
On the Elimination of Quantifier-free Cuts1

Daniel Weller

Institute of Computer Languages (E185),
Vienna University of Technology,

Favoritenstraße 9, 1040 Vienna, Austria

Abstract

When investigating the complexity of cut-elimination in first-order logic, a nat-
ural subproblem is the elimination of quantifier-free cuts. So far, the problem
has only been considered in the context of general cut-elimination, and the up-
per bounds that have been obtained are essentially double exponential. In this
note, we observe that a method due to Dale Miller can be applied to obtain an
exponential upper bound.

1. Introduction

In propositional logic, every valid formula has a cut-free proof which is at
most of exponential size. This trivially gives an exponential upper bound on
the complexity of cut-elimination in propositional logic: Given a proof π (with
cuts) of a formula ϕ, throw away π and compute a new cut-free proof ψ of ϕ
which is at most of exponential size. When eliminating quantifier-free cuts from
proofs in first-order logic, the situation is different: The size of proofs cannot
be recursively bounded in the length of the theorems, hence the argument of
propositional logic does not go through.

The impact of cut-elimination theorems with a complexity analysis can be
regarded from two points of view: First, a constructive proof gives a method to
perform cut-elimination and provides a worst case bound on the complexity of
this transformation. Second, such a theorem provides a theoretical bound on the
speed-up that can be achieved by cut-introduction. From the complexity analysis
of general cut-elimination, we know that, in principle, non-elementary speed-ups
can be achieved by cut-introduction, though to this date, not much is known
on how to actually introduce cuts (see [15] for some preliminary results). It is
natural to start investigating this problem by introducing cuts of low complexity,
say atomic or quantifier-free cuts, hence from this point of view an investigation
of the complexity of the elimination of quantifier-free cuts is well-motivated.

The best known bounds on the problem can be derived from [16, 17, 5, 6]:
if h(π) is the height of a proof, and c(π) the maximal logical depth of its cut-

1supported by the Austrian Science Fund (project no. P22028-N13)

Preprint submitted to Elsevier November 25, 2010

formulas, then a proof π with arbitrary quantifier-free cuts can be transformed

into a cut-free one π′ such that h(π′) ≤ 22
c(π)h(π). Note that this bound was

derived from work not concerned with quantifier-free cut-elimination per se,
but rather with the effect of propositional cut-elimination in the context of full
first-order cuts.

When considering the problem of quantifier-free cut-elimination in isolation,
the question remains whether this essentially double exponential bound is the
best we can do. We show that the elimination of quantifier-free cuts is exponen-
tial in both the symbol complexity and in the length of the proof. The method
used to show this result does not rely on reductive cut-elimination, as the tech-
nique introduced by Gentzen in [4] has been called, but is based on a modern
version of Herbrand’s theorem due to Dale Miller [10, 11], which provides a
strong link between propositional and first-order logic. Roughly, the quantifier-
free cuts are eliminated by reproving the propositional part of the proof, which
can be done with an exponential blow-up (see for example [3]). The main data
structure to achieve this will be expansion trees. Another, similar formalism was
independently introduced in [1] and further investigated in [14]. Closely related
work can also be found in [7, 9, 8]. Different forms of Herbrand’s theorem are
discussed in [2].

The complexity gap of quantifier-free cut-elimination is now closed: already
in propositional logic there exists a sequence of tautologies that exhibits an
exponential blow-up in symbol complexity when going from proofs with atomic
cuts to cut-free proofs (see Theorem 5.1 in [13]).

2. Preliminaries

For the sake of simplicity, we restrict our attention to first-order formulas
over ∨,¬,∀,⊥, although the method also applies to higher-order logic, and in
the presence of other connectives. The set of formulas will be denoted by F . We
use a two-sided sequent calculus for classical logic. It is essentially the calculus
G1c from [12] with cut restricted to quantifier-free formulas.

