prime}, u\right) & \rightarrow A\left(\varepsilon_{x} A(x, t), u\right) \\
t=u & \rightarrow\left(A\left(\varepsilon_{x} A(x, t), t\right) \rightarrow A\left(\varepsilon_{x} A(x, t), u\right)\right) \tag{2}\\
u=t & \rightarrow\left(A\left(t^{\prime \prime}, u\right) \rightarrow A\left(t^{\prime \prime}, t\right)\right) \tag{2}
\end{align*}
$$

Let π_{2} be π_{1} plus these derivations of (2) with the instances of $\left(=_{2}\right)$ themselves proved from $\left(=_{2}^{\prime}\right)$ and $\left(={ }_{\varepsilon}\right)$. The rank of the new critical formulas is the same, so the rank of π_{2} is the same as that of π. The new instances of $\left(={ }_{\varepsilon}\right)$ required for the derivation of the last two formulas only contain ε-terms of lower rank that that of e. (Exercise: verify this.)
π_{2} is thus a proof of E from $t=u$ which satisfies the conditions of the lemma. From it, we obtain a proof $\pi_{2}[t=u]$ of $t=u \rightarrow E$ by the deduction theorem. On the other hand, the instance $t=u \rightarrow e^{\prime}=e$ under consideration can also be proved trivially from $t \neq u$. The proof $\pi[t \neq u]$ thus is also a proof, this time of $t \neq u \rightarrow E$, which satisfies the conditions of the lemma. We obtain π^{\prime} by combining the two proofs.

Proof. Proof of the Theorem By repeated application of the Lemma, every instance of $\left(=_{\varepsilon}\right)$ involving ε-terms of a given type p can be eliminated from the proof. The Theorem follows by induction on the number of different types of special ε-terms of $\operatorname{rank} \operatorname{rk}(\pi)$ in π.

Exercise 14. Prove Proposition 3.6.
Exercise 15. Verify that \prec is a strict total order.
Exercise 16. Complete the proof of the Lemma.

