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Motivation

Investigate the influence of Skolem functions on length of
classical first-order proofs.

Of practical interest:

Skolemization used by resolution provers and the CERES
method.
Give an (efficient?) algorithm to remove Skolem functions.

Of theoretical interest:

How much expressivity is gained by using Skolem functions?
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Motivation

Problem

Given: a proof of the Skolemization of a formula F .
Wanted: a proof of F .

Aim: Find upper and lower bounds for this problem.
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Motivation

A related question was asked in [P. Clote and J. Kraj́ıček 1993]:

Question (Pudlák)

Assume that (∀x)(∃y)φ(x , y) is provable in predicate logic.
Introduce a new function symbol f and an axiom Aφ which states

(∀x)φ(x , f (x)).

Does there exist formula φ such that the extended system gives a
superexponential speed-up over predicate calculus, with respect to
number of symbols in proofs?
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Remark

A positive answer seems to require the construction of a lower
bound for a proof system with cut.

A negative answer for a large class was given by (Avigad
2003):

From proofs in theories strong enough to code finite functions,
Skolem functions can be eliminated in polynomial time.

Here, we concentrate on cut-free systems.
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More Related Work

Maehara 1955: Remove Skolem functions from proofs (uses
cut-elimination).

de Nivelle 2003: Remove Skolem functions from resolution
proofs (introduces new predicate symbols).
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Sequent calculus

We use cut-free G3c +>:

Two-sided sequents.
Contraction and weakening absorbed into logical rules and
axioms.
Connectives >,⊥,¬,∨,∧,→,∃,∀.

Length of proof |π| = number of sequents in π.
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Skolemization

Different forms of Skolemization are known:

Prefix Skolemization.
Structural Skolemization.
. . .

Know from (Baaz, Leitsch 1994):

Prefix may be non-elementarily worse than Structural w.r.t.
Herbrand complexity.

We concentrate on structural Skolemization.
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Structural Skolemization

Definition (Structural Skolemization)

The structural Skolemization sk(F ) is obtained from F by
iterating: Take a leftmost strong quantifier (Qx), remove it and
replace x by f (y1, . . . , yn), where (Q1y1), . . . (Qnyn) are the weak
quantifiers dominating (Qx) and f is fresh.

M. Baaz, S. Hetzl, D. Weller

On the complexity of proof deskolemization



Upper bounds Lower bounds

Structural Skolemization

Example (Structural Skolemization)

Let F = (∃x)((∀y)G (y) ∧ (∃z)H(z)) where G ,H are
quantifier-free. Then

sk(F ) = (∃x)(G (f (x)) ∧ (∃z)H(z))

A prefix Skolemization of F is

(∃x)(∃z)(G (f (x , z)) ∧ H(z)).
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Outline

1 Upper bounds

2 Lower bounds
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An upper bound

Theorem

Let π be a cut-free proof of sk(S). Then there exists a cut-free
proof ψ of S such that depth(ψ) ≤ |π|qocc(S) + |π|+ qocc(S).

Proof sketch.

We will use a variant of expansion trees from (Miller 1983).

1 Extract a small expansion E from π.

2 Construct a proof ϕ of E in a calculus LKE. ϕ has small
depth. ϕ has to be constructed according to a specific
strategy.

3 Transform ϕ into ψ by replacing Skolem terms by
eigenvariables.
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Expansions

Idea: For a formula F , store instantiation and Skolem term
information such that a valid Herbrand disjunction can
“easily” be computed.

Lemma

Let π be a cut-free proof of a sequent S which does not contain
any strong quantifiers. Then there is a tautological expansion E of
S s.t. |E | ≤ |π|.
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Expansions

Tautological expansions are not quantifier-free, but contain all
instantiation information necessary to prove them.

So: define a calculus on expansions to be able to use the
usual bottom-up proof search for propositional logic.
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LKE

Axioms (A is an atom):

A,Π ` Λ,A, Π ` Λ,>, or ⊥,Π ` Λ

Propositional rules:

E1,Π ` Λ E2,Π ` Λ

E1 ∨ E2,Π ` Λ
∨l

Π ` Λ,E1,E2

Π ` Λ,E1 ∨ E2
∨r

Π ` Λ,E

¬E ,Π ` Λ
¬l

E ,Π ` Λ

Π ` Λ,¬E
¬r

and analogously for ∧ and →.
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LKE

Quantifier rules:

Π ` Λ, ∃x A +t1 E1 . . .+ti−1 Ei−1 +ti+1 Ei+1 . . .+tn En,Ei

Π ` Λ,∃x A +t1 E1 . . .+tn En
∃r

E ,Π ` Λ

∃x A +t E ,Π ` Λ
∃l

and analogously for ∀r and ∀l .
Note: No eigenvariable condition. Will be recovered later.
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LKE

Lemma

Let π be an LKE-proof of an expansion E , then depth(π) ≤ |E |.
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Skolem term ordering

Definition

For an expansion E we define the Skolem term ordering ≺E as
s ≺E t if

1 s is a proper subterm of t, or

2 E contains a strong quantifier Qx A′ +s E ′ and E ′ contains a
strong quantifier Qy A′′ +t E ′′.

Analogous relations have been used in the literature when
removing Skolem terms.
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Skolem term ordering

The following condition will ensure that the LKE-proofs we
construct can be transformed to LK-proofs obeying the
eigenvariable conditions.