Definition 1 (Sequent calculus LKpc). If Γ,∆ are multisets of formulas, then
S = Γ ` ∆ is a sequent. Sometimes it will be convenient to treat sequents as
formulas, for this purpose we associate the formula

∨
¬Γ ∨

∨
∆ with S. When

relating sequents with formulas, we implicitly work modulo associativity and
commutativity of ∨. The sequent calculus LKpc consists of the following rules:
Propositional rules:

Γ ` ∆, A,B

Γ ` ∆, A ∨B
∨r

A,Γ ` ∆ B,Γ ` ∆

A ∨B,Γ ` ∆
∨l

Γ ` ∆, A

¬A,Γ ` ∆
¬l

A,Γ ` ∆

Γ ` ∆,¬A
¬r

Quantifier rules:

F {x← t} ,Γ ` ∆

(∀x)F,Γ ` ∆
∀l

Γ ` ∆, F {x← α}
Γ ` ∆, (∀x)F

∀r

2

Structural rules:

F, F,Γ ` ∆

F,Γ ` ∆
cl

Γ ` ∆, F, F

Γ ` ∆, F
cr

Γ ` ∆
F,Γ ` ∆

wl
Γ ` ∆

Γ ` ∆, F
wr

Γ ` ∆, C C,Π ` Λ

Γ,Π ` ∆,Λ
cut

where C is a quantifier-free formula (which may contain free variables) and α
is not free in F,Γ,∆. An LKpc-proof is a tree formed according to the rules
above, with axioms of the form A ` A, where A is an atom, or ⊥ `.

As our sequents are defined as multisets, to be fully precise we have to
distinguish the active formulas of the rules to prevent ambiguity. To avoid
proliferation of syntax, we supress this notation.

The main aim of this paper is to give upper bounds on the problem of
the elimination of quantifier-free cuts. To this end, we define some notions of
complexity:

Definition 2 (Sizes). We define the logical complexity | · | and the symbol com-
plexity || · || of terms, formulas and proofs. Let t be a term, then we define ||t||
to be the number of symbols in t. Let F be a formula, then we define |F | to be
the number of logical connectives in F , and ||F || to be the number of (logical
and non-logical) symbols in F .

Let π be an LKpc-proof, and let S1, . . . , Sn be the sequents in π. Then ||π|| =∑
1≤i≤n ||Si|| and |π| is the number of axioms and propositional, quantifier, wl

and wr inferences in π.

3. Elimination of quantifier-free cuts

Our approach to eliminating cuts from an LKpc-proof π of S is the following:
First, a “propositional tautology” E is extracted from π which is of linear size
(Theorem 1). Then, a cut-free proof ψ of E which has exponential size is
constructed (Lemma 2), and finally ψ is converted to a cut-free LKpc-proof ψ′

of S with polynomial expense (Lemma 3).
We will now introduce a version of the expansion trees of [11]. They are a

data structure which allows an elegant proof-theoretic proof of (a version of)
Herbrand’s theorem. Their essential task is to keep track of quantifier instan-
tiations and variable dependencies. For F,G ∈ F , we write F ≈ G for “F is G
with some positive subformulas replaced by ⊥” (a subformula is positive if it is
dominated by an even number of ¬).

Definition 3 (Expansion trees). We define expansion trees E , dual expansion
trees Ed, selected variables, expansion terms, two functions Sh and Dp from E∪Ed
to F , and size functions | · | and || · ||:

3

1. If A is an atom or ⊥, then A ∈ E ∩ Ed and Sh(A) = Dp(A) = A.

2. If E ∈ E then ¬E ∈ Ed, if E ∈ Ed then ¬E ∈ E . In either case,

Sh(¬E) = ¬Sh(E), Dp(¬E) = ¬Dp(E),
|¬E| = |E|+ 1, ||E|| = ||E||+ 1.

