On the complexity of proof deskolemization

M. Baaz, S. Hetzl, D. Weller

Collegium Logicum: proof & structures 2010

M. Baaz, S. Hetzl, D. Weller On the complexity of proof deskolemization = 990

Motivation

 Investigate the influence of Skolem functions on length of classical first-order proofs.

Motivation

- Investigate the influence of Skolem functions on length of classical first-order proofs.
- Of practical interest:
 - Skolemization used by resolution provers and the CERES method.
 - Give an (efficient?) algorithm to remove Skolem functions.

Motivation

- Investigate the influence of Skolem functions on length of classical first-order proofs.
- Of practical interest:
 - Skolemization used by resolution provers and the CERES method.
 - Give an (efficient?) algorithm to remove Skolem functions.
- Of theoretical interest:
 - How much expressivity is gained by using Skolem functions?

M. Baaz, S. Hetzl, D. Weller

E • 2 < C +

Motivation

Problem

Given: a proof of the Skolemization of a formula F. Wanted: a proof of F.

Aim: Find upper and lower bounds for this problem.

Motivation

A related question was asked in [P. Clote and J. Krajíček 1993]:

Question (Pudlák)

Assume that $(\forall x)(\exists y)\phi(x, y)$ is provable in predicate logic. Introduce a new function symbol f and an axiom A_{ϕ} which states

 $(\forall x)\phi(x,f(x)).$

Does there exist formula ϕ such that the extended system gives a superexponential speed-up over predicate calculus, with respect to number of symbols in proofs?

Remark

- A positive answer seems to require the construction of a lower bound for a proof system with cut.
- A negative answer for a large class was given by (Avigad 2003):
 - From proofs in theories strong enough to code finite functions, Skolem functions can be eliminated in polynomial time.
- Here, we concentrate on cut-free systems.

More Related Work

- Maehara 1955: Remove Skolem functions from proofs (uses cut-elimination).
- de Nivelle 2003: Remove Skolem functions from resolution proofs (introduces new predicate symbols).

Sequent calculus

- We use cut-free $G3c + \top$:
 - Two-sided sequents.
 - Contraction and weakening absorbed into logical rules and axioms.
 - Connectives $\top, \bot, \neg, \lor, \land, \rightarrow, \exists, \forall$.
- Length of proof $|\pi|$ = number of sequents in π .

E 990

・ロン ・四 と ・ヨン ・ ヨン

Skolemization

Different forms of Skolemization are known:

- Prefix Skolemization.
- Structural Skolemization.
- ...

Skolemization

Different forms of Skolemization are known:

- Prefix Skolemization.
- Structural Skolemization.
- • •
- Know from (Baaz, Leitsch 1994):
 - Prefix may be non-elementarily worse than Structural w.r.t. Herbrand complexity.
- We concentrate on structural Skolemization.

Structural Skolemization

Definition (Structural Skolemization)

The structural Skolemization sk(F) is obtained from F by iterating: Take a leftmost strong quantifier (Qx), remove it and replace x by $f(y_1, \ldots, y_n)$, where $(Q_1y_1), \ldots, (Q_ny_n)$ are the weak quantifiers dominating (Qx) and f is fresh.

▲ロト ▲圖ト ▲注ト ▲注ト 三注 - のへで

Structural Skolemization

Example (Structural Skolemization)

Let $F = (\exists x)((\forall y)G(y) \land (\exists z)H(z))$ where G, H are quantifier-free. Then

$$\operatorname{sk}(F) = (\exists x)(G(f(x)) \land (\exists z)H(z))$$

A prefix Skolemization of F is

 $(\exists x)(\exists z)(G(f(x,z)) \land H(z)).$

M. Baaz, S. Hetzl, D. Weller

Outline

1 Upper bounds

<ロ> < 団> < 団> < 三> < 三> < 三</p>

E • 2 < C +

< ロ > < 回 > < 回 > < 回 > < 回 > <

An upper bound

Theorem

Let π be a cut-free proof of sk(S). Then there exists a cut-free proof ψ of S such that $depth(\psi) \leq |\pi|qocc(S) + |\pi| + qocc(S)$.

An upper bound

Theorem

Let π be a cut-free proof of sk(S). Then there exists a cut-free proof ψ of S such that $depth(\psi) \leq |\pi|qocc(S) + |\pi| + qocc(S)$.

Proof sketch.

We will use a variant of expansion trees from (Miller 1983).

- **1** Extract a small expansion E from π .
- Construct a proof φ of E in a calculus LK^E. φ has small depth. φ has to be constructed according to a specific strategy.
- **3** Transform φ into ψ by replacing Skolem terms by eigenvariables.