Definition

An LKE-proof is called compatible with a term ordering � if for all
quantifier inferences ι1 and ι2 where ι1 is strong and is above ι2
we have t(ι1) � t(ι2).
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Proof search

Lemma

Every tautological expansion E has an LKE-proof that is
compatible with �E .

Proof sketch.

By propositional proof search with the following strategy for
selecting main formulas:

Take a �E -minimal element f (s̄, t̄). By definition it has a
unique strong quantifier (Qy) in E .

Select the formula containing (Qy) as the main formula.
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Transforming to LK

Lemma

Let E be an expansion of a sequent S and let π be an LKE-proof
of E which is compatible with �E . Then there is a cut-free proof
ψ of S with depth(ψ) = depth(π).
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Upper bound — cut-free case

Theorem

Let π be a cut-free proof of sk(S), then there is a cut-free proof ψ
of S with depth(ψ) ≤ |π|qocc(S) + |π|+ qocc(S) and hence
|ψ| ≤ 2|π|qocc(S)+|π|+qocc(S).

Corollary (Quantifier-free cut-elimination)

Let π be a proof of S with quantifier-free cuts only, then there is a
cut-free proof ψ of S with depth(ψ) ≤ |π|qocc(S) + |π|+ qocc(S)
and hence |ψ| ≤ 2|π|qocc(S)+|π|+qocc(S).
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The case with cut

Definition

A proof π has essentially Skolem-free cuts if every term that starts
with a Skolem symbol and appears in a cut formula of π does not
contain a bound variable.
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The case with cut

Theorem

Let π be a proof of sk(S) with essentially Skolem-free cuts. Let c
be the number of quantifiers in the cut-formulas of π. Then there
is a proof ψ of S
s.t. depth(ψ) ≤ (|π|2qocc(S) + |π|+ 1)(c + qocc(S) + 1).
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The case with cut

Proof sketch.

Let S = Γ ` ∆ and sk(S) = Γ′ ` ∆′.

1 Construct a “Skolem-term overbinding T-extension” of π,
obtain cut-free proof of Σ, Γ′ ` ∆′.

2 Skolemize, obtain cut-free proof of Σ′, Γ′ ` ∆′.

3 Apply deskolemization theorem, obtain cut-free proof of
Σ, Γ ` ∆ with exponential blow-up.

4 Reverse T-extension, obtain proof (with cuts) of Γ ` ∆.
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Outline

1 Upper bounds

2 Lower bounds
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Lower bound for cut-free case

Theorem

There exists a sequence of sequents (Rn) such that

For all cut-free proofs π of RN , |π| ≥ 2N , and

there exists a cut-free proof π of sk(RN) such that
|π| ≤ k ∗ N + c for some constants c , k.
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Lower bound for cut-free case

Proof.

Take

R0 = G0 → G0

Rn = ((∃xn)Pn(xn) ∨ Gn)→ (∃yn)((Pn(yn) ∨ Gn) ∧ Rn−1).

Quantifier placement forces Rn−1 to be proved twice. The tree
structure of proofs is used.
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An optimized Skolemization

Definition

We define a rewrite relation →sm on formulas that “pushes
quantifiers down”:

(∀x)¬F →sm ¬(∃x)F , (∀x)(F ∨ G )→sm (∀x)F ∨ G

provided that x is not free in G , and so on for the other cases and
connectives. If F →∗sm G then sk(G ) is an sm-Skolemization of F .
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Lower bound for sm-Skolemization

Theorem

There exist sequences of sequents (Sn), (Mn)

1 Mn is an sm-Skolemization of Sn, and

2 there exists a cut-free proof of Mn of elementary length, and

3 all cut-free proofs of Sn, have non-elementary length.

Proof sketch.

Consider Statman’s sequence Tn and short proofs with cut πn of
Tn. Consider the end-sequent T ′n of the T-extension of πn. Take
sk(T ′n) for Mn. For Sn we take a certain “bad prefixation” of T ′n,
constructed as the witness for e) in Theorem 4.1 in (Baaz1994).
The result then follows from that Theorem.
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Open questions

The case of proofs with cuts which are not essentially
Skolem-free.

The cut-free DAG case (our lower bound uses the fact that
proofs are trees).
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