3. Assume that E1 and E2 do not share selected variables. If E1, E2 ∈ E
then E1 ∨ E2 ∈ E , if E1, E2 ∈ Ed then E1 ∨ E2 ∈ Ed. In either case,

Sh(E1 ∨ E2) = Sh(E1) ∨ Sh(E2), Dp(E1 ∨ E2) = Dp(E1) ∨Dp(E2),
|E1 ∨ E2| = |E1|+ |E2|+ 1, ||E1 ∨ E2|| = ||E1||+ ||E2||+ 1.

4. Assume E ∈ E , F ∈ F , and Sh(E) ≈ F {x← α} for some variable α not
selected in E. Let E′ = (∀x)F +αE. Then E′ ∈ E , α is a selected variable
of E′ and

Sh(E′) = (∀x)F, Dp(E′) = Dp(E),
|E′| = |E|+ 1, ||E′|| = ||E||+ 1.

5. Let F ∈ F , t1, . . . , tn be terms, E1, . . . , En ∈ Ed such that the Ei do not
share selected variables, and Sh(Ei) ≈ F {x← ti}. Let E′ = (∀x)F +t1

E1 + . . .+tn En. Then E′ ∈ Ed, t1, . . . , tn are expansion terms of E′, and

Sh(E′) = (∀x)F, Dp(E′) =
∧

1≤i≤n Dp(Ei),

|E′| =
∑

1≤i≤n(|Ei|+ 1), ||E′|| =
∑

1≤i≤n(||Ei||+ 1).

We remark that, somewhat unintuitively, ||E|| ignores the sizes of the ex-
pansion terms ti. There are two reasons for this: first, this definition suffices for
the bounds on cut-elimination we want to obtain. Second, ti will usually occur
in Ei (otherwise the quantifier is “vacuous”) and hence it would suffice to store
a constant-size pointer to ti.

Now let E ∈ E ∪ Ed. Observe that if E is a quantifier-free formula, then |E|
and ||E|| are consistent with Definition 2. Note that Dp(E) is a propositional
formula. In the tree representation of E, a quantifier node Q1 dominates another
quantifier node Q2 if both are on a common branch and Q1 is closer to the root
than Q2.

Let ΘE be the set of occurrences of expansion terms of E. Define the binary
relation <0

E on ΘE : t <0
E s if there exists a variable α which is selected for a

quantifier node dominated by the quantifier node of t such that α is free in s.
We write <E for the transitive closure of <0

E .

Definition 4 (Expansion tree proofs). We say that E is tautologous if Dp(E)
is a tautology. E is an expansion tree for a formula F , written E � F , if

1. Sh(E) ≈ F , and

2. the free variables of F are not selected in E, and

3. <E is acyclic.

E is an ET-proof of a formula F , in symbols `E F , if E�F and E is tautologous.

Note that in particular, ⊥ � F for all F .

4

Example 1. Consider the expansion tree

E = ¬[(∀x)¬(¬Px ∨ (∀y)Py) +α¬(¬Pα ∨ [(∀y)Py +β Pβ])
+β¬(¬Pβ ∨ ⊥)]

More suggestively, E can be drawn as a tree:

¬

(∀x)¬(¬Px ∨ (∀y)Py)

¬

∨

⊥¬

Pβ

β

¬

∨

(∀y)Py

Pβ

β

¬

Pα

α

Then α, β are expansion terms in E, β is selected, α <E β, and

Sh(E) = ¬((∀x)¬(¬Px ∨ (∀y)Py)), |E| = 10,
Dp(E) = ¬(¬(¬Pα ∨ Pβ) ∧ ¬(¬Pβ ∨ ⊥)), ||E|| = 16.

It is easy to verify that `E Sh(E).

In order to extract expansion tree proofs from LKpc-proofs, we will need to
merge expansion trees:

Lemma 1. Let E1, E2 ∈ E (or E1, E2 ∈ Ed). If E1 � F and E2 � F then there
exists E1∪E2 ∈ E (or ∈ Ed) such that E1∪E2�F and ||E1∪E2|| ≤ ||E1||+||E2||
and |E1 ∪ E2| ≤ |E1|+ |E2| and

1. if E1, E2 ∈ E then (Dp(E1)∨Dp(E2))→ Dp(E1 ∪E2) is a tautology, and

2. if E1, E2 ∈ Ed then Dp(E1 ∪ E2)→ (Dp(E1) ∧Dp(E2)) is a tautology.