Expansions

 Idea: For a formula F, store instantiation and Skolem term information such that a valid Herbrand disjunction can "easily" be computed.

Lemma

Let π be a cut-free proof of a sequent S which does not contain any strong quantifiers. Then there is a tautological expansion E of S s.t. $|E| \leq |\pi|$.

Expansions

- Tautological expansions are not quantifier-free, but contain all instantiation information necessary to prove them.
- So: define a calculus on expansions to be able to use the usual bottom-up proof search for propositional logic.

= 990

《口》《聞》《臣》《臣》

Axioms (A is an atom):

$$A, \Pi \vdash \Lambda, A, \quad \Pi \vdash \Lambda, \top, \text{ or } \perp, \Pi \vdash \Lambda$$

Propositional rules:

$$\frac{E_1, \Pi \vdash \Lambda \quad E_2, \Pi \vdash \Lambda}{E_1 \lor E_2, \Pi \vdash \Lambda} \lor_I \qquad \frac{\Pi \vdash \Lambda, E_1, E_2}{\Pi \vdash \Lambda, E_1 \lor E_2} \lor_r$$
$$\frac{\Pi \vdash \Lambda, E}{\neg E, \Pi \vdash \Lambda} \neg_I \qquad \frac{E, \Pi \vdash \Lambda}{\Pi \vdash \Lambda, \neg E} \neg_r$$

and analogously for \wedge and $\rightarrow.$

M. Baaz, S. Hetzl, D. Weller

E 990

・ロン ・四 と ・ヨン ・ ヨン

Quantifier rules:

$$\frac{\Pi \vdash \Lambda, \exists x \: A + {}^{t_1} \: E_1 \ldots + {}^{t_{i-1}} \: E_{i-1} + {}^{t_{i+1}} \: E_{i+1} \ldots + {}^{t_n} \: E_n, E_i}{\Pi \vdash \Lambda, \exists x \: A + {}^{t_1} \: E_1 \ldots + {}^{t_n} \: E_n} \: \exists_r$$
$$\frac{E, \Pi \vdash \Lambda}{\exists x \: A + {}^t \: E, \Pi \vdash \Lambda} \: \exists_l$$

and analogously for \forall_r and \forall_l .

Note: No eigenvariable condition. Will be recovered later.

M. Baaz, S. Hetzl, D. Weller

Lemma

Let π be an **LK^E**-proof of an expansion *E*, then depth(π) $\leq |E|$.

Skolem term ordering

Definition

For an expansion E we define the Skolem term ordering \prec_E as $s \prec_E t$ if

- 1 s is a proper subterm of t, or
- 2 E contains a strong quantifier $Q \times A' + {}^{s} E'$ and E' contains a strong quantifier $Q \times A'' + {}^{t} E''$.
- Analogous relations have been used in the literature when removing Skolem terms.

Skolem term ordering

The following condition will ensure that the LK^E-proofs we construct can be transformed to LK-proofs obeying the eigenvariable conditions.

Definition

An **LK^E**-proof is called compatible with a term ordering \leq if for all quantifier inferences ι_1 and ι_2 where ι_1 is strong and is above ι_2 we have $t(\iota_1) \not\leq t(\iota_2)$.

Proof search

Lemma

Every tautological expansion E has an LK^E -proof that is compatible with \leq_E .

Proof sketch.

By propositional proof search with the following strategy for selecting main formulas:

- Take a ≤_E-minimal element f(s̄, t̄). By definition it has a unique strong quantifier (Qy) in E.
- Select the formula containing (Qy) as the main formula.

M. Baaz, S. Hetzl, D. Weller

Transforming to **LK**

Lemma

Let *E* be an expansion of a sequent *S* and let π be an **LK**^E-proof of *E* which is compatible with \leq_E . Then there is a cut-free proof ψ of *S* with depth(ψ) = depth(π).

Upper bound — cut-free case

Theorem

Let π be a cut-free proof of sk(S), then there is a cut-free proof ψ of S with depth(ψ) $\leq |\pi| \operatorname{qocc}(S) + |\pi| + \operatorname{qocc}(S)$ and hence $|\psi| \leq 2^{|\pi|\operatorname{qocc}(S) + |\pi| + \operatorname{qocc}(S)}$.

Upper bound — cut-free case

Theorem

Let π be a cut-free proof of sk(S), then there is a cut-free proof ψ of S with depth(ψ) $\leq |\pi| \operatorname{qocc}(S) + |\pi| + \operatorname{qocc}(S)$ and hence $|\psi| \leq 2^{|\pi|\operatorname{qocc}(S) + |\pi| + \operatorname{qocc}(S)}$.

Corollary (Quantifier-free cut-elimination)

Let π be a proof of *S* with quantifier-free cuts only, then there is a cut-free proof ψ of *S* with depth(ψ) $\leq |\pi| \operatorname{qocc}(S) + |\pi| + \operatorname{qocc}(S)$ and hence $|\psi| \leq 2^{|\pi|\operatorname{qocc}(S) + |\pi| + \operatorname{qocc}(S)}$.

The case with cut

Definition

A proof π has essentially Skolem-free cuts if every term that starts with a Skolem symbol and appears in a cut formula of π does not contain a bound variable.

M. Baaz, S. Hetzl, D. Weller On the complexity of proof deskolemization ・ロト・(型ト・(出)・(出)・(し)・(し)

The case with cut

Theorem

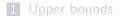
Let π be a proof of sk(S) with essentially Skolem-free cuts. Let c be the number of quantifiers in the cut-formulas of π . Then there is a proof ψ of Ss.t. depth(ψ) $\leq (|\pi|^2 \operatorname{qocc}(S) + |\pi| + 1)(c + \operatorname{qocc}(S) + 1)$.

The case with cut

Proof sketch.

- Let $S = \Gamma \vdash \Delta$ and $sk(S) = \Gamma' \vdash \Delta'$.
 - Construct a "Skolem-term overbinding T-extension" of π, obtain cut-free proof of Σ, Γ' ⊢ Δ'.
 - **2** Skolemize, obtain cut-free proof of $\Sigma', \Gamma' \vdash \Delta'$.
 - 3 Apply deskolemization theorem, obtain cut-free proof of Σ, Γ ⊢ Δ with exponential blow-up.
 - **4** Reverse T-extension, obtain proof (with cuts) of $\Gamma \vdash \Delta$.

Outline



<ロ> < 団> < 団> < 三> < 三> < 三</p>

3

Lower bound for cut-free case

Theorem

There exists a sequence of sequents (R_n) such that

- For all cut-free proofs π of R_N , $|\pi| \ge 2^N$, and
- there exists a cut-free proof π of $sk(R_N)$ such that $|\pi| \le k * N + c$ for some constants c, k.

M. Baaz, S. Hetzl, D. Weller

Lower bound for cut-free case

Proof.

Take

$$\begin{array}{ll} R_0 = & G_0 \rightarrow G_0 \\ R_n = & ((\exists x_n) P_n(x_n) \lor G_n) \rightarrow (\exists y_n)((P_n(y_n) \lor G_n) \land R_{n-1}). \end{array}$$

Quantifier placement forces R_{n-1} to be proved twice. The tree structure of proofs is used.

An optimized Skolemization

Definition

We define a rewrite relation \rightarrow_{sm} on formulas that "pushes quantifiers down":

$$(\forall x) \neg F \rightarrow_{sm} \neg (\exists x)F, \ (\forall x)(F \lor G) \rightarrow_{sm} (\forall x)F \lor G$$

provided that x is not free in G, and so on for the other cases and connectives. If $F \rightarrow_{sm}^{*} G$ then sk(G) is an *sm-Skolemization* of F.

M. Baaz, S. Hetzl, D. Weller

I na ∩

イロン イ団 とくほ とくほ とう

Lower bound for sm-Skolemization

Theorem

There exist sequences of sequents $(S_n), (M_n)$

- **1** M_n is an sm-Skolemization of S_n , and
- 2 there exists a cut-free proof of M_n of elementary length, and
- 3 all cut-free proofs of S_n , have non-elementary length.

Lower bound for sm-Skolemization

Theorem

There exist sequences of sequents $(S_n), (M_n)$

- **1** M_n is an sm-Skolemization of S_n , and
- 2 there exists a cut-free proof of M_n of elementary length, and
- 3 all cut-free proofs of S_n , have non-elementary length.

Proof sketch.

Consider Statman's sequence T_n and short proofs with cut π_n of T_n . Consider the end-sequent T'_n of the T-extension of π_n . Take $sk(T'_n)$ for M_n . For S_n we take a certain "bad prefixation" of T'_n , constructed as the witness for e) in Theorem 4.1 in (Baaz1994). The result then follows from that Theorem.

<ロ> <同> <同> < 同> < 同>

E • 2 < C +

Open questions

- The case of proofs with cuts which are not essentially Skolem-free.
- The cut-free DAG case (our lower bound uses the fact that proofs are trees).