Proof. We only treat the interesting cases. If E1 = ⊥ then we take E1 ∪ E2 =
E2 (similarily if E2 = ⊥). If E1 = (∀x)F +t1 E1 + . . . +tn En then E2 =
(∀x)F +s1E′1 + . . .+smE′m and we take E1∪E2 = (∀x)F +t1E1 + . . .+tnEn+s1

E′1 + . . . +sm E′m. If E1 = (∀x)F +α E then E2 = (∀x)F +α E′ and we take
E1 ∪ E2 = (∀x)F +α (E ∪ E′).

5

Even in the presence of quantifier-free cuts, we can extract small expansion
tree proofs from sequent calculus proofs:

Theorem 1. Let π be an LKpc-proof of a sequent S. There exists an expansion
tree E such that `E S, ||E|| ≤ c||π||, and |E| ≤ d|π|, where c, d are constants.

Proof. Let ρ be an inference in π with conclusion ΓS ,ΓC ` ∆S ,∆C , where
ΓS ,∆S are the end-sequent ancestors and ΓC ,∆C are the cut-ancestors. Let
h(ρ) be the maximal number of sequents between ρ and an axiom of π. We
construct by induction on h(ρ) an expansion tree E such that the expansion
tree E ∨ (ΓC ` ∆C) is tautologous and E � (ΓS ` ∆S) and ||E|| ≤ c||πρ|| and
|E| ≤ d|πρ|, where πρ is the subproof of π ending in ρ. Furthermore, no variable
free in the conclusion of ρ is selected in E. Then, by taking ρ as the last rule of
π, the desired result follows.

1. ρ is an axiom A ` A (the case of ⊥ ` is analogous). We assume that the
left occurrence is an end-sequent ancestor and the right occurrence is a
cut-ancestor (the other cases are similar; in case all occurrences are cut-
ancestors, we take E = ⊥). We take E = ¬A. Hence E ∨ (ΓC ` ∆C) =
¬A ∨A is tautologous, E � ¬A and ||E|| ≤ ||πρ|| and |E| ≤ |πρ|.

2. ρ is a ∀l inference

(λ)
G {x← t} ,ΓS ,ΓC ` ∆S ,∆C

(∀x)G,ΓS ,ΓC ` ∆S ,∆C
∀l

As all cuts in π are quantifier-free, (∀x)G and G {x← t} are end-sequent
ancestors. By (IH) there exists E such that E �¬G {x← t} ∨ (ΓS ` ∆S),
E ∨ (ΓC ` ∆C) is tautologous and ||E|| ≤ c||λ|| and |E| ≤ d|λ|. Hence
E = ¬E′ ∨ E′′ such that Sh(E′) = G {x← t}. Let E∗ = (∀x)G +t E′,
then E+ = ¬E∗ ∨ E′′ is the desired expansion tree. <E+ remains acyclic
since by our inductive assumption, no variable free in t is selected in E.
Note that ||E+|| = ||E||+ 1 ≤ c||πρ|| and |E+| = |E|+ 1 ≤ d|πρ|.

3. ρ is a ∀r inference. We proceed analogously to ∀l, renaming selected
variables if necessary.

4. ρ is a cut

(π1)
ΓS,1,ΓC,1,` ∆S,1,∆C,1, F

(π2)
F,ΓS,2,ΓC,2,` ∆S,2,∆C,2

ΓS,1,ΓC,1,ΓS,2,ΓC,2 ` ∆S,1,∆C,1,∆S,2,∆C,2
cut

By (IH) there exist expansion trees E1, E2 such that Ei � (ΓS,i ` ∆S,i),
and E1 ∨ (ΓC,1 ` ∆C,2, F) and (F,ΓC2

` ∆C,2)∨E2 are both tautologous,
and such that |Ei| ≤ d|πi|. We take E = E1 ∨ E2, renaming selected
variables if necessary. Note that ||E|| = ||E1|| + ||E2|| + 1 ≤ c||πρ|| and
|E| = |E1|+ |E2|+ 1 ≤ d|πρ|.

6

5. ρ is wr (the case of wl is analogous). In case an end-sequent ancestor is
introduced, E = E′∨⊥, where E′ the expansion tree obtained by (IH). In
this case, ||E|| = ||E′||+ 2 ≤ c||πρ|| and |E| = |E′|+ 2 ≤ d|πρ|. Otherwise
we conclude by (IH).

6. ρ is a cl or cr inference. If the main formulas are end-sequent ances-
tors, E is obtained from the expansion tree obtained by (IH) by applying
Lemma 1. Otherwise we conclude by (IH).

7. ρ is a propositional inference. If the main formulas are end-sequent an-
cestors, E is obtained by introducing the appropriate connective. In the
case of a binary inference, Lemma 1 is used for the context formulas.

The next definition introduces a sequent calculus for expansion trees. It is
invertible in the sense that if S is derived from S′, then if S is tautologous so is
S′.

Definition 5 (Sequent calculus LKE). We say that a term t is admissible in
an expansion tree E if no variable free in t is selected in E. We now consider
expansion sequents Γ ` ∆ where ∆ (Γ) is multiset of (dual) expansion trees. As
with sequents, we will treat expansion sequents as expansion trees when it is
convenient. The sequent calculus LKE consists of the rules ∨l,∨r,¬l,¬r, wl, wr
of LKpc, defined for expansion sequents, and the following expansion rules:

Γ ` ∆, E

Γ ` ∆, (∀x)F +α E
∀r

E1,Γ ` ∆

(∀x)F +t1 E1,Γ ` ∆
∀1l

(∀x)F +t1 E1 + . . .+ti−1 Ei−1 +ti+1 Ei+1 + . . .+tn En, Ei,Γ ` ∆

(∀x)F +t1 E1 + . . .+tn En,Γ ` ∆
∀l

In ∀l, ti must be admissible in Γ ` ∆, (∀x)F +t1 E1 + . . . +tn En. Similarily
in ∀1l . An LKE-proof is a tree formed according to the rules of LKE , with
axioms of the form ⊥ ` and A ` A where A is an atom. For LKE-proofs π, the
logical and symbol complexity measures |π| and ||π|| are defined analogously as
for LKpc-proofs.

Since the rules of LKE except wl and wr are invertible, the usual semantic
cut-free completeness proof for the sequent calculus for propositional logic as in
e.g. [3] can be applied with a slight modification to obtain

Lemma 2. Let E be a tautologous expansion sequent such that <E is acyclic.
Then there exists an LKE-proof π of E such that ||π|| ≤ 2||A|| and |π| ≤ 2|A|.

Proof. By induction on E. The difference to the argument for propositional
logic is that we have to show that, if all members of E are dual expansion trees
of the form (∀x)F +ti,1E1 + . . .+ti,ni En ∈ Ed, then some ti,j is admissible. This
follows straightforwardly from the acyclicity of <E .

Finally, we convert cut-free proofs of expansion sequents to cut-free proofs
in first-order logic.

7

Lemma 3. Let π be an LKE-proof of an expansion sequent SE such that SE�S.
Then there exists a cut-free LKpc-proof ϕ of S such that ||ϕ|| ≤ ||π||2 and
|ϕ| ≤ |π|.

Proof. We first construct a proof ψ of Sh(SE) by replacing sequents Γ ` ∆ in
π by Sh(Γ) ` Sh(∆), and inferences by their respective LKpc counterparts. In
particular, ∀l in π is replaced by cl and ∀l. The eigenvariable condition holds
because the terms used in the ∀l inferences are admissible. Clearly |ψ| ≤ |π|
and ||ψ|| ≤ ||π||.

Since Sh(SE) ≈ S, to obtain ϕ from ψ we may have to replace some positive
occurrences of ⊥ by the correct subformulas of S. This can be done since the
axiom ⊥ ` only applies to negative occurrences of ⊥. We have |ϕ| ≤ |ψ| and
||ϕ|| ≤ ||ψ||2.

Finally, we can state the main result on the complexity of the elimination of
quantifier-free cuts from proofs in first-order logic:

Theorem 2. Let π be an LKpc-proof of a sequent S. Then there exists a cut-
free LKpc-proof ψ of S such that ||ψ|| < 2c||π|| and |ψ| < 2d|π|, where c, d are
constants.

Proof. By Theorem 1 there exists an expansion tree E such that `E S, ||E|| ≤
c1||π||, and |E| ≤ d1|π|. By Lemma 2, there exists an LKE-proof ϕ of E
such that ||ϕ|| ≤ 2c1||π|| and |ϕ| ≤ 2d1|π|. By Lemma 3, we obtain a cut-free
LKpc-proof ψ of S such that ||ψ|| ≤ 22c1||π|| and |ψ| ≤ 2d1|π|.

4. Acknowledgments

The author would like to thank Matthias Baaz for pointing out that the
problem addressed in this work was open, and to Matthias Baaz, Stefan Hetzl,
and Alexander Leitsch for fruitful discussions and insightful comments on the
subject. In particular, the idea to use ⊥ to handle the weak formulas is due to
Stefan Hetzl.

[1] Matthias Baaz and Alexander Leitsch. Skolemization and proof complexity.
Fundamenta Informaticae, 20(4):353–379, 1994.

[2] Samuel R. Buss. On Herbrand’s theorem. In Logic and Computational
Complexity, volume 960 of Lecture Notes in Computer Science, pages 195–
209. Springer Berlin, 1995.

[3] Samuel R. Buss. An introduction to proof theory. In Handbook of Proof
Theory, pages 1–78, 1998.

[4] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathe-
matische Zeitschrift, 39(1):176–210, dec 1935.

[5] Philipp Gerhardy. Refined complexity analysis of cut elimination. In Com-
puter Science Logic, volume 2803 of Lecture Notes in Computer Science,
pages 212–225. Springer Berlin, 2003.

8

[6] Philipp Gerhardy. The role of quantifier alternations in cut elimination.
Notre Dame Journal of Formal Logic, 46(2):165–171, 2005.

[7] Willem Heijltjes. Proof forests with cut-elimination based on Herbrand’s
theorem. In Second International Workshop on Classical Logic and Com-
putation, July 2008.

[8] Stefan Hetzl. Describing proofs by short tautologies. Annals of Pure and
Applied Logic, 159(1–2):129–145, 2009.

[9] Richard McKinley. Herbrand expansion proofs and proof identity. In Second
International Workshop on Classical Logic and Computation, July 2008.

[10] Dale Miller. Proofs In Higher-Order Logic. PhD thesis, Carnegie Mellon
University, Department of Mathematics, 1983.

[11] Dale Miller. A compact representation of proofs. Studia Logica, 46(4):347–
370, 1987.

[12] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, sec-
ond edition, 2000.

[13] Alasdair Urquhart. The complexity of propositional proofs. The Bulletin
of Symbolic Logic, 1(4):425–467, dec 1995.

[14] Bruno Woltzenlogel Paleo. Herbrand Sequent Extraction. VDM-Verlag,
Saarbruecken, Germany, 2008.

[15] Bruno Woltzenlogel Paleo. A General Analysis of Cut-Elimination by
CERes. PhD thesis, Vienna University of Technology, 2009.

[16] Wenhui Zhang. Cut elimination and automatic proof procedures. Theoret-
ical Computer Science, 91(2):265–284, 1991.

[17] Wenhui Zhang. Depth of proofs, depth of cut-formulas and complexity of
cut-formulas. Theoretical Computer Science, 129(1):193–206, 1994.

